Lecture 12: Weak convergence

Tightness

A sequence \(\{P_n\} \) of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\) is **tight** if for every \(\varepsilon > 0 \), there is a compact set \(C \subset \mathbb{R}^k \) such that \(\inf_n P_n(C) > 1 - \varepsilon \).

Proposition 1.17

Let \(\{P_n\} \) be a sequence of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\).

(i) Tightness of \(\{P_n\} \) is a necessary and sufficient condition that for every subsequence \(\{P_{n_i}\} \) there exists a further subsequence \(\{P_{n_j}\} \subset \{P_{n_i}\} \) and a probability measure \(P \) on \((\mathbb{R}^k, \mathcal{B}^k)\) such that \(P_{n_j} \xrightarrow{w} P \) as \(j \to \infty \).

(ii) If \(\{P_n\} \) is tight and if each subsequence that converges weakly at all converges to the same probability measure \(P \), then \(P_n \xrightarrow{w} P \).

Proof

Lecture 12: Weak convergence

Tightness

A sequence \(\{P_n\} \) of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\) is tight if for every \(\varepsilon > 0 \), there is a compact set \(C \subset \mathbb{R}^k \) such that \(\inf_n P_n(C) > 1 - \varepsilon \).

Proposition 1.17

Let \(\{P_n\} \) be a sequence of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\).

(i) Tightness of \(\{P_n\} \) is a necessary and sufficient condition that for every subsequence \(\{P_{n_i}\} \) there exists a further subsequence \(\{P_{n_j}\} \subset \{P_{n_i}\} \) and a probability measure \(P \) on \((\mathbb{R}^k, \mathcal{B}^k)\) such that \(P_{n_j} \to_w P \) as \(j \to \infty \).

(ii) If \(\{P_n\} \) is tight and if each subsequence that converges weakly at all converges to the same probability measure \(P \), then \(P_n \to_w P \).

Proof

A sequence \(\{P_n\} \) of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\) is **tight** if for every \(\varepsilon > 0 \), there is a compact set \(C \subset \mathbb{R}^k \) such that \(\inf_n P_n(C) > 1 - \varepsilon \).

Proposition 1.17

Let \(\{P_n\} \) be a sequence of probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\).

(i) Tightness of \(\{P_n\} \) is a necessary and sufficient condition that for every subsequence \(\{P_{n_i}\} \) there exists a further subsequence \(\{P_{n_j}\} \subset \{P_{n_i}\} \) and a probability measure \(P \) on \((\mathbb{R}^k, \mathcal{B}^k)\) such that \(P_{n_j} \to_w P \) as \(j \to \infty \).

(ii) If \(\{P_n\} \) is tight and if each subsequence that converges weakly at all converges to the same probability measure \(P \), then \(P_n \to_w P \).

Proof

Remark

If \(\{X_n\} \) is a sequence of random \(k \)-vectors, then the tightness of \(\{P_{X_n}\} \) is the same as the boundedness of \(\{\|X_n\|\} \) in probability \((\|X_n\| = O_p(1)) \), i.e., for any \(\varepsilon > 0 \), there is a constant \(C_\varepsilon > 0 \) such that \(\sup_n P(\|X_n\| \geq C_\varepsilon) < \varepsilon \).

Theorem 1.9 (useful sufficient and necessary conditions for convergence in distribution)

Let \(X, X_1, X_2, \ldots \) be random \(k \)-vectors.

(i) \(X_n \xrightarrow{d} X \) is equivalent to any one of the following conditions:

(a) \(E[h(X_n)] \to E[h(X)] \) for every bounded continuous function \(h \);
(b) \(\limsup_n P_{X_n}(C) \leq P_X(C) \) for any closed set \(C \subset \mathbb{R}^k \);
(c) \(\liminf_n P_{X_n}(O) \geq P_X(O) \) for any open set \(O \subset \mathbb{R}^k \).

(ii) (Lévy-Cramér continuity theorem). Let \(\phi_X, \phi_{X_1}, \phi_{X_2}, \ldots \) be the ch.f.'s of \(X, X_1, X_2, \ldots \), respectively.

