Chapter 2: Fundamentals of Statistics

Lecture 10: Models, data, statistics, and sampling
distributions

@ Data from one or a series of random experiments are collected.
@ Planning experiments and collecting data (not discussed here).
@ Analysis: extract information from the data and draw conclusions.
°

Descriptive data analysis: Summary of the data, such as the
mean, median, range, standard deviation, etc., and graphical
displays, such as the histogram and box-and-whisker diagram, etc.

@ lItis simple and requires almost no assumptions, but may not allow
us to gain enough insight into the problem.

@ We focus on more sophisticated methods of analyzing data:
statistical inference and decision theory.
@ The data set is a realization of a random element defined on a
probability space (£2,.#, P), in which P is called the population.
@ The data set is the realization of a sample from P.
@ The size of the data set is called the sample size.
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@ A population P is known iff P(A) is a known value for every A € ..
@ In a statistical problem, the population P is unknown.
@ We deduce properties of P based on the available sample/data.

Read Examples 2.1-2.3

Statistical model
@ A statistical model is a set of assumptions on the population P
and is often postulated to make the analysis possible or easy.

@ Postulated models are often based on knowledge of the problem.

Definition 2.1

A set of probability measures Py on (2,.%) indexed by a parameter
6 € © is said to be a parametric family or follow a parametric model iff
© c #9 for some fixed positive integer d and each Py is a known
probability measure when 6 is known.

The set © is called the parameter space and d is called its dimension.

P ={Py : 6 € ©} is identifiable iff 61 # 6, and 6; € © imply Py, # Pe,,
which may be achieved through reparameterization.
UW-Madison (Statistics) Stat 709 Lecture 10 2018 2/16




Dominated family
A family of populations &2 is dominated by v (a o-finite measure) if
P < vforall Pe 22, in which case & can be identified by the family of
densities {9 : Pc 2} or {Z2 : 0 € O}.

Example (The k-dimensional normal family)

P = {Ne(1,%) : p €%, ¥ € M},
where . is a collection of k x k symmetric positive definite matrices.
This is a parametric family dominated by the Lebesgue measure.
When k=1, 2 = {N(u,6?): ue#, 6> >0}.

Nonparametric family or model
& is not parametric according to Definition 2.1.

Examples of nonparametric family on (%%, %)
@ All continuous joint c.d.f’s.
@ Alljoint c.d.f’s having finite moments of order < a fixed integer.
@ Alljoint c.d.f’s having p.d.f’s (e.g., Lebesgue p.d.f.s).

@ All symmetric c.d.f.s.
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Definition 2.2 (Exponential families)

A parametric family {Py : 6 € ©} dominated by a o-finite measure v on
(Q,.7) is called an exponential family iff

dPy
dv T
where exp{x} = €*, T is a random p-vector on (£2,.%) with a fixed
positive integer p, 1 is a function from © to #P, h> 0 is a Borel

function on (Q,.%), and §(0) = log{ [ exp{[n(08)]* T(w)}h(w)dv(w)}.

The representation of an exponential family is not unique.
In an exponential family, consider the parameter n = n(6) and

f(0) =exp{n"T(w) - E(n)}h(w), ®eQ, (1)

where £(1) = log{ Joexp{n" T(w)}h(w)dv(w)}.
This is called the canonical form for the family, and
={n : {(n) is defined} is called the natural parameter space.
An exponential family in canonical form is a natural exponential family.
If Xi,...,Xm are independent random vectors with p.d.f.s in exponential

families, then the p.d.f. of (Xi,..., Xin) is again in an exponential family.
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If there is an open set contained in the natural parameter space of an
exponential family, then the family is said to be of full rank.

Example 2.6

The normal family {N(u,0?): u € #,0 >0} is an exponential family,
since the Lebesgue p.d.f. of N(u,5?) can be written as

1 H 1, u
\/ﬂexp{oex—wx —@—bgc 0
This belongs to an exponential family with T(x) = (x, —x?),
2
n(6) = (&, 5%), 0 = (1,02), &(6) = £ +log, and h(x) = 1/v2m.

Letn = (11,1m2) = (%aﬁ)

Then = =% x (0,) and we can obtain a natural exponential family of
full rank with §(n) = n2/(4n2) + log(1/+/2n2).

