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Chapter 2: Fundamentals of Statistics
Lecture 10: Models, data, statistics, and sampling
distributions

Data from one or a series of random experiments are collected.
Planning experiments and collecting data (not discussed here).
Analysis: extract information from the data and draw conclusions.

Descriptive data analysis: Summary of the data, such as the
mean, median, range, standard deviation, etc., and graphical
displays, such as the histogram and box-and-whisker diagram, etc.
It is simple and requires almost no assumptions, but may not allow
us to gain enough insight into the problem.

We focus on more sophisticated methods of analyzing data:
statistical inference and decision theory.
The data set is a realization of a random element defined on a
probability space (Ω,F ,P), in which P is called the population.
The data set is the realization of a sample from P.
The size of the data set is called the sample size.
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A population P is known iff P(A) is a known value for every A ∈F .
In a statistical problem, the population P is unknown.
We deduce properties of P based on the available sample/data.

Read Examples 2.1-2.3

Statistical model
A statistical model is a set of assumptions on the population P
and is often postulated to make the analysis possible or easy.
Postulated models are often based on knowledge of the problem.

Definition 2.1
A set of probability measures Pθ on (Ω,F ) indexed by a parameter
θ ∈Θ is said to be a parametric family or follow a parametric model iff
Θ⊂Rd for some fixed positive integer d and each Pθ is a known
probability measure when θ is known.
The set Θ is called the parameter space and d is called its dimension.

P = {Pθ : θ ∈Θ} is identifiable iff θ1 6= θ2 and θi ∈Θ imply Pθ1 6= Pθ2 ,
which may be achieved through reparameterization.
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Dominated family
A family of populations P is dominated by ν (a σ -finite measure) if
P� ν for all P ∈P, in which case P can be identified by the family of
densities {dP

dν
: P ∈P} or {dPθ

dν
: θ ∈Θ}.

Example (The k -dimensional normal family)
P = {Nk (µ,Σ) : µ ∈Rk , Σ ∈Mk},

where Mk is a collection of k ×k symmetric positive definite matrices.
This is a parametric family dominated by the Lebesgue measure.
When k = 1, P = {N(µ,σ2) : µ ∈R, σ2 > 0}.
Nonparametric family or model
P is not parametric according to Definition 2.1.

Examples of nonparametric family on (Rk ,Bk )

All continuous joint c.d.f.’s.
All joint c.d.f.’s having finite moments of order ≤ a fixed integer.
All joint c.d.f.’s having p.d.f.’s (e.g., Lebesgue p.d.f.’s).
All symmetric c.d.f.’s.
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Definition 2.2 (Exponential families)
A parametric family {Pθ : θ ∈Θ} dominated by a σ -finite measure ν on
(Ω,F ) is called an exponential family iff

dPθ

dν
(ω) = exp

{
[η(θ)]τT (ω)−ξ (θ)

}
h(ω), ω ∈ Ω,

where exp{x}= ex , T is a random p-vector on (Ω,F ) with a fixed
positive integer p, η is a function from Θ to Rp, h ≥ 0 is a Borel
function on (Ω,F ), and ξ (θ) = log{

∫
Ω exp{[η(θ)]τT (ω)}h(ω)dν(ω)} .

The representation of an exponential family is not unique.
In an exponential family, consider the parameter η = η(θ) and

fη (ω) = exp
{

η
τT (ω)−ζ (η)

}
h(ω), ω ∈ Ω, (1)

where ζ (η) = log{
∫

Ω exp{ητT (ω)}h(ω)dν(ω)}.
This is called the canonical form for the family, and
Ξ = {η : ζ (η) is defined} is called the natural parameter space.
An exponential family in canonical form is a natural exponential family.
If X1, ...,Xm are independent random vectors with p.d.f.’s in exponential
families, then the p.d.f. of (X1, ...,Xm) is again in an exponential family.
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If there is an open set contained in the natural parameter space of an
exponential family, then the family is said to be of full rank.

Example 2.6

The normal family {N(µ,σ2) : µ ∈R,σ > 0} is an exponential family,
since the Lebesgue p.d.f. of N(µ,σ2) can be written as

1√
2π

exp

{
µ

σ2 x − 1
2σ2 x2− µ2

2σ2 − log σ

}
.