\(X_n \xrightarrow{d} X \) iff \(\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t) \) for all \(t \in \mathbb{R}^k \).

(iii) (Cramér-Wold device). \(X_n \xrightarrow{d} X \) iff \(c^\top X_n \xrightarrow{d} c^\top X \) for every \(c \in \mathbb{R}^k \).
Remark
If \(\{X_n\} \) is a sequence of random \(k \)-vectors, then the tightness of \(\{P_{X_n}\} \) is the same as the boundedness of \(\{\|X_n\|\} \) in probability \((\|X_n\| = O_p(1))\), i.e., for any \(\varepsilon > 0 \), there is a constant \(C_\varepsilon > 0 \) such that \(\sup_n P(\|X_n\| \geq C_\varepsilon) < \varepsilon \).

Theorem 1.9 (useful sufficient and necessary conditions for convergence in distribution)
Let \(X, X_1, X_2, \ldots \) be random \(k \)-vectors.

(i) \(X_n \xrightarrow{d} X \) is equivalent to any one of the following conditions:
 (a) \(E[h(X_n)] \to E[h(X)] \) for every bounded continuous function \(h \);
 (b) \(\limsup_n P_{X_n}(C) \leq P_X(C) \) for any closed set \(C \subset \mathbb{R}^k \);
 (c) \(\liminf_n P_{X_n}(O) \geq P_X(O) \) for any open set \(O \subset \mathbb{R}^k \).

(ii) (Lévy-Cramér continuity theorem). Let \(\phi_X, \phi_{X_1}, \phi_{X_2}, \ldots \) be the ch.f.'s of \(X, X_1, X_2, \ldots \), respectively.
 \(X_n \xrightarrow{d} X \) iff \(\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t) \) for all \(t \in \mathbb{R}^k \).

(iii) (Cramér-Wold device). \(X_n \xrightarrow{d} X \) iff \(c^\tau X_n \xrightarrow{d} c^\tau X \) for every \(c \in \mathbb{R}^k \).
Proof of Theorem 1.9(i)

First, we show $X_n \rightarrow_d X$ implies (a).

By Theorem 1.8(iv) (Skorohod’s theorem), there exists a sequence of random vectors $\{Y_n\}$ and a random vector Y such that $P_{Y_n} = P_{X_n}$ for all n, $P_Y = P_X$ and $Y_n \rightarrow_{a.s.} Y$.

For bounded continuous h, $h(Y_n) \rightarrow_{a.s.} h(Y)$ and, by the dominated convergence theorem, $E[h(Y_n)] \rightarrow E[h(Y)]$.

(a) follows from $E[h(X_n)] = E[h(Y_n)]$ for all n and $E[h(X)] = E[h(Y)]$.

Next, we show (a) implies (b).

Let C be a closed set and $f_C(x) = \inf\{\|x - y\| : y \in C\}$.

Then f_C is continuous.

For $j = 1, 2, \ldots$, define $\varphi_j(t) = I_{(-\infty, 0]} + (1 - jt)I_{(0, j^{-1}]}$.

Then $h_j(x) = \varphi_j(f_C(x))$ is continuous and bounded, $h_j \geq h_{j+1}$, $j = 1, 2, \ldots$, and $h_j(x) \rightarrow l_C(x)$ as $j \rightarrow \infty$.

Hence $\limsup_n P_{X_n}(C) \leq \lim_{n \rightarrow \infty} E[h_j(X_n)] = E[h_j(X)]$ for each j (by (a)).

By the dominated convergence theorem,

$E[h_j(X)] \rightarrow E[l_C(X)] = P_X(C)$.

This proves (b).
Proof of Theorem 1.9(i)

First, we show \(X_n \rightarrow_d X \) implies (a).

By Theorem 1.8(iv) (Skorohod’s theorem), there exists a sequence of random vectors \(\{ Y_n \} \) and a random vector \(Y \) such that \(P_{Y_n} = P_{X_n} \) for all \(n \), \(P_Y = P_X \) and \(Y_n \rightarrow_a.s. Y \).

For bounded continuous \(h \), \(h(Y_n) \rightarrow_a.s. h(Y) \) and, by the dominated convergence theorem, \(E[h(Y_n)] \rightarrow E[h(Y)] \).