A subfamily of the previous normal family, {N(u,u?): u € Z,u # 0}, is
also an exponential family with the natural parameter n = (1 ,212) and
natural parameter space = = {(x,y):y =2x%, x€ %, y > 0}.
This exponential family is not of full rank.
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Theorem 2.1

Let
(i)

& be a natural exponential family with p.d.f. given by (2).
Let T=(Y,U) and n = (9, ¢), Y and ¥ have the same dimension.
Then, Y has the p.d.f. (w.r.t. a o-finite measure depending on ¢)

fa(y) =exp{0°y —{(n)}
In particular, T has a p.d.f. in a natural exponential family.
Furthermore, the conditional distribution of Y given U = u has the
p.d.f. (w.r.t. a o-finite measure depending on u)

f9.u(y) = exp{d°y — Cu(D)},
which is in a natural exponential family indexed by &.

If no is an interior point of the natural parameter space, then the
m.g.f. of Py, o T~ is finite in a neighborhood of 0 and is given by

Wi (1) = exp{& (Mo + 1) — &(Mo)}-
If f is a Borel function satisfying [|f|dPy, < e, then the function
Jf(o)exp{n*T(w)}h(w)dv(w) is infinitely often differentiable in a
neighborhood of 1g, and the derivatives may be computed by

differentiation under the integral sign.
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Ifa 2 ={fy:6 €O} andthe set {x:fy(x) > 0}depends on 6, then &
is not an exponential family.

Definition 2.3 (Location-scale families)

Let P be a known probability measure on (%%, %), v c #*, and .
be a collection of k x kK symmetric positive definite matrices.

The famil
Y {P(#,Z) CUEY, X e My}
is called a location-scale family (on %*), where

Pur)(B)=P (T 3(B-p)), Besk,

Y 2(B—u)={x"2(x—u): xe B} c %%, and £~'/2 is the inverse
of the “square root" matrix ¥ '/2 satisfying ©1/2x1/2 = 5.

The parameters u and ¥'/2 are called the location and scale
parameters, respectively.

Py LE Z#*} is a location family, where Iy is the identity matrix.
{Poyx): X €.} is a scale family.
{P(u.021,): € Z¥ 0> 0} is alocation-scale family.
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Statistics and their sampling distributions

@ Our data set is a realization of a sample (random vector) X from
an unknown population P

@ Statistic T(X): A measurable function T of X; T(X) is a known
value whenever X is known.

@ Statistical analyses are based on various statistics.

@ A nontrivial statistic T(X) is usually simpler than X.

@ Usually o(T(X)) C o(X), i.e., o(T(X)) simplifies o(X); a statistic
provides a “reduction” of the o-field.

@ The “information" within the statistic T(X) concerning the
unknown distribution of X is contained in the o-field o(T(X)).

@ If Sis another statistic for which 6(S(X)) = o(T(X)), then by
Lemma 1.2, S and T are functions of each other.

@ It is not the particular values of a statistic that contain the
information, but the generated o-field of the statistic.

@ Values of a statistic may be important for other reasons.
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Sampling distribution of a statistic

@ A statistic T(X) is a random element.
@ If the distribution of X is unknown, then the distribution of T may
also be unknown, although T is a known function.

@ Finding the form of the distribution of T is one of the major
problems in statistical inference and decision theory.

@ Since T is a transformation of X, tools we learn in Chapter 1 for
transformations may be useful in finding the distribution or an
approximation to the distribution of T(X).

Example 2.8.

Let Xi,..., X, be i.i.d. random variables having a common distribution P.
The sample mean and sample variance

1
n—1

(X~ X)?

1
X=-YX &=
L=

I

are two commonly used statistics. B
Can we find the joint or the marginal distributions of X and S2?

It deiends on how much we know about P.
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Moments of X and S?

@ If P has a finite mean u, then EX = p.

e If P has a finite variance o2, then Var(X) = 62/n and ES? = ¢2.
@ With a finite E|X;|%, we can obtain EX® and Cov(X, S?).

e With a finite EX}, we can obtain Var(S?) (exercise).

The distribution of X

If P is in a parametric family, we can often find the distribution of X.
For example:

@ Xis N(u,c6?/n)if Pis N(u,c?);

@ nX has the gamma distribution I'(n, 8) if P is the exponential

distribution E(0, 6);

@ See Example 1.20 and some exercises in §1.6.
One can use the CLT to get an approximation to the distribution of X.
Applying Corollary 1.2 (k = 1), we have v/n(X — u) —4 N(0,52), so
that the distribution of X can be approximated by N(u,c2/n)
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Joint distribution of X and S?

If Pis N(u,c?), then X and S? are independent and the joint
distribution of (X, S?) can be obtained.

