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Lecture 12: Completeness
Ancillary statistics
A statistic V (X ) is ancillary iff its distribution does not depend on any
unknown quantity. A statistic V (X ) is first-order ancillary iff E [V (X )]
does not depend on any unknown quantity.
A trivial ancillary statistic is V (X )≡ a constant.
The following examples show that there exist many nontrivial ancillary
statistics (non-constant ancillary statistics).

Example: location-scale families
If X1, ...,Xn is a random sample from a location family with location
parameter µ ∈R, then, for any pair (i , j), 1≤ i , j ≤ n, Xi −Xj is
ancillary, because Xi −Xj = (Xi −µ)− (Xj −µ) and the distribution
of (Xi −µ,Xj −µ) does not depend on any unknown parameter.
Similarly, X(i)−X(j) is ancillary, where X(1), ...,X(n) are the order
statistics, and the sample variance S2 is ancillary.
Note that we do not even need to obtain the form of the
distribution of Xi −Xj .
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If X1, ...,Xn is a random sample from a scale family with scale
parameter σ > 0, then by the same argument we can show that,
for any pair (i , j), 1≤ i , j ≤ n, Xi/Xj and X(i)/X(j) are ancillary.
If X1, ...,Xn is a random sample from a location-scale family with
parameters µ ∈R and σ > 0, then, for any (i , j ,k), 1≤ i , j ,k ≤ n,
(Xi −Xk )/(Xj −Xk ) and (X(i)−X(k))/(X(j)−X(k)) are ancillary.
If V (X ) is a non-trivial ancillary statistic, then σ(V ) does not
contain any information about the unknown population P.
If T (X ) is a statistic and V (T (X )) is a non-trivial ancillary statistic,
it indicates that the reduced data set by T contains a non-trivial
part that does not contain any information about θ and, hence, a
further simplification of T may still be needed.
A sufficient statistic T (X ) appears to be most successful in
reducing the data if no nonconstant function of T (X ) is ancillary or
even first-order ancillary, which leads to the following definition.

Definition 2.6 (Completeness)
A statistic T (X ) is complete (or boundedly complete) for P ∈P iff, for
any Borel f (or bounded Borel f ), E [f (T )] = 0 for all P ∈P implies
f = 0 a.s. P.
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Remarks
A complete statistic is boundedly complete.
If T is complete (or boundedly complete) and S = ψ(T ) for a
measurable ψ, then S is complete (or boundedly complete).
Intuitively, a complete and sufficient statistic should be minimal
sufficient (Exercise 48).
A minimal sufficient statistic is not necessarily complete; for
example, the minimal sufficient statistic (X(1),X(n)) in Example
2.13 is not complete (Exercise 47).

Proposition 2.1
If P is in an exponential family of full rank with p.d.f.’s given by

fη (x) = exp
{

η
τT (x)−ζ (η)

}
h(x),

then T (X ) is complete and sufficient for η ∈ Ξ.

Proof
We have shown that T is sufficient.
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We now show that T is complete.
Suppose that there is a function f such that E [f (T )] = 0 for all η ∈ Ξ.
By Theorem 2.1(i),∫

f (t)exp{ητ t−ζ (η)}dλ = 0 for all η ∈ Ξ,

where λ (A) =
∫

A h(x)dν is a measure on (Rp,Bp).
Let η0 be an interior point of Ξ. Then∫

f+(t)eητ tdλ =
∫

f−(t)eητ tdλ for all η ∈ N(η0), (1)

where N(η0) = {η ∈Rp : ‖η−η0‖< ε} for some ε > 0.
In particular, ∫

f+(t)eητ

0 tdλ =
∫

f−(t)eητ

0 tdλ = c.

If c = 0, then f = 0 a.e. λ .
If c > 0, then c−1f+(t)eητ

0 t and c−1f−(t)eητ

0 t are p.d.f.’s w.r.t. λ and
result (1) implies that their m.g.f.’s are the same in a neighborhood of 0.
By Theorem 1.6(ii), c−1f+(t)eητ

0 t = c−1f−(t)eητ

0 t , i.e., f = f+− f− = 0 a.e.
λ , which implies that f = 0 a.s. P.
Hence T is complete.
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Example 2.15

Suppose that X1, ...,Xn are i.i.d. random variables having the N(µ,σ2)
distribution, µ ∈R, σ > 0.
From Example 2.6, the joint p.d.f. of X1, ...,Xn is

(2π)−n/2 exp{η1T1 + η2T2−nζ (η)} ,

where T1 = ∑
n
i=1 Xi , T2 =−∑

n
i=1 X 2

i , and η = (η1,η2) =
(

µ

σ2 ,
1

2σ2

)
.