(a) follows from \(E[h(X_n)] = E[h(Y_n)] \) for all \(n \) and \(E[h(X)] = E[h(Y)] \).

Next, we show (a) implies (b).

Let \(C \) be a closed set and \(f_C(x) = \inf\{ \| x - y \| : y \in C \} \).

Then \(f_C \) is continuous.

For \(j = 1, 2, \ldots \), define \(\varphi_j(t) = I_{(-\infty,0]} + (1 - jt)I_{[0,j^{-1}]} \).

Then \(h_j(x) = \varphi_j(f_C(x)) \) is continuous and bounded, \(h_j \geq h_{j+1} \), \(j = 1, 2, \ldots \), and \(h_j(x) \rightarrow I_C(x) \) as \(j \rightarrow \infty \).

Hence \(\limsup_n P_{X_n}(C) \leq \lim_{n \rightarrow \infty} E[h_j(X_n)] = E[h_j(X)] \) for each \(j \) (by (a)).

By the dominated convergence theorem, \(E[h_j(X)] \rightarrow E[I_C(X)] = P_X(C) \).

This proves (b).
Proof of Theorem 1.9(i) (continued)

For any open set O, O^c is closed. Hence, (b) is equivalent to (c).

To complete the proof we now show that (b) and (c) imply $X_n \xrightarrow{d} X$. For $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$, let $(-\infty, x] = (-\infty, x_1] \times \cdots \times (-\infty, x_k]$ and $(-\infty, x) = (-\infty, x_1) \times \cdots \times (-\infty, x_k)$.

From (b) and (c),

$$P_X((-\infty, x)) \leq \liminf_n P_{X_n}((-\infty, x)) \leq \liminf_n F_{X_n}(x)$$

$$\leq \limsup_n F_{X_n}(x) = \limsup_n P_{X_n}((-\infty, x]) \leq P_X((-\infty, x]) = F_X(x).$$

If x is a continuity point of F_X, then $P_X((-\infty, x)) = F_X(x)$.

This proves $X_n \xrightarrow{d} X$.

Proof of Theorem 1.9(ii)

From (a) of part (i), $X_n \xrightarrow{d} X$ implies $\phi_{X_n}(t) \xrightarrow{} \phi_X(t)$, since $\mathrm{e}^{\sqrt{-1} t^{\tau} x} = \cos(t^{\tau} x) + \sqrt{-1} \sin(t^{\tau} x)$ and $\cos(t^{\tau} x)$ and $\sin(t^{\tau} x)$ are bounded continuous functions for any fixed t.
Proof of Theorem 1.9(i) (continued)

For any open set O, O^c is closed.
Hence, (b) is equivalent to (c).

To complete the proof we now show that (b) and (c) imply $X_n \to_d X$.

For $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$, let $(-\infty, x] = (-\infty, x_1] \times \cdots \times (-\infty, x_k]$ and $(-\infty, x) = (-\infty, x_1) \times \cdots \times (-\infty, x_k)$.

From (b) and (c),

$$P_X((-\infty, x)) \leq \liminf_n P_{X_n}((-\infty, x)) \leq \liminf_n F_{X_n}(x)$$

$$\leq \limsup_n F_{X_n}(x) = \limsup_n P_{X_n}((-\infty, x]) \leq P_X((-\infty, x]) = F_X(x).$$

If x is a continuity point of F_X, then $P_X((-\infty, x)) = F_X(x)$.
This proves $X_n \to_d X$.

Proof of Theorem 1.9(ii)

From (a) of part (i), $X_n \to_d X$ implies $\phi_{X_n}(t) \to \phi_X(t)$, since

$$e^{\sqrt{-1}t^\tau x} = \cos(t^\tau x) + \sqrt{-1}\sin(t^\tau x)$$

and $\cos(t^\tau x)$ and $\sin(t^\tau x)$ are bounded continuous functions for any fixed t.
Proof of Theorem 1.9(ii) (continued)

Suppose that \(k = 1 \) and that \(\phi_X(n)(t) \rightarrow \phi_X(t) \) for every \(t \in \mathbb{R} \).
We want to show that \(X_n \rightarrow_d X \).
We first show that \(\{P_{X_n}\} \) is tight.

