Lecture 12: Completeness

Ancillary statistics

A statistic V(X) is ancillary iff its distribution does not depend on any
unknown quantity. A statistic V/(X) is first-order ancillary iff E[V(X)]
does not depend on any unknown quantity.

A trivial ancillary statistic is V(X) = a constant.

The following examples show that there exist many nontrivial ancillary
statistics (non-constant ancillary statistics).

Example: location-scale families

@ If Xi,..., X, is a random sample from a location family with location
parameter u € %, then, for any pair (i,j), 1 <i,j < n, Xi—X;is
ancillary, because X; — X; = (X; — u) — (X; — 1) and the distribution
of (Xj—u, Xj — 1) does not depend on any unknown parameter.
Similarly, X(; — X(;) is ancillary, where X(4),..., X are the order
statistics, and the sample variance S? is ancillary.

@ Note that we do not even need to obtain the form of the
distribution of X; — X.
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o If Xq,...,XnIs a random sample from a scale family with scale
parameter ¢ > 0, then by the same argument we can show that,
for any pair (i,j), 1 <i,j < n, X;/X; and X,/ X;) are ancillary.

@ If Xi,..., X, is a random sample from a location-scale family with
parameters u € # and o > 0, then, for any (i,j, k), 1 <i,j,k <n,
()(, — Xk)/()(/ — Xk) and (X(,) — X(k))/(X(/) — X(k)) are ancillary.

@ If V(X) is a non-trivial ancillary statistic, then o(V) does not
contain any information about the unknown population P.

e If T(X) is a statistic and V(T (X)) is a non-trivial ancillary statistic,
it indicates that the reduced data set by T contains a non-trivial
part that does not contain any information about 6 and, hence, a
further simplification of T may still be needed.

@ A sufficient statistic T(X) appears to be most successful in
reducing the data if no nonconstant function of T(X) is ancillary or
even first-order ancillary, which leads to the following definition.

Definition 2.6 (Completeness)

A statistic T(X) is complete (or boundedly complete) for P € &7 iff, for
any Borel f (or bounded Borel f), E[f(T)] =0 for all P € &7 implies
f=0a.s. 2.
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@ A complete statistic is boundedly complete.

@ If T is complete (or boundedly complete) and S= y(T) for a
measurable y, then S is complete (or boundedly complete).

@ Intuitively, a complete and sufficient statistic should be minimal
sufficient (Exercise 48).

@ A minimal sufficient statistic is not necessarily complete; for
example, the minimal sufficient statistic (X1, X(n)) in Example
2.13 is not complete (Exercise 47).

Proposition 2.1
If Pis in an exponential family of full rank with p.d.fs given by

fa(x) = exp{n* T(x) — {(n) } h(x),

then T(X) is complete and sufficient for n € =.

We have shown that T is sufficient.
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We now show that T is complete.
Suppose that there is a function f such that E[f(T)] =0 for all n € =.
By Theorem 2.1(i),

/f(t) exp{nt—¢(n)}dA =0 foralln ez,

where 4 (A) = [, h(x)dv is a measure on (%P, %P).
Let no be an interior point of =. Then

/ f (e dA = / £ (t)e""tda  for all n € N(1o), (1)
where N(no) ={n € 2P : |n —no|| < €} for some € > 0.
In particular,

/f+(t)e’75td)L _ /f,(t)enéfdx _c.
Ifc=0,then f=0a.e. A.
If ¢ >0, then ¢ £ (t)eM! and ¢~ 'f_(t)e! are p.d.f)s w.rt. A and
result (1) implies that their m.g.f.s are the same in a neighborhood of 0.
By Theorem 1.6(ii), ¢ 'f, (t)e"! = c'f (t)eM!, i.e., f=f —f =0a.e.
A, which implies that f =0 a.s. £2.

Hence T is complete.
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Example 2.15
Suppose that Xj, ..., X,, are i.i.d. random variables having the N(u, c?)
distribution, u € Z, o > 0.

From Example 2.6, the joint p.d.f. of Xi,..., X, is

(2r) " Pexp{ni Ty + M2 To—ng(n)},

where Ty =¥, X;, To = — £y X2, and n = (1,12) = (&, 5 ).
Hence, the family of distributions for X = (Xj,..., X,) is a natural
exponential family of full rank (= = Z x (0,)).