Hence, the family of distributions for X = (X1, ...,Xn) is a natural
exponential family of full rank (Ξ = R× (0,∞)).
By Proposition 2.1, T (X ) = (T1,T2) is complete and sufficient for η .
Since there is a one-to-one correspondence between η and
θ = (µ,σ2), T is also complete and sufficient for θ .
It can be shown that any one-to-one measurable function of a complete
and sufficient statistic is also complete and sufficient (exercise).
Thus, (X̄ ,S2) is complete and sufficient for θ , where X̄ and S2 are the
sample mean and sample variance, respectively.
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Example 2.16
Let X1, ...,Xn be i.i.d. random variables from Pθ , the uniform distribution
U(0,θ), θ > 0.
The largest order statistic, X(n), is complete and sufficient for θ ∈ (0,∞).
The sufficiency of X(n) follows from the fact that the joint Lebesgue
p.d.f. of X1, ...,Xn is θ−nI(0,θ)(x(n)).
From Example 2.9, X(n) has the Lebesgue p.d.f. (nxn−1/θ n)I(0,θ)(x).
Let f be a Borel function on [0,∞) such that E [f (X(n))] = 0 for all θ > 0.
Then ∫

θ

0
f (x)xn−1dx = 0 for all θ > 0.

Let G(θ) be the left-hand side of the previous equation.
Applying the result of differentiation of an integral (see, e.g., Royden
(1968, §5.3)), we obtain that G′(θ) = f (θ)θ n−1 a.e. m+, where m+ is
the Lebesgue measure on ([0,∞),B[0,∞)).
Since G(θ) = 0 for all θ > 0, f (θ)θ n−1 = 0 a.e. m+ and, hence, f (x) = 0
a.e. m+.
Therefore, X(n) is complete and sufficient for θ ∈ (0,∞).
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Example 2.17
In Example 2.12, we showed that the order statistics
T (X ) = (X(1), ...,X(n)) of i.i.d. random variables X1, ...,Xn is sufficient for
P ∈P, where P is the family of distributions on R having Lebesgue
p.d.f.’s.
We now show that T (X ) is also complete for P ∈P.
Let P0 be the family of Lebesgue p.d.f.’s of the form

f (x) = C(θ1, ...,θn)exp{−x2n + θ1x + θ2x2 + · · ·+ θnxn},

where θj ∈R and C(θ1, ...,θn) is a normalizing constant such that∫
f (x)dx = 1.

Then P0 ⊂P and P0 is an exponential family of full rank.
Note that the joint distribution of X = (X1, ...,Xn) is also in an
exponential family of full rank.
Thus, by Proposition 2.1, U = (U1, ...,Un) is a complete statistic for
P ∈P0, where Uj = ∑

n
i=1 X j

i .
Since a.s. P0 implies a.s. P, U(X ) is also complete for P ∈P.
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Example 2.17 (continued)
The result follows if we can show that there is a one-to-one
correspondence between T (X ) and U(X ).
Let V1 = ∑

n
i=1 Xi , V2 = ∑i<j XiXj , V3 = ∑i<j<k XiXjXk ,..., Vn = X1 · · ·Xn.

From the identities

Uk −V1Uk−1 + V2Uk−2−·· ·+ (−1)k−1Vk−1U1 + (−1)kkVk = 0,

k = 1, ...,n, there is a one-to-one correspondence between U(X ) and
V (X ) = (V1, ...,Vn).
From the identity

(t−X1) · · ·(t−Xn) = tn−V1tn−1 + V2tn−2−·· ·+ (−1)nVn,

there is a one-to-one correspondence between V (X ) and T (X ).
This completes the proof and, hence, T (X ) is sufficient and complete
for P ∈P.
In fact, both U(X ) and V (X ) are sufficient and complete for P ∈P.

The relationship between an ancillary statistic and a complete and
sufficient statistic is characterized in the following result.
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Theorem 2.4 (Basu’s theorem)
Let V and T be two statistics of X from a population P ∈P.
If V is ancillary and T is boundedly complete and sufficient for P ∈P,
then V and T are independent w.r.t. any P ∈P.

Proof
Let B be an event on the range of V .
Since V is ancillary, P(V−1(B)) is a constant.
As T is sufficient, E [IB(V )|T ] is a function of T (not dependent on P).
Because

E{E [IB(V )|T ]−P(V−1(B))}= 0 for all P ∈P,

by the bounded completeness of T ,

P(V−1(B)|T ) = E [IB(V )|T ] = P(V−1(B)) a.s. P

For A being an event on the range of T ,

P(T−1(A)∩V−1(B))=E{E [IA(T )IB(V )|T ]}= E{IA(T )E [IB(V )|T ]}

= E{IA(T )P(V−1(B))}= P(T−1(A))P(V−1(B)).