By Fubini’s theorem,

\[
\frac{1}{u} \int_{-u}^{u} \left[1 - \phi_{X_n}(t) \right] dt = \int_{-\infty}^{\infty} \left[\frac{1}{u} \int_{-u}^{u} \left(1 - e^{\sqrt{-1}tx} \right) dt \right] dP_{X_n}(x)
\]

\[
= 2 \int_{-\infty}^{\infty} \left(1 - \frac{\sin ux}{ux} \right) dP_{X_n}(x)
\]

\[
\geq 2 \int_{\{|x|>2u^{-1}\}} \left(1 - \frac{1}{|ux|} \right) dP_{X_n}(x)
\]

\[
\geq P_{X_n} \left((-\infty, -2u^{-1}) \cup (2u^{-1}, \infty) \right)
\]

for any \(u > 0 \).

Since \(\phi_X \) is continuous at 0 and \(\phi_X(0) = 1 \), for any \(\varepsilon > 0 \) there is a \(u > 0 \) such that \(u^{-1} \int_{-u}^{u} [1 - \phi_X(t)] dt < \varepsilon / 2 \).
Proof of Theorem 1.9(ii) (continued)

Since \(\phi_{X_n} \to \phi_X \), by the dominated convergence theorem,

\[
\sup_n \left\{ u^{-1} \int_{-u}^{u} [1 - \phi_{X_n}(t)] dt \right\} < \varepsilon.
\]

Hence,

\[
\inf_n P_{X_n} \left([-2u^{-1}, 2u^{-1}] \right) \geq 1 - \sup_n \left\{ \frac{1}{u} \int_{-u}^{u} [1 - \phi_{X_n}(t)] dt \right\} \geq 1 - \varepsilon,
\]

i.e., \(\{P_{X_n}\} \) is tight.

Let \(\{P_{X_{n_j}}\} \) be any subsequence that converges to a probability measure \(P \).

By the first part of the proof, \(\phi_{X_{n_j}} \to \phi \), which is the ch.f. of \(P \).

By the convergence of \(\phi_{X_n} \), \(\phi = \phi_X \).

By the uniqueness theorem, \(P = P_X \).

By Proposition 1.17(ii), \(X_n \to_d X \).
Proof of Theorem 1.9(ii) (continued)

Consider now the case where $k \geq 2$ and $\phi_{X_n} \rightarrow \phi_X$.
Let Y_{nj} be the jth component of X_n and Y_j be the jth component of X.
Then $\phi_{Y_{nj}} \rightarrow \phi_{Y_j}$ for each j.
By the proof for the case of $k = 1$, $Y_{nj} \rightarrow_d Y_j$.

By Proposition 1.17(i), $\{P_{Y_{nj}}\}$ is tight, $j = 1, \ldots, k$.
This implies that $\{P_{X_n}\}$ is tight (why?).
Then the proof for $X_n \rightarrow_d X$ is the same as that for the case of $k = 1$.

Proof of Theorem 1.9(iii)

Note that $\phi_{c^\tau X_n}(u) = \phi_{X_n}(uc)$ and $\phi_{c^\tau X}(u) = \phi_X(uc)$ for any $u \in \mathbb{R}$ and any $c \in \mathbb{R}^k$.
Hence, convergence of ϕ_{X_n} to ϕ_X is equivalent to convergence of $\phi_{c^\tau X_n}$ to $\phi_{c^\tau X}$ for every $c \in \mathbb{R}^k$.
Then the result follows from part (ii).
Consider now the case where $k \geq 2$ and $\phi_{X_n} \rightarrow \phi_X$. Let Y_{n_j} be the jth component of X_n and Y_j be the jth component of X. Then $\phi_{Y_{n_j}} \rightarrow \phi_{Y_j}$ for each j.

By the proof for the case of $k = 1$, $Y_{n_j} \rightarrow_d Y_j$.

By Proposition 1.17(i), $\{P_{Y_{n_j}}\}$ is tight, $j = 1, ..., k$.

