Chapter 2: Fundamentals of Statistics Lecture 10: Models, data, statistics, and sampling distributions

- Data from one or a series of random experiments are collected.
- Planning experiments and collecting data (not discussed here).
- Analysis: extract information from the data and draw conclusions.
- Descriptive data analysis: Summary of the data, such as the mean, median, range, standard deviation, etc., and graphical displays, such as the histogram and box-and-whisker diagram, etc.
- It is simple and requires almost no assumptions, but may not allow us to gain enough insight into the problem.
- We focus on more sophisticated methods of analyzing data: statistical inference and decision theory.
- The data set is a realization of a random element defined on a probability space (Ω, \mathcal{F}, P) , in which P is called the *population*.
- The data set is the realization of a *sample* from *P*.
- The size of the data set is called the *sample size*.

- A population P is *known* iff P(A) is a known value for every $A \in \mathcal{F}$.
- In a statistical problem, the population *P* is unknown.
- We deduce properties of *P* based on the available sample/data.

Read Examples 2.1-2.3

Statistical model

- A statistical model is a set of assumptions on the population P and is often postulated to make the analysis possible or easy.
- Postulated models are often based on knowledge of the problem.

Definition 2.1

A set of probability measures P_{θ} on (Ω, \mathscr{F}) indexed by a *parameter* $\theta \in \Theta$ is said to be a *parametric family* or follow a parametric model iff $\Theta \subset \mathscr{R}^d$ for some fixed positive integer d and each P_{θ} is a *known* probability measure when θ is known.

The set Θ is called the *parameter space* and *d* is called its *dimension*.

 $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$ is *identifiable* iff $\theta_1 \neq \theta_2$ and $\theta_i \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$, which may be achieved through reparameterization.

Dominated family

A family of populations $\mathscr P$ is dominated by v (a σ -finite measure) if $P \ll v$ for all $P \in \mathscr P$, in which case $\mathscr P$ can be identified by the family of densities $\{\frac{dP}{dv}: P \in \mathscr P\}$ or $\{\frac{dP_{\theta}}{dv}: \theta \in \Theta\}$.

Example (The *k*-dimensional normal family)

$$\mathscr{P} = \{ N_k(\mu, \Sigma) : \ \mu \in \mathscr{R}^k, \ \Sigma \in \mathscr{M}_k \},$$

where \mathcal{M}_k is a collection of $k \times k$ symmetric positive definite matrices. This is a parametric family dominated by the Lebesgue measure. When k = 1, $\mathscr{P} = \{N(\mu, \sigma^2) : \mu \in \mathcal{R}, \sigma^2 > 0\}$.

Nonparametric family or model

 \mathcal{P} is not parametric according to Definition 2.1.

Examples of nonparametric family on $(\mathcal{R}^k, \mathcal{B}^k)$

- All continuous joint c.d.f.'s.
- All joint c.d.f.'s having finite moments of order ≤ a fixed integer.
- All joint c.d.f.'s having p.d.f.'s (e.g., Lebesgue p.d.f.'s).
- All symmetric c.d.f.'s.

Definition 2.2 (Exponential families)

A parametric family $\{P_{\theta}: \theta \in \Theta\}$ dominated by a σ -finite measure v on (Ω, \mathscr{F}) is called an *exponential family* iff

$$\frac{dP_{\theta}}{dv}(\omega) = \exp\{[\eta(\theta)]^{\tau}T(\omega) - \xi(\theta)\}h(\omega), \quad \omega \in \Omega,$$

where $\exp\{x\} = e^x$, T is a random p-vector on (Ω, \mathscr{F}) with a fixed positive integer p, η is a function from Θ to \mathscr{R}^p , $h \ge 0$ is a Borel function on (Ω, \mathscr{F}) , and $\xi(\theta) = \log\{\int_{\Omega} \exp\{[\eta(\theta)]^{\tau} T(\omega)\} h(\omega) dv(\omega)\}$.