This belongs to an exponential family with T (x) = (x ,−x2),
η(θ) =

(
µ

σ2 ,
1

2σ2

)
, θ = (µ,σ2), ξ (θ) = µ2

2σ2 + log σ , and h(x) = 1/
√

2π.

Let η = (η1,η2) =
(

µ

σ2 ,
1

2σ2

)
.

Then Ξ = R× (0,∞) and we can obtain a natural exponential family of
full rank with ζ (η) = η2

1/(4η2) + log(1/
√

2η2).
A subfamily of the previous normal family, {N(µ,µ2) : µ ∈R,µ 6= 0}, is
also an exponential family with the natural parameter η =

( 1
µ
, 1

2µ2

)
and

natural parameter space Ξ = {(x ,y) : y = 2x2, x ∈R, y > 0}.
This exponential family is not of full rank.
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Theorem 2.1
Let P be a natural exponential family with p.d.f. given by (2).

(i) Let T = (Y ,U) and η = (ϑ ,ϕ), Y and ϑ have the same dimension.
Then, Y has the p.d.f. (w.r.t. a σ -finite measure depending on ϕ)

fη (y) = exp{ϑ τy −ζ (η)}
In particular, T has a p.d.f. in a natural exponential family.
Furthermore, the conditional distribution of Y given U = u has the
p.d.f. (w.r.t. a σ -finite measure depending on u)

fϑ ,u(y) = exp{ϑ τy −ζu(ϑ)},
which is in a natural exponential family indexed by ϑ .

(ii) If η0 is an interior point of the natural parameter space, then the
m.g.f. of Pη0 ◦T−1 is finite in a neighborhood of 0 and is given by

ψη0(t) = exp{ζ (η0 + t)−ζ (η0)}.
If f is a Borel function satisfying

∫
|f |dPη0 < ∞, then the function∫

f (ω)exp{ητT (ω)}h(ω)dν(ω) is infinitely often differentiable in a
neighborhood of η0, and the derivatives may be computed by
differentiation under the integral sign.
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If a P = {fθ : θ ∈Θ} and the set {x : fθ (x) > 0}depends on θ , then P
is not an exponential family.

Definition 2.3 (Location-scale families)

Let P be a known probability measure on (Rk ,Bk ), V ⊂Rk , and Mk
be a collection of k ×k symmetric positive definite matrices.
The family

{P(µ,Σ) : µ ∈ V , Σ ∈Mk}
is called a location-scale family (on Rk ), where

P(µ,Σ)(B) = P
(

Σ−1/2(B−µ)
)
, B ∈Bk ,

Σ−1/2(B−µ) = {Σ−1/2(x−µ) : x ∈ B} ⊂Rk , and Σ−1/2 is the inverse
of the “square root" matrix Σ1/2 satisfying Σ1/2Σ1/2 = Σ.
The parameters µ and Σ1/2 are called the location and scale
parameters, respectively.

{P(µ,Ik ) : µ ∈Rk} is a location family, where Ik is the identity matrix.
{P(0,Σ) : Σ ∈Mk} is a scale family.
{P(µ,σ2Ik ) : µ ∈Rk ,σ > 0} is a location-scale family.
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Statistics and their sampling distributions
Our data set is a realization of a sample (random vector) X from
an unknown population P
Statistic T (X ): A measurable function T of X ; T (X ) is a known
value whenever X is known.
Statistical analyses are based on various statistics.
A nontrivial statistic T (X ) is usually simpler than X .
Usually σ(T (X ))⊂ σ(X ), i.e., σ(T (X )) simplifies σ(X ); a statistic
provides a “reduction" of the σ -field.
The “information" within the statistic T (X ) concerning the
unknown distribution of X is contained in the σ -field σ(T (X )).
If S is another statistic for which σ(S(X )) = σ(T (X )), then by
Lemma 1.2, S and T are functions of each other.
It is not the particular values of a statistic that contain the
information, but the generated σ -field of the statistic.
Values of a statistic may be important for other reasons.
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Sampling distribution of a statistic
A statistic T (X ) is a random element.
If the distribution of X is unknown, then the distribution of T may
also be unknown, although T is a known function.
Finding the form of the distribution of T is one of the major
problems in statistical inference and decision theory.
Since T is a transformation of X , tools we learn in Chapter 1 for
transformations may be useful in finding the distribution or an
approximation to the distribution of T (X ).