This implies that $\{P_{X_n}\}$ is tight (why?). Then the proof for $X_n \rightarrow_d X$ is the same as that for the case of $k = 1$.

Proof of Theorem 1.9(iii)

Note that $\phi_{c^\tau X_n}(u) = \phi_{X_n}(uc)$ and $\phi_{c^\tau X}(u) = \phi_{X}(uc)$ for any $u \in \mathbb{R}$ and any $c \in \mathbb{R}^k$.

Hence, convergence of ϕ_{X_n} to ϕ_X is equivalent to convergence of $\phi_{c^\tau X_n}$ to $\phi_{c^\tau X}$ for every $c \in \mathbb{R}^k$.

Then the result follows from part (ii).
Example 1.28

Let X_1, \ldots, X_n be independent random variables having a common c.d.f. and $T_n = X_1 + \cdots + X_n$, $n = 1, 2, \ldots$.

Suppose that $E|X_1| < \infty$.

It follows from a result in calculus that the ch.f. of X_1 satisfies

$$\phi_{X_1}(t) = \phi_{X_1}(0) + \sqrt{-1} \mu t + o(|t|)$$

as $|t| \to 0$, where $\mu = EX_1$.

Then, the ch.f. of T_n/n is

$$\phi_{T_n/n}(t) = \left[\phi_{X_1} \left(\frac{t}{n} \right) \right]^n = \left[1 + \frac{\sqrt{-1} \mu t}{n} + o \left(\frac{t}{n} \right) \right]^n \to e^{\sqrt{-1} \mu t}$$

for any $t \in \mathbb{R}$ as $n \to \infty$, because $(1 + c_n/n)^n \to e^c$ for any complex sequence \{c_n\} satisfying $c_n \to c$.

$e^{\sqrt{-1} \mu t}$ is the ch.f. of the point mass probability measure at μ.

By Theorem 1.9(ii), $T_n/n \to_d \mu$.

From Theorem 1.8(vii), this also shows that $T_n/n \to_p \mu$.
Example 1.28

Let X_1, \ldots, X_n be independent random variables having a common c.d.f. and $T_n = X_1 + \cdots + X_n$, $n = 1, 2, \ldots$.

Suppose that $E|X_1| < \infty$.

It follows from a result in calculus that the ch.f. of X_1 satisfies

$$\phi_{X_1}(t) = \phi_{X_1}(0) + \sqrt{-1}\mu t + o(|t|)$$

as $|t| \to 0$, where $\mu = EX_1$.

Then, the ch.f. of T_n/n is

$$\phi_{T_n/n}(t) = \left[\phi_{X_1}\left(\frac{t}{n}\right) \right]^n = \left[1 + \frac{\sqrt{-1}\mu t}{n} + o\left(\frac{t}{n}\right) \right]^n \to e^{\sqrt{-1}\mu t}$$

for any $t \in \mathbb{R}$ as $n \to \infty$, because $(1 + c_n/n)^n \to e^c$ for any complex sequence $\{c_n\}$ satisfying $c_n \to c$.

$e^{\sqrt{-1}\mu t}$ is the ch.f. of the point mass probability measure at μ.

By Theorem 1.9(ii), $T_n/n \to_d \mu$.

From Theorem 1.8(vii), this also shows that $T_n/n \to_p \mu$.
Example 1.28 (continued)

Similarly, $\mu = 0$ and $\sigma^2 = \text{var}(X_1) < \infty$ imply

$$
\phi_{T_n/\sqrt{n}}(t) = \left[1 - \frac{\sigma^2 t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \to e^{-\sigma^2 t^2 / 2}
$$

for any $t \in \mathbb{R}$ as $n \to \infty$.

$e^{-\sigma^2 t^2 / 2}$ is the ch.f. of $N(0, \sigma^2)$.

Hence $T_n/\sqrt{n} \to_d N(0, \sigma^2)$.

If $\mu \neq 0$, a transformation of $Y_i = X_i - \mu$ leads to

$$(T_n - n\mu)/\sqrt{n} \to_d N(0, \sigma^2).$$

Suppose now that X_1, \ldots, X_n are random k-vectors and $\mu = EX_1$ and $\Sigma = \text{var}(X_1)$ are finite.