The representation of an exponential family is not unique. In an exponential family, consider the parameter $\eta = \eta(\theta)$ and

$$f_{\eta}(\omega) = \exp\{\eta^{\tau} T(\omega) - \zeta(\eta)\} h(\omega), \quad \omega \in \Omega,$$
 (1)

where $\zeta(\eta) = \log \{ \int_{\Omega} \exp\{\eta^{\tau} T(\omega)\} h(\omega) dv(\omega) \}.$

This is called the *canonical form* for the family, and $\Xi = \{\eta : \zeta(\eta) \text{ is defined}\}$ is called the *natural parameter space*.

An exponential family in canonical form is a *natural exponential family*. If $X_1,...,X_m$ are independent random vectors with p.d.f.'s in exponential families, then the p.d.f. of $(X_1,...,X_m)$ is again in an exponential family.

If there is an open set contained in the natural parameter space of an exponential family, then the family is said to be of *full rank*.

Example 2.6

The normal family $\{N(\mu, \sigma^2): \mu \in \mathcal{R}, \sigma > 0\}$ is an exponential family, since the Lebesgue p.d.f. of $N(\mu, \sigma^2)$ can be written as

$$\frac{1}{\sqrt{2\pi}}\exp\left\{\frac{\mu}{\sigma^2}X - \frac{1}{2\sigma^2}X^2 - \frac{\mu^2}{2\sigma^2} - \log\sigma\right\}.$$

This belongs to an exponential family with $T(x) = (x, -x^2)$,

$$\eta(\theta) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2}\right), \ \theta = (\mu, \sigma^2), \ \xi(\theta) = \frac{\mu^2}{2\sigma^2} + \log \sigma, \ \text{and} \ h(x) = 1/\sqrt{2\pi}.$$

Let
$$\eta = (\eta_1, \eta_2) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2}\right)$$
.

Then $\Xi = \mathscr{R} \times (0, \infty)$ and we can obtain a natural exponential family of full rank with $\zeta(\eta) = \eta_1^2/(4\eta_2) + \log(1/\sqrt{2\eta_2})$.

A subfamily of the previous normal family, $\{N(\mu,\mu^2): \mu\in\mathscr{R}, \mu\neq 0\}$, is also an exponential family with the natural parameter $\eta=\left(\frac{1}{\mu},\frac{1}{2\mu^2}\right)$ and natural parameter space $\Xi=\{(x,y): y=2x^2,\ x\in\mathscr{R},\ y>0\}$. This exponential family is not of full rank.

Theorem 2.1

- Let \mathscr{P} be a natural exponential family with p.d.f. given by (2).
 - (i) Let T=(Y,U) and $\eta=(\vartheta,\varphi)$, Y and ϑ have the same dimension. Then, Y has the p.d.f. (w.r.t. a σ -finite measure depending on φ)

$$f_{\eta}(y) = \exp\{\vartheta^{\tau}y - \zeta(\eta)\}\$$

In particular, T has a p.d.f. in a natural exponential family. Furthermore, the conditional distribution of Y given U=u has the p.d.f. (w.r.t. a σ -finite measure depending on u)

$$f_{\vartheta,u}(y) = \exp\{\vartheta^{\tau}y - \zeta_u(\vartheta)\},\,$$

which is in a natural exponential family indexed by ϑ .

(ii) If η_0 is an interior point of the natural parameter space, then the m.g.f. of $P_{\eta_0} \circ T^{-1}$ is finite in a neighborhood of 0 and is given by

$$\psi_{\eta_0}(t) = \exp\{\zeta(\eta_0 + t) - \zeta(\eta_0)\}.$$

If f is a Borel function satisfying $\int |f|dP_{\eta_0} < \infty$, then the function $\int f(\omega) \exp\{\eta^\tau T(\omega)\} h(\omega) d\nu(\omega)$ is infinitely often differentiable in a neighborhood of η_0 , and the derivatives may be computed by differentiation under the integral sign.

If a $\mathscr{P} = \{f_{\theta} : \theta \in \Theta\}$ and the set $\{x : f_{\theta}(x) > 0\}$ depends on θ , then \mathscr{P} is not an exponential family.

Definition 2.3 (Location-scale families)

Let P be a known probability measure on $(\mathcal{R}^k, \mathcal{B}^k)$, $\mathcal{V} \subset \mathcal{R}^k$, and \mathcal{M}_k be a collection of $k \times k$ symmetric positive definite matrices.