Example 2.8.
Let X1, ...,Xn be i.i.d. random variables having a common distribution P.
The sample mean and sample variance

X̄ =
1
n

n

∑
i=1

Xi S2 =
1

n−1

n

∑
i=1

(Xi − X̄ )2

are two commonly used statistics.
Can we find the joint or the marginal distributions of X̄ and S2?
It depends on how much we know about P.
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Moments of X̄ and S2

If P has a finite mean µ, then EX̄ = µ.
If P has a finite variance σ2, then Var(X̄ ) = σ2/n and ES2 = σ2.
With a finite E |X1|3, we can obtain EX̄ 3 and Cov(X̄ ,S2).
With a finite EX 4

1 , we can obtain Var(S2) (exercise).

The distribution of X̄
If P is in a parametric family, we can often find the distribution of X̄ .
For example:

X̄ is N(µ,σ2/n) if P is N(µ,σ2);
nX̄ has the gamma distribution Γ(n,θ) if P is the exponential
distribution E(0,θ);
See Example 1.20 and some exercises in §1.6.

One can use the CLT to get an approximation to the distribution of X̄ .
Applying Corollary 1.2 (k = 1), we have

√
n(X̄ −µ)→d N(0,σ2), so

that the distribution of X̄ can be approximated by N(µ,σ2/n)
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Joint distribution of X̄ and S2

If P is N(µ,σ2), then X̄ and S2 are independent and the joint
distribution of (X̄ ,S2) can be obtained.
It is enough to show the independence of Z̄ and S2

Z , the sample mean
and variance based on Zi = (Xi −µ)/σ ∼ N(0,1), i = 1, ...,n, because

X̄ = σ Z̄ −µ and S2 =
σ2

n−1

n

∑
i=1

(Zi − Z̄ )2 = σ
2S2

Z

Consider the transformation

Y1 = Z̄ , Yi = Zi − Z̄ , i = 2, ...,n,
Then

Z1 = Y1− (Y2 + · · ·+ Yn), Zi = Yi + Y1, i = 2, ...,n,
and ∣∣∣∣ ∂ (Z1, ...,Zn)

∂ (Y1, ...,Yn)

∣∣∣∣=
1
n

Since the joint pdf of Z1, ...,Zn is

1
(2π)n/2 exp

(
−1

2

n

∑
i=1

z2
i

)
zi ∈R, i = 1, ...,n,
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the joint pdf of (Y1, ...,Yn) is

n
(2π)n/2 exp

−1
2

(
y1−

n

∑
i=2

yi

)2
exp

(
−1

2

n

∑
i=2

(yi + y1)2

)

=
n

(2π)n/2 exp
(
−n

2
y2

1

)
exp

−1
2

 n

∑
i=2

y2
i +

(
n

∑
i=2

yi

)2
 yi ∈R

i = 1, ...,n.

Since the first exp factor involves y1 only and the second exp factor
involves y2, ...,yn, we conclude that Y1 is independent of (Y2, ...,Yn).
Since

Z1− Z̄ =−
n

∑
i=2

(Zi − Z̄ ) =−
n

∑
i=2

Yi and Zi − Z̄ = Yi , i = 2, ...,n,

we have

S2
Z =

1
n−1

n

∑
i=1

(Zi − Z̄ )2 =
1

n−1

(
n

∑
i=2

Yi

)2

+
1

n−1

n

∑
i=2

Y 2
i

which is a function of (Y2, ...,Yn).
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Hence, Z̄ and S2
Z are independent.

Note that

(n−1)S2 =
n

∑
i=1

(Xi−X̄ )2 =
n

∑
i=1

(Xi−µ +µ−X̄ )2 =
n

∑
i=1

(Xi−µ)2 +n(µ−X̄ )2

Then

n
(

X̄ −µ

σ

)2

+
(n−1)S2

σ2 =
n

∑
i=1

(
Xi −µ

σ

)2

=
n

∑
i=1

Z 2
i (2)

Since Zi ∼ N(0,1) and Z1, ...,Zn are independent, ∑
n
i=1 Z 2

i ∼ χ2
n

Since
√

n(X̄ −µ)/σ ∼ N(0,1), n[(X̄ −µ)/σ ]2 ∼ χ2
1 .