By Proposition 2.1, T(X) = (Ty, T2) is complete and sufficient for n.
Since there is a one-to-one correspondence between i and

6 = (u,02), T is also complete and sufficient for 6.

It can be shown that any one-to-one measurable function of a complete
and sufficient statistic is also complete and sufficient (exercise).

Thus, (X, S?) is complete and sufficient for 8, where X and S? are the
sample mean and sample variance, respectively.
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Example 2.16
Let Xi,..., X, be i.i.d. random variables from Py, the uniform distribution
U(0,0), 6 > 0.

The largest order statistic, X, is complete and sufficient for 6 € (0, ).
The sufficiency of X, follows from the fact that the joint Lebesgue
p.d.f. of Xi,..., Xn is G_nl(oﬁ)(X(n)).

From Example 2.9, X has the Lebesgue p.d.f. (nx”—1/9”)l(o_’9)(x).
Let f be a Borel function on [0, ) such that E[f(X(,))] = 0 for all 6 > 0.
Then

)
/ f(x)x" 'dx =0 forall 6 > 0.
0

Let G(6) be the left-hand side of the previous equation.

Applying the result of differentiation of an integral (see, e.g., Royden
(1968, §5.3)), we obtain that G'(0) = f(6)0"~! a.e. m,, where m, is
the Lebesgue measure on ([0, ), #jo .))-

Since G(#) =0 for all 8 > 0, f(#)8"~" =0 a.e. m, and, hence, f(x) =0
a.e. my.

Therefore, X, is complete and sufficient for 6 € (0, ).
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Example 2.17

In Example 2.12, we showed that the order statistics

T(X) = (X),---» X(n)) of i.i.d. random variables Xj, ..., X, is sufficient for
P e 2, where & is the family of distributions on % having Lebesgue
p.d.f’s.

We now show that T(X) is also complete for P € 2.

Let & be the family of Lebesgue p.d.f.s of the form

f(X) = C(64, ..., 0n) exp{—X2" + 01 X + O2x® + - -- + O,x"},
where 6; € #Z and C(64, ..., 65) is a normalizing constant such that
Jf(x)dx =1.
Then 2y C & and &, is an exponential family of full rank.
Note that the joint distribution of X = (Xj,...,X,) is also in an
exponential family of full rank.
Thus, by Proposition 2.1, U': (Uy,...,Un) is a complete statistic for
P e %, where Uy =Y, X/.
Since a.s. Z, implies a.s. #2, U(X) is also complete for P € .
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Example 2.17 (continued)

The result follows if we can show that there is a one-to-one
correspondence between T(X) and U(X).

Let Vi =YL Xi, Vo =Y, j XiXj, Va = Yicjck XiXjXseos Vo= X1 -+ Xa.
From the identities
Uk = ViUk_1+ VoUk o — -+ (=1) Vi1 Us + (—1)kVk =0,

k =1,...,n, there is a one-to-one correspondence between U(X) and
V(X)=(Vq,..., Vn).
From the identity

(t=X1)---(t=Xn) = "= Vit 4 Vot" 2 — . (=1)"Vp,
there is a one-to-one correspondence between V(X) and T(X).

This completes the proof and, hence, T(X) is sufficient and complete
for Pe 2.

In fact, both U(X) and V(X) are sufficient and complete for P € 2.

The relationship between an ancillary statistic and a complete and

sufficient statistic is characterized in the following result.
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Theorem 2.4 (Basu’s theorem)

Let V and T be two statistics of X from a population P € &.
If Vis ancillary and T is boundedly complete and sulfficient for P € 22,
then V and T are independent w.r.t. any P € Z.

Let B be an event on the range of V.

Since V is ancillary, P(V~1(B)) is a constant.

As T is sufficient, E[lg(V)|T] is a function of T (not dependent on P).
Because

E{E[Ig(V)|T]-P(V'(B))}=0 forall Pe 2,
by the bounded completeness of T,
P(V-(B)|T)=E[lg(V)|T]=P(V (B)) as. Z
For A being an event on the range of T,
P(T(A)NV~1(B))=E{E[Ia(T)Is(V)|T]} = E{Ia(T)E[Ia(V)| T]}

= E{I((T)P(V~"(B))} = P(T"'(A)P(V'(B)).
Hence T and V are independent w.r.t. any P € &.
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Basu’s theorem is useful in proving the independence of two statistics. ]

Example 2.18
Suppose that Xj, ..., X, are i.i.d. random variables having the N(u, c?)
distribution, with u € % and a known ¢ > 0.

