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Lecture 13: Statistical decision and inference
Basic elements

X : a sample from a population P ∈P

Decision: an action we take after observing X
A : the set of allowable actions
(A ,FA ): the action space
X : the range of X
Decision rule: a statistic T (X ) from (X ,FX ) to (A ,FA )

If X is observed, then we take the action T (X ) ∈A

Performance: loss function L(P,a) from P×A to [0,∞), Borel in a
If our action is T (X ), then our “loss" is L(P,T (X ))
It is difficult to assess L(P,T (X )) since it is random.
Risk: the average (expected) loss defined as

RT (P) = E [L(P,T (X ))] =
∫

X
L(P,T (x))dPX (x).

If P is parametric, the loss and risk are denoted by L(θ ,a), RT (θ)
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Comparisons
For decision rules T1 and T2, T1 is as good as T2 iff

RT1(P)≤ RT2(P) for any P ∈P,

and is better than T2 if, in addition, RT1(P) < RT2(P) for some P.
T1 and T2 are equivalent iff RT1(P) = RT2(P) for all P ∈P.
Optimal rule: If T∗ is as good as any other rule in ℑ, a class of
allowable decision rules, then T∗ is ℑ-optimal (or optimal if ℑ

contains all possible rules).

Randomized decision rules
A function δ on X ×FA ; for every A ∈FA , δ (·,A) is a Borel function
and, for every x ∈X , δ (x , ·) is a probability measure on (A ,FA ).

If X = x is observed, we have a distribution of actions: δ (x , ·).
A nonrandomized decision rule T is a special randomized
decision rule with δ (x ,{a}) = I{a}(T (x)), a ∈A , x ∈X .
An example is a discrete distribution δ (x , ·) assigning probability
pj(x) to a nonrandomized decision rule Tj(x), j = 1,2, ...
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Loss and risk of a randomized decision rule
The loss function for a randomized rule δ is defined as

L(P,δ ,x) =
∫

A
L(P,a)dδ (x ,a),

which reduces to the same loss function when δ is nonrandomized.
The risk of a randomized rule δ is then

Rδ (P) = E [L(P,δ ,X )] =
∫

X

∫
A

L(P,a)dδ (x ,a)dPX (x).

Example 2.19
X = (X1, ...,Xn) is a vector of iid measurements for a parameter θ ∈R.
We want to estimate θ .
Action space: (A ,FA ) = (R,B).
A common loss function in this problem is the squared error loss
L(P,a) = (θ −a)2, a ∈A .
Let T (X ) = X̄ , the sample mean.
The loss for X̄ is (X̄ −θ)2.
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If the population has mean µ and variance σ2 < ∞, then

RX̄ (P) = E(θ − X̄ )2 = (θ −EX̄ )2 + E(EX̄ − X̄ )2

= (θ −EX̄ )2 + Var(X̄ ) = (µ−θ)2 + σ2

n .

If θ is in fact the mean of the population, then

RX̄ (P) = σ2

n

is an increasing function of the population variance σ2 and a
decreasing function of the sample size n.
Consider another decision rule T1(X ) = (X(1) + X(n))/2.
RT1(P) does not have a simple explicit form if there is no further
assumption on the family P containing P.
For some P, X̄ (or T1) is better than T1 (or X̄ ) (exercise), whereas for
some P, neither X̄ nor T1 is better than the other.

The problem in Example 2.19 is a special case of a general problem
called estimation.
In an estimation problem, a decision rule T is called an estimator.
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The following example describes another type of important problem
called hypothesis testing.

Example 2.20
Let P be a family of distributions, P0 ⊂P, P1 = {P ∈P : P 6∈P0}.
A hypothesis testing problem can be formulated as that of deciding
which of the following two statements is true:

H0 : P ∈P0 versus H1 : P ∈P1.

H0 is called the null hypothesis and H1 is the alternative hypothesis.
The action space for this problem contains only two elements, i.e.,
A = {0,1}, where 0 is accepting H0 and 1 is rejecting H0.
A decision rule is called a test, which must have the form IC(X ), where
C ∈FX is called the rejection or critical region.
0-1 loss: L(P,a) = 0 if a correct decision is made and 1 if an incorrect
decision is made, which leads to the risk

RT (P) =

{
P(T (X ) = 1) = P(X ∈ C) P ∈P0
P(T (X ) = 0) = P(X 6∈ C) P ∈P1.