The family

$$\{P_{(\mu,\Sigma)}: \mu \in \mathcal{V}, \Sigma \in \mathcal{M}_k\}$$

is called a *location-scale family* (on \mathcal{R}^k), where

$$P_{(\mu,\Sigma)}(B) = P\left(\Sigma^{-1/2}(B-\mu)\right), \quad B \in \mathscr{B}^k,$$

 $\Sigma^{-1/2}(B-\mu)=\{\Sigma^{-1/2}(x-\mu): x\in B\}\subset \mathscr{R}^k$, and $\Sigma^{-1/2}$ is the inverse of the "square root" matrix $\Sigma^{1/2}$ satisfying $\Sigma^{1/2}\Sigma^{1/2}=\Sigma$. The parameters μ and $\Sigma^{1/2}$ are called the location and scale parameters, respectively.

 $\begin{aligned} &\{P_{(\mu,l_k)}:\ \mu\in\mathscr{R}^k\} \text{ is a } \textit{location family, where } \textit{l}_k \text{ is the identity matrix.} \\ &\{P_{(0,\Sigma)}:\ \Sigma\in\mathscr{M}_k\} \text{ is a } \textit{scale family.} \\ &\{P_{(\mu,\sigma^2\textit{l}_k)}:\ \mu\in\mathscr{R}^k,\sigma>0\} \text{ is a location-scale family.} \end{aligned}$

Statistics and their sampling distributions

- Our data set is a realization of a sample (random vector) X from an unknown population P
- Statistic T(X): A measurable function T of X; T(X) is a known value whenever X is known.
- Statistical analyses are based on various statistics.
- A nontrivial statistic T(X) is usually simpler than X.
- Usually $\sigma(T(X)) \subset \sigma(X)$, i.e., $\sigma(T(X))$ simplifies $\sigma(X)$; a statistic provides a "reduction" of the σ -field.
- The "information" within the statistic T(X) concerning the unknown distribution of X is contained in the σ -field $\sigma(T(X))$.
- If *S* is another statistic for which $\sigma(S(X)) = \sigma(T(X))$, then by Lemma 1.2, *S* and *T* are functions of each other.
- It is not the particular values of a statistic that contain the information, but the generated σ-field of the statistic.
- Values of a statistic may be important for other reasons.

Sampling distribution of a statistic

- A statistic T(X) is a random element.
- If the distribution of X is unknown, then the distribution of T may also be unknown, although T is a known function.
- Finding the form of the distribution of T is one of the major problems in statistical inference and decision theory.
- Since T is a transformation of X, tools we learn in Chapter 1 for transformations may be useful in finding the distribution or an approximation to the distribution of T(X).

Example 2.8.

Let $X_1,...,X_n$ be i.i.d. random variables having a common distribution P. The sample mean and sample variance

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

are two commonly used statistics.

Can we find the joint or the marginal distributions of \bar{X} and S^2 ? It depends on how much we know about P.

UW-Madison (Statistics) Stat 709 Lecture 10 2018

9/16

Moments of \bar{X} and S^2

- If P has a finite mean μ , then $E\bar{X} = \mu$.
- If *P* has a finite variance σ^2 , then $Var(\bar{X}) = \sigma^2/n$ and $ES^2 = \sigma^2$.
- With a finite $E|X_1|^3$, we can obtain $E\bar{X}^3$ and $Cov(\bar{X}, S^2)$.
- With a finite EX_1^4 , we can obtain $Var(S^2)$ (exercise).

The distribution of \bar{X}

If P is in a parametric family, we can often find the distribution of \bar{X} . For example:

- \bar{X} is $N(\mu, \sigma^2/n)$ if P is $N(\mu, \sigma^2)$;
- $n\bar{X}$ has the gamma distribution $\Gamma(n,\theta)$ if P is the exponential distribution $E(0,\theta)$;
- See Example 1.20 and some exercises in §1.6.

One can use the CLT to get an approximation to the distribution of \bar{X} . Applying Corollary 1.2 (k=1), we have $\sqrt{n}(\bar{X}-\mu) \to_d N(0,\sigma^2)$, so that the distribution of \bar{X} can be approximated by $N(\mu,\sigma^2/n)$

Joint distribution of \bar{X} and S^2

If P is $N(\mu, \sigma^2)$, then \bar{X} and S^2 are independent and the joint distribution of (\bar{X}, S^2) can be obtained.