It can be easily shown that the family {N(u,0?): u € #} is an
exponential family of full rank with natural parameter n = u/c?.

By Proposition 2.1, the sample mean X is complete and sufficient for n
(and u).

Let X be the sample mean and S? be the sample variance.

Since S2 = (n—1)""Y",(Z — Z)?, where Z; = X; — u is N(0,5?) and
Z=n"Y" . Z, S?is an ancillary statistic (62 is known).

By Basu’s theorem, X and S? are independent w.r.t. N(u, o) with
UEZR.

Since o2 is arbitrary, X and S? are independent w.r.t. N(u,?) for any
u € Z and ¢® > 0.
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If a minimal sufficient statistic T is not complete, then there may be an
ancillary statistic V such that V and T are not independent.

Example 2.13

In this example, Xi,..., X, is a random sample from uniform(6,6 + 1),
6 € #Z,and T = (X1, X(n)) is the minimal sufficient statistic for 6.

We now show that T is not complete.

Note that V(T) = X(n) — X1y = (X(n) — 0) — (X(1) — 0) is in fact ancillary.
It is easy to see that Eq( V) exists and it does not depend on 6 since V
is ancillary.

Letting c = E(V), we see that Eq(V —c) =0 for all 6.

Thus, we have a function g(x,y) = x — y — ¢ such that

Eg [g(X(1),X(n))] = Eg(V— C) = 0 for all 6 but

Po(9(X(1), X(n)) = 0) = Po(V =) #0.

This shows that T is not complete.

In this case, (V) C o(T) and o(V) contains no information about 6.
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The relationship between minimal sufficiency and sufficiency with
completeness is given by the following theorem.

Theorem

Suppose that S is a minimal sufficient statistic and T is a complete and
sufficient statistic. Then T must be minimal sufficient and S must be
complete.

|

Proof.

Since S is minimal sufficient and T is sufficient, there exists a Borel
function h such that S= h(T) a.s. Z.

Since h cannot be a constant function and T is complete, we conclude
that S is complete.

Consider T — E(T|S) =T — E[T|h(T)], which is a Borel function of T
and hence can be denoted as g(T).

Note that E[g(T)] = 0.

By the completeness of T, g(T)=0a.s. Z,i.e., T=E(T|S)a.s. &

This means that T is also a function of S and, therefore, T is minimal
sufficient.
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Example (ancillary precision)

Let X; and X5 be iid from the discrete uniform distribution on three
points {6,060 +1,0 +2}, where 6 € © = {0,4+1,£2,...}.

Using the same argument as in Example 2.13, we can show that the
order statistics (X(1), X(2)) is minimal sufficient for 6.

Let M = (X(1)+ X(2))/2 and R = X(2) — X(1) (mid-range and range).
Since (M, R) is a one-to-one function of (X(4), X(2)), it is also minimal
sufficient for 6.

Consider the estimation of 6 using (M, R).

Note that R = (X(2) — 0) — (X{1) — 0) is the range of the two order
statistics from the uniform distribution on {0,1,2} and, hence the
distribution of R does not depend on 6, i.e., R is ancillary.

One may think R is useless in the estimation of 6 and only M is useful.
Suppose we observe (M, R) = (m,r) and m is an integer.

From the observation m, we know that 6 can only be one of the 3
values m, m— 1, and m— 2; however, we are not certain which of the 3
values is 6.
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We can know more if r = 2, which must be the case that X(1) = m—1
and Xigy=m+1.

With this additional information, the only possible value for 6 is m—1.

When m is an integer, r cannot be 1. If r =0, then we know that
X1 = X, and we are not certain which of the 3 values is 6.

The knowledge of the value of the ancillary statistic R increases our
knowledge about 6, although R alone gives us no information about 6.

What we learn from the previous example?

@ An ancillary statistic that is a function of a minimal sufficient
statistic T may still be useful for our knowledge about 6.
(Note that the ancillary statistic is still a function of T.)

@ This cannot occur to a sufficient and complete statistic 7, since, if
V(T) is ancillary, then by the completeness of T, V must be a
constant and is useless.

@ Therefore, the sufficiency and completeness together is a much
desirable (and strong) property.
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