It is enough to show the independence of Z and S2, the sample mean
and variance based on Z; = (X;—u)/o ~ N(0,1), i=1,...,n, because

X=0Z-u and S?=

g2 _
Y. (Z-2)? =055
n—15

Consider the transformation

Yi=Z2, Yi=Z-Z, i=2,..,n,
Then
Zi=Yi—(Yo+-+Yn), Z=Yi+Yy, i=2,..n,
and NZ1, . Z0)
Since the joint pdf of Z;,...,Z, is

1
n
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the joint pdf of (Ys,..., Yn) is

n 2 n
(zﬂr;,,/zexp (; <}/1 _;:ZéyI) ) exp <_;/:Zé(yi+y1)2>

2
_n n 2 iy ey, e
= (27[:)”/2 exp (—2y1 ) exp (2 |:Izéyl + <I_22yl j— 1,..,n.

Since the first exp factor involves y; only and the second exp factor
involves y», ..., yn, we conclude that Yy is independent of (Ya,..., Yn).

Since
n

2 -2=-Y(Z-2)= ZY and Z-Z=Y, i=2,.,n,
=2 =2

we have

—_

1=

n n 2 1 n o
T n— 1Z T n—1 .ZY’ +n—1zyi

which is a function of (Y5, ..., Y).
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Hence, Z and S are independent.
Note that
n _ n — 2 n 5 D
=Y (X —XP =Y (Xi—pu+u—X)?=Y (Xi—n)?+n(u—X)
i=1

i=1 i=1

Then 5

X—p\? (n-1)8° Xi—u :
n{ = )+ o _,;< ) ZZ (2)
Since Z; ~ N(0,1) and Zj, ..., Z, are independent, ¥'7_, Z,2 ~ X2

Since \/n(X —p)/c ~ N(0,1), n[(X —u)/0]? ~ 2.

The left hand side of (2) is a sum of two independent random variables
and, hence, if f(t) is the mgf of (n—1)S? /02, then the mgf of the sum
on the left hand side of (2) is (1 —21)~1/2f(t)

Since the right hand side of (2) has mgf (1 —2t)~"/2, we must have

f(hy=1—-20"2/1-2t)y"2=(1-2t)y" (D2  t<1)2

This is the mgf of x2 ,, hence (n—1)S2/02 ~ %2 ,.
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Joint distribution of X and S?

If Pis N(u,c?), then X and S? are independent, X ~ N(u,c2/n) and
(n—1)8%/0% ~ x5 ;.
Without the normality assumption, we consider an approximation.
Assume that u = EXj, 62 = var(X;), and E|X; |* are finite.
IfY;=(X;—u,(X;—un)?),i=1,..,n,then Yy, ..., Y, are i.i.d. random
2-vectors with EY; = (0,02) and variance-covariance matrix
Z_< o? E(X; — p)? )

S \EX—p)® E(Xi—p)t-ot)
Note that Y =n~'¥7, V; = (X —u,5?), where S2 =n ' Y7 (X, — u)2.
Applying the CLT (Corollary 1.2) to Y;’s, we obtain that

V(X =, 8 - 6%) =4 Np(0,%).

Since n

2 22 (% )2
_ S_n—1[8 (X ,u)}
and X — 4. u (the SLLN), an application of Slutsky’s theorem leads to
\/B()_(_ u, 82 - 62) —d NZ(Oa Z)
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Example 2.9 (Order statistics)

Let X = (Xj,..., Xp) with i.i.d. random components.

Let X(;) be the ith smallest value of Xj, ..., Xp.

The statistics X1y, ..., X(n) are called the order statistics.

Order statistics is a set of very useful statistics in addition to the
sample mean and variance.

Suppose that X; has a c.d.f. F having a Lebesgue p.d.f. f.
Then the joint Lebesgue p.d.f. of X1y,..., X(n) is

{ nf(xq)f(x2)---f(xn) X1 <Xo<--<Xp
0

X{. X0, ... Xp) = -
9(X1,X2, ..., Xn) otherwise.

The joint Lebesgue p.d.f. of X(;y and X;), 1 <i<j<n,is
nFOO () - F()V "' [1=F()I" /() f(y) X<y

Li(Xx,y) = (=D)IG—=1)1(n—j)!
9i(x. ) {0 otherwise

and the Lebesgue p.d.f. of X(; is

gi(x) = (,_1)7(!,,_,)![F(x)1’—1 [1— FOI™ ().
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Example

Let Xj,..., X, be a random sample from uniform(0,1).
We want to find the distribution of X;/X(4).
Fors>1,

X n X
P<>s>: P<>s,X1 :X-)
X1) ,; X1) U

n
— >8 X=X
Z (Xm) M= ')

= (n— 1)P(X1 > SXn,Xz > Xn,...,Xn_1 > Xn)

=(n—1)P(sXn <1,X1 > 8Xpn, Xo > Xp, ...,

(n— 1)/01/5 [/,; <’Iﬁ; /X1 dx,-) dx1] dxn

_ (n—1)/01/s(1 — Xa)"2(1 = 50 dxn
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