Hence T and V are independent w.r.t. any P ∈P.
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Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18

Suppose that X1, ...,Xn are i.i.d. random variables having the N(µ,σ2)
distribution, with µ ∈R and a known σ > 0.
It can be easily shown that the family {N(µ,σ2) : µ ∈R} is an
exponential family of full rank with natural parameter η = µ/σ2.
By Proposition 2.1, the sample mean X̄ is complete and sufficient for η

(and µ).
Let X̄ be the sample mean and S2 be the sample variance.
Since S2 = (n−1)−1

∑
n
i=1(Zi − Z̄ )2, where Zi = Xi −µ is N(0,σ2) and

Z̄ = n−1
∑

n
i=1 Zi , S2 is an ancillary statistic (σ2 is known).

By Basu’s theorem, X̄ and S2 are independent w.r.t. N(µ,σ2) with
µ ∈R.
Since σ2 is arbitrary, X̄ and S2 are independent w.r.t. N(µ,σ2) for any
µ ∈R and σ2 > 0.
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If a minimal sufficient statistic T is not complete, then there may be an
ancillary statistic V such that V and T are not independent.

Example 2.13
In this example, X1, ...,Xn is a random sample from uniform(θ ,θ + 1),
θ ∈R, and T = (X(1),X(n)) is the minimal sufficient statistic for θ .
We now show that T is not complete.
Note that V (T ) = X(n)−X(1) = (X(n)−θ)− (X(1)−θ) is in fact ancillary.
It is easy to see that Eθ (V ) exists and it does not depend on θ since V
is ancillary.
Letting c = E(V ), we see that Eθ (V −c) = 0 for all θ .
Thus, we have a function g(x ,y) = x −y −c such that
Eθ [g(X(1),X(n))] = Eθ (V −c) = 0 for all θ but
Pθ (g(X(1),X(n)) = 0) = Pθ (V = c) 6= 0.
This shows that T is not complete.
In this case, σ(V )⊂ σ(T ) and σ(V ) contains no information about θ .
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The relationship between minimal sufficiency and sufficiency with
completeness is given by the following theorem.

Theorem
Suppose that S is a minimal sufficient statistic and T is a complete and
sufficient statistic. Then T must be minimal sufficient and S must be
complete.

Proof.
Since S is minimal sufficient and T is sufficient, there exists a Borel
function h such that S = h(T ) a.s. P.
Since h cannot be a constant function and T is complete, we conclude
that S is complete.
Consider T −E(T |S) = T −E [T |h(T )], which is a Borel function of T
and hence can be denoted as g(T ).
Note that E [g(T )] = 0.
By the completeness of T , g(T ) = 0 a.s. P, i.e., T = E(T |S) a.s. P

This means that T is also a function of S and, therefore, T is minimal
sufficient.
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Example (ancillary precision)
Let X1 and X2 be iid from the discrete uniform distribution on three
points {θ ,θ + 1,θ + 2}, where θ ∈Θ = {0,±1,±2, ...}.
Using the same argument as in Example 2.13, we can show that the
order statistics (X(1),X(2)) is minimal sufficient for θ .
Let M = (X(1) + X(2))/2 and R = X(2)−X(1) (mid-range and range).
Since (M,R) is a one-to-one function of (X(1),X(2)), it is also minimal
sufficient for θ .
Consider the estimation of θ using (M,R).
Note that R = (X(2)−θ)− (X(1)−θ) is the range of the two order
statistics from the uniform distribution on {0,1,2} and, hence the
distribution of R does not depend on θ , i.e., R is ancillary.
One may think R is useless in the estimation of θ and only M is useful.
Suppose we observe (M,R) = (m, r) and m is an integer.
From the observation m, we know that θ can only be one of the 3
values m, m−1, and m−2; however, we are not certain which of the 3
values is θ .
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We can know more if r = 2, which must be the case that X(1) = m−1
and X(2) = m + 1.
With this additional information, the only possible value for θ is m−1.
When m is an integer, r cannot be 1. If r = 0, then we know that
X1 = X2 and we are not certain which of the 3 values is θ .
The knowledge of the value of the ancillary statistic R increases our
knowledge about θ , although R alone gives us no information about θ .

What we learn from the previous example?
An ancillary statistic that is a function of a minimal sufficient
statistic T may still be useful for our knowledge about θ .
(Note that the ancillary statistic is still a function of T .)
This cannot occur to a sufficient and complete statistic T , since, if
V (T ) is ancillary, then by the completeness of T , V must be a
constant and is useless.
Therefore, the sufficiency and completeness together is a much
desirable (and strong) property.
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