It is enough to show the independence of \bar{Z} and S_Z^2 , the sample mean and variance based on $Z_i = (X_i - \mu)/\sigma \sim N(0,1), i = 1,...,n$, because

$$\bar{X} = \sigma \bar{Z} - \mu$$
 and $S^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2 = \sigma^2 S_Z^2$

Consider the transformation

$$Y_1 = \bar{Z}, \qquad Y_i = Z_i - \bar{Z}, \quad i = 2, ..., n,$$

Then

$$Z_1 = Y_1 - (Y_2 + \cdots + Y_n), \quad Z_i = Y_i + Y_1, \quad i = 2, ..., n,$$

and

$$\left|\frac{\partial(Z_1,...,Z_n)}{\partial(Y_1,...,Y_n)}\right| = \frac{1}{n}$$

Since the joint pdf of $Z_1,...,Z_n$ is

$$\frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{n} z_i^2\right) \qquad z_i \in \mathcal{R}, i = 1, ..., n,$$

the joint pdf of $(Y_1, ..., Y_n)$ is

$$\frac{n}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\left(y_1 - \sum_{i=2}^n y_i\right)^2\right) \exp\left(-\frac{1}{2}\sum_{i=2}^n (y_i + y_1)^2\right)$$

$$= \frac{n}{(2\pi)^{n/2}} \exp\left(-\frac{n}{2}y_1^2\right) \exp\left(-\frac{1}{2}\left[\sum_{i=2}^n y_i^2 + \left(\sum_{i=2}^n y_i\right)^2\right]\right) \qquad y_i \in \mathcal{R}$$

$$i = 1, ..., n.$$

Since the first exp factor involves y_1 only and the second exp factor involves $y_2, ..., y_n$, we conclude that Y_1 is independent of $(Y_2, ..., Y_n)$. Since

$$Z_1 - \bar{Z} = -\sum_{i=2}^n (Z_i - \bar{Z}) = -\sum_{i=2}^n Y_i$$
 and $Z_i - \bar{Z} = Y_i$, $i = 2, ..., n$,

we have

$$S_Z^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \bar{Z})^2 = \frac{1}{n-1} \left(\sum_{i=2}^n Y_i \right)^2 + \frac{1}{n-1} \sum_{i=2}^n Y_i^2$$

12 / 16

2018

which is a function of $(Y_2, ..., Y_n)$.

Hence, \bar{Z} and S_Z^2 are independent.

Note that

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \sum_{i=1}^{n} (X_{i} - \mu + \mu - \bar{X})^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(\mu - \bar{X})^{2}$$

Then

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^{2} + \frac{(n-1)S^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \left(\frac{X_{i}-\mu}{\sigma}\right)^{2} = \sum_{i=1}^{n} Z_{i}^{2}$$
 (2)

Since $Z_i \sim N(0,1)$ and $Z_1,...,Z_n$ are independent, $\sum_{i=1}^n Z_i^2 \sim \chi_n^2$ Since $\sqrt{n}(\bar{X}-\mu)/\sigma \sim N(0,1)$, $n[(\bar{X}-\mu)/\sigma]^2 \sim \chi_1^2$.

The left hand side of (2) is a sum of two independent random variables and, hence, if f(t) is the mgf of $(n-1)S^2/\sigma^2$, then the mgf of the sum on the left hand side of (2) is $(1-2t)^{-1/2}f(t)$

Since the right hand side of (2) has mgf $(1-2t)^{-n/2}$, we must have

$$f(t) = (1-2t)^{-n/2}/(1-2t)^{-1/2} = (1-2t)^{-(n-1)/2}$$
 $t < 1/2$

This is the mgf of χ^2_{n-1} , hence $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$.

Joint distribution of $ar{X}$ and \mathcal{S}^2

If P is $N(\mu, \sigma^2)$, then \bar{X} and S^2 are independent, $\bar{X} \sim N(\mu, \sigma^2/n)$ and $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$.

Without the normality assumption, we consider an approximation.