The left hand side of (2) is a sum of two independent random variables
and, hence, if f (t) is the mgf of (n−1)S2/σ2, then the mgf of the sum
on the left hand side of (2) is (1−2t)−1/2f (t)
Since the right hand side of (2) has mgf (1−2t)−n/2, we must have

f (t) = (1−2t)−n/2/(1−2t)−1/2 = (1−2t)−(n−1)/2 t < 1/2

This is the mgf of χ2
n−1, hence (n−1)S2/σ2 ∼ χ2

n−1.
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Joint distribution of X̄ and S2

If P is N(µ,σ2), then X̄ and S2 are independent, X̄ ∼ N(µ,σ2/n) and
(n−1)S2/σ2 ∼ χ2

n−1.
Without the normality assumption, we consider an approximation.
Assume that µ = EX1, σ2 = var(X1), and E |X1|4 are finite.
If Yi = (Xi −µ,(Xi −µ)2), i = 1, ...,n, then Y1, ...,Yn are i.i.d. random
2-vectors with EY1 = (0,σ2) and variance-covariance matrix

Σ =

(
σ2 E(X1−µ)3

E(X1−µ)3 E(X1−µ)4−σ4

)
.

Note that Ȳ = n−1
∑

n
i=1 Yi = (X̄ −µ, S̃2), where S̃2 = n−1

∑
n
i=1(Xi −µ)2.

Applying the CLT (Corollary 1.2) to Yi ’s, we obtain that
√

n(X̄ −µ, S̃2−σ
2)→d N2(0,Σ).

Since
S2 =

n
n−1

[
S̃2− (X̄ −µ)2

]
and X̄ →a.s. µ (the SLLN), an application of Slutsky’s theorem leads to

√
n(X̄ −µ,S2−σ

2)→d N2(0,Σ).
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Example 2.9 (Order statistics)
Let X = (X1, ...,Xn) with i.i.d. random components.
Let X(i) be the i th smallest value of X1, ...,Xn.
The statistics X(1), ...,X(n) are called the order statistics.
Order statistics is a set of very useful statistics in addition to the
sample mean and variance.

Suppose that Xi has a c.d.f. F having a Lebesgue p.d.f. f .
Then the joint Lebesgue p.d.f. of X(1), ...,X(n) is

g(x1,x2, ...,xn) =

{
n!f (x1)f (x2) · · · f (xn) x1 < x2 < · · ·< xn
0 otherwise.

The joint Lebesgue p.d.f. of X(i) and X(j), 1≤ i < j ≤ n, is

gi ,j(x ,y) =

{
n![F (x)]i−1[F (y)−F (x)]j−i−1[1−F (y)]n−j f (x)f (y)

(i−1)!(j−i−1)!(n−j)! x < y
0 otherwise

and the Lebesgue p.d.f. of X(i) is

gi(x) =
n!

(i−1)!(n− i)!
[F (x)]i−1[1−F (x)]n−i f (x).
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Example.
Let X1, ...,Xn be a random sample from uniform(0,1).
We want to find the distribution of X1/X(1).
For s > 1,

P
(

X1

X(1)
> s
)

=
n

∑
i=1

P
(

X1

X(1)
> s,X(1) = Xi

)
=

n

∑
i=2

P
(

X1

X(1)
> s,X(1) = Xi

)
= (n−1)P

(
X1

X(1)
> s,X(1) = Xn

)
= (n−1)P (X1 > sXn,X2 > Xn, ...,Xn−1 > Xn)

= (n−1)P (sXn < 1,X1 > sXn,X2 > Xn, ...,Xn−1 > Xn)

= (n−1)
∫ 1/s

0

[∫ 1

sxn

(
n−1

∏
i=2

∫ 1

xn

dxi

)
dx1

]
dxn

= (n−1)
∫ 1/s

0
(1−xn)n−2(1−sxn)dxn
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