For any fixed $c \in \mathbb{R}^k$, it follows from the previous discussion that

$$(c^\top T_n - nc^\top \mu)/\sqrt{n} \to_d N(0, c^\top \Sigma c).$$

From Theorem 1.9(iii) and a property of the normal distribution (Exercise 81), we conclude that

$$(T_n - n\mu)/\sqrt{n} \to_d N_k(0, \Sigma).$$
Example 1.28 (continued)

Similarly, $\mu = 0$ and $\sigma^2 = \text{var}(X_1) < \infty$ imply

$$
\phi_{T_n/\sqrt{n}}(t) = \left[1 - \frac{\sigma^2 t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \to e^{-\sigma^2 t^2/2}
$$

for any $t \in \mathbb{R}$ as $n \to \infty$.

$e^{-\sigma^2 t^2/2}$ is the ch.f. of $N(0, \sigma^2)$.

Hence $T_n/\sqrt{n} \to_d N(0, \sigma^2)$.

If $\mu \neq 0$, a transformation of $Y_i = X_i - \mu$ leads to

$$
\frac{T_n - n\mu}{\sqrt{n}} \to_d N(0, \sigma^2).
$$

Suppose now that X_1, \ldots, X_n are random k-vectors and $\mu = E X_1$ and $\Sigma = \text{var}(X_1)$ are finite.

For any fixed $c \in \mathbb{R}^k$, it follows from the previous discussion that

$$
\frac{c^T T_n - nc^T \mu}{\sqrt{n}} \to_d N(0, c^T \Sigma c).
$$

From Theorem 1.9(iii) and a property of the normal distribution (Exercise 81), we conclude that

$$
\frac{T_n - n\mu}{\sqrt{n}} \to_d N_k(0, \Sigma).
$$
Example 1.29

Let X_1, \ldots, X_n be independent random variables having a common Lebesgue p.d.f. $f(x) = (1 - \cos x)/(\pi x^2)$.

Then the ch.f. of X_1 is $\max\{1 - |t|, 0\}$ (Exercise 73) and the ch.f. of $T_n/n = (X_1 + \cdots + X_n)/n$ is

$$\left(\max\left\{1 - \frac{|t|}{n}, 0\right\}\right)^n \to e^{-|t|}, \quad t \in \mathbb{R}.$$

Since $e^{-|t|}$ is the ch.f. of the Cauchy distribution $C(0, 1)$ (Table 1.2), we conclude that $T_n/n \to_d X$, where X has the Cauchy distribution $C(0, 1)$.

- Does this result contradict the first result in Example 1.28?
- Other examples are given in Exercises 135-140.

The next result can be used to check whether $X_n \to_d X$ when X has a p.d.f. f and X_n has a p.d.f. f_n.
Example 1.29

Let X_1, \ldots, X_n be independent random variables having a common Lebesgue p.d.f. $f(x) = (1 - \cos x)/(\pi x^2)$. Then the ch.f. of X_1 is $\max\{1 - |t|, 0\}$ (Exercise 73) and the ch.f. of $T_n/n = (X_1 + \cdots + X_n)/n$ is

$$\left(\max \left\{ 1 - \frac{|t|}{n}, 0 \right\} \right)^n \rightarrow e^{-|t|}, \quad t \in \mathbb{R}.$$

Since $e^{-|t|}$ is the ch.f. of the Cauchy distribution $C(0, 1)$ (Table 1.2), we conclude that $T_n/n \rightarrow_d X$, where X has the Cauchy distribution $C(0, 1)$.

- Does this result contradict the first result in Example 1.28?
- Other examples are given in Exercises 135-140.
Example 1.29

Let X_1, \ldots, X_n be independent random variables having a common Lebesgue p.d.f. $f(x) = (1 - \cos x)/(\pi x^2)$. Then the ch.f. of X_1 is $\max\{1 - |t|, 0\}$ (Exercise 73) and the ch.f. of $T_n/n = (X_1 + \cdots + X_n)/n$ is

$$
\left(\max\left\{1 - \frac{|t|}{n}, 0\right\} \right)^n \to e^{-|t|}, \quad t \in \mathbb{R}.
$$

Since $e^{-|t|}$ is the ch.f. of the Cauchy distribution $C(0, 1)$ (Table 1.2), we conclude that $T_n/n \to_d X$, where X has the Cauchy distribution $C(0, 1)$.