Assume that $\mu = EX_1$, $\sigma^2 = \text{var}(X_1)$, and $E|X_1|^4$ are finite. If $Y_i = (X_i - \mu, (X_i - \mu)^2)$, i = 1, ..., n, then $Y_1, ..., Y_n$ are i.i.d. random 2-vectors with $EY_1 = (0, \sigma^2)$ and variance-covariance matrix

$$\Sigma = \begin{pmatrix} \sigma^2 & E(X_1 - \mu)^3 \\ E(X_1 - \mu)^3 & E(X_1 - \mu)^4 - \sigma^4 \end{pmatrix}.$$

Note that $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i = (\bar{X} - \mu, \tilde{S}^2)$, where $\tilde{S}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \mu)^2$. Applying the CLT (Corollary 1.2) to Y_i 's, we obtain that

$$\sqrt{n}(\bar{X}-\mu,\tilde{S}^2-\sigma^2)\rightarrow_d N_2(0,\Sigma).$$

Since

$$S^2 = \frac{n}{n-1} \left[\tilde{S}^2 - (\bar{X} - \mu)^2 \right]$$

and $\bar{X} \rightarrow_{a.s.} \mu$ (the SLLN), an application of Slutsky's theorem leads to

$$\sqrt{n}(\bar{X}-\mu,S^2-\sigma^2) \rightarrow_d N_2(0,\Sigma).$$

Example 2.9 (Order statistics)

Let $X = (X_1, ..., X_n)$ with i.i.d. random components.

Let $X_{(i)}$ be the *i*th smallest value of $X_1,...,X_n$.

The statistics $X_{(1)},...,X_{(n)}$ are called the *order statistics*.

Order statistics is a set of very useful statistics in addition to the sample mean and variance.

Suppose that X_i has a c.d.f. F having a Lebesgue p.d.f. f.

Then the joint Lebesgue p.d.f. of $X_{(1)},...,X_{(n)}$ is

$$g(x_1, x_2, ..., x_n) = \begin{cases} n! f(x_1) f(x_2) \cdots f(x_n) & x_1 < x_2 < \cdots < x_n \\ 0 & \text{otherwise.} \end{cases}$$

The joint Lebesgue p.d.f. of $X_{(i)}$ and $X_{(j)}$, $1 \le i < j \le n$, is

$$g_{i,j}(x,y) = \begin{cases} \frac{n![F(x)]^{i-1}[F(y)-F(x)]^{j-i-1}[1-F(y)]^{n-j}f(x)f(y)}{(i-1)!(j-i-1)!(n-j)!} & x < y \\ 0 & \text{otherwise} \end{cases}$$

and the Lebesgue p.d.f. of $X_{(i)}$ is

$$g_i(x) = \frac{n!}{(i-1)!(n-i)!} [F(x)]^{i-1} [1 - F(x)]^{n-i} f(x).$$

Example.

Let $X_1,...,X_n$ be a random sample from uniform(0,1). We want to find the distribution of $X_1/X_{(1)}$. For s>1,

$$P\left(\frac{X_{1}}{X_{(1)}} > s\right) = \sum_{i=1}^{n} P\left(\frac{X_{1}}{X_{(1)}} > s, X_{(1)} = X_{i}\right)$$

$$= \sum_{i=2}^{n} P\left(\frac{X_{1}}{X_{(1)}} > s, X_{(1)} = X_{i}\right)$$

$$= (n-1)P\left(\frac{X_{1}}{X_{(1)}} > s, X_{(1)} = X_{n}\right)$$

$$= (n-1)P(X_{1} > sX_{n}, X_{2} > X_{n}, ..., X_{n-1} > X_{n})$$

$$= (n-1)P(sX_{n} < 1, X_{1} > sX_{n}, X_{2} > X_{n}, ..., X_{n-1} > X_{n})$$

$$= (n-1)\int_{0}^{1/s} \left[\int_{sx_{n}}^{1} \left(\prod_{i=2}^{n-1} \int_{x_{n}}^{1} dx_{i}\right) dx_{1}\right] dx_{n}$$

$$= (n-1)\int_{0}^{1/s} (1-x_{n})^{n-2} (1-sx_{n}) dx_{n}$$