- Does this result contradict the first result in Example 1.28?
- Other examples are given in Exercises 135-140.

The next result can be used to check whether $X_n \to_d X$ when X has a p.d.f. f and X_n has a p.d.f. f_n.
Proposition 1.18 (Scheffé’s theorem)

Let \(\{f_n\} \) be a sequence of p.d.f.’s on \(\mathbb{R}^k \) w.r.t. a measure \(\nu \). Suppose that \(\lim_{n \to \infty} f_n(x) = f(x) \) a.e. \(\nu \) and \(f(x) \) is a p.d.f. w.r.t. \(\nu \). Then \(\lim_{n \to \infty} \int |f_n(x) - f(x)| \, d\nu = 0. \)

Proof

Let \(g_n(x) = [f(x) - f_n(x)] I_{\{f \geq f_n\}}(x), n = 1, 2, \ldots \)

Then

\[
\int |f_n(x) - f(x)| \, d\nu = 2 \int g_n(x) \, d\nu.
\]

Since \(0 \leq g_n(x) \leq f(x) \) for all \(x \) and \(g_n \to 0 \) a.e. \(\nu \), the result follows from the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. \(f_n \) of the t-distribution \(t_n \) (Table 1.2), \(n = 1, 2, \ldots \).

One can show (exercise) that \(f_n \to f \), where \(f \) is the p.d.f. of \(N(0,1) \). This is an important result in statistics.
Proposition 1.18 (Scheffé’s theorem)

Let \(\{f_n\} \) be a sequence of p.d.f.’s on \(\mathbb{R}^k \) w.r.t. a measure \(\nu \).
Suppose that \(\lim_{n \to \infty} f_n(x) = f(x) \) a.e. \(\nu \) and \(f(x) \) is a p.d.f. w.r.t. \(\nu \).
Then \(\lim_{n \to \infty} \int |f_n(x) - f(x)| \, d\nu = 0. \)

Proof

Let \(g_n(x) = [f(x) - f_n(x)]I_{\{f \geq f_n\}}(x), \, n = 1, 2, \ldots \)
Then
\[
\int |f_n(x) - f(x)| \, d\nu = 2 \int g_n(x) \, d\nu.
\]
Since \(0 \leq g_n(x) \leq f(x) \) for all \(x \) and \(g_n \to 0 \) a.e. \(\nu \), the result follows from the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. \(f_n \) of the t-distribution \(t_n \) (Table 1.2), \(n = 1, 2, \ldots \).
One can show (exercise) that \(f_n \to f \), where \(f \) is the p.d.f. of \(N(0,1) \).
This is an important result in statistics.
Proposition 1.18 (Scheffé’s theorem)

Let \(\{f_n\} \) be a sequence of p.d.f.’s on \(\mathbb{R}^k \) w.r.t. a measure \(\nu \). Suppose that \(\lim_{n \to \infty} f_n(x) = f(x) \) a.e. \(\nu \) and \(f(x) \) is a p.d.f. w.r.t. \(\nu \). Then \(\lim_{n \to \infty} \int |f_n(x) - f(x)| d\nu = 0. \)

Proof

Let \(g_n(x) = [f(x) - f_n(x)]I_{\{f \geq f_n\}}(x) \), \(n = 1, 2, \ldots \).

Then

\[
\int |f_n(x) - f(x)| d\nu = 2 \int g_n(x) d\nu.
\]

Since \(0 \leq g_n(x) \leq f(x) \) for all \(x \) and \(g_n \to 0 \) a.e. \(\nu \), the result follows from the dominated convergence theorem.

As an example, consider the Lebesgue p.d.f. \(f_n \) of the t-distribution \(t_n \) (Table 1.2), \(n = 1, 2, \ldots \).

One can show (exercise) that \(f_n \to f \), where \(f \) is the p.d.f. of \(N(0, 1) \). This is an important result in statistics.