May use unequal losses: L(P, j) = 0, P ∈Pj , L(P, j) = cj , P ∈P1−j
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Definition 2.7 (Admissibility)
Let ℑ be a class of decision rules (randomized or nonrandomized).
A decision rule T ∈ ℑ is called ℑ-admissible (or admissible when ℑ

contains all possible rules) iff there does not exist any S ∈ ℑ that is
better than T (in terms of the risk).

Remarks
If a decision rule T is inadmissible, then there exists a rule better
than T and T should not be used in principle.
However, an admissible decision rule is not necessarily good.
For example, in an estimation problem a silly estimator T (X )≡ a
constant may be admissible.
If T∗ is ℑ-optimal, then it is ℑ-admissible.
If T∗ is ℑ-optimal and T0 is ℑ-admissible, then T0 is also ℑ-optimal
and is equivalent to T∗.
If there are two ℑ-admissible rules that are not equivalent, then
there does not exist any ℑ-optimal rule.
How to check admissibility will be discussed in Chapter 4
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Suppose that we have a sufficient statistic T (X ) for P ∈P.
Intuitively, our decision rule should be a function of T .
This is not true in general, but the following result indicates that this is
true if randomized decision rules are allowed.
Proposition 2.2
Let T (X ) be a sufficient statistic for P ∈P and let δ0 be a decision rule.
Then

δ1(t ,A) = E [δ0(X ,A)|T = t ],
which is a randomized decision rule depending only on T , is equivalent
to δ0 if Rδ0(P) < ∞ for any P ∈P.

Note that Proposition 2.2 does not imply that δ0 is inadmissible.
If δ0 is a nonrandomized rule,

δ1(t ,A) = E [IA(δ0(X ))|T = t ] = P(δ0(X ) ∈ A|T = t)

is still a randomized rule, unless δ0(X ) = h(T (X )) a.s. P for some h

The following result tells us when nonrandomized rules are all we need
and when decision rules that are not functions of sufficient statistics
are inadmissible.
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Theorem 2.5
Suppose that A is a convex subset of Rk and that for any P ∈P,
L(P,a) is a convex function of a.

(i) Let δ be a randomized rule satisfying
∫
A ‖a‖dδ (x ,a) < ∞ for any

x ∈X and let T1(x) =
∫
A adδ (x ,a).

Then L(P,T1(x))≤ L(P,δ ,x) (or L(P,T1(x))<L(P,δ ,x) if L is
strictly convex in a) for any x ∈X and P∈P.

(ii) (Rao-Blackwell theorem). Let T be a sufficient statistic for P ∈P,
T0 ∈Rk be a nonrandomized rule satisfying E‖T0‖< ∞, and
T1 = E [T0(X )|T ].
Then RT1(P)≤ RT0(P) for any P ∈P.
If L is strictly convex in a and T0 is not a function of T , then T0 is
inadmissible.

The proof of Theorem 2.5 is an application of Jensen’s inequality.

The concept of admissibility and sufficiency helps us to eliminate some
decision rules, but usually there are still too many rules left.
A ℑ-optimal rule often does not exist, if ℑ is too large or too small.
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Example 2.22 (finding a decision rule?)
Let X1, ...,Xn be i.i.d. random variables from a population P ∈P that is
the family of populations having finite mean µ and variance σ2.
Consider the estimation of µ (A = R) under the squared error loss.
It can be shown that if we let ℑ be the class of all possible estimators,
then there is no ℑ-optimal rule (exercise).
Next, let ℑ1 be the class of all linear functions in X = (X1, ...,Xn), i.e.,
T (X ) = ∑

n
i=1 ciXi with known ci ∈R, i = 1, ...,n.

RT (P) = µ
2

(
n

∑
i=1

ci −1

)2

+ σ
2

n

∑
i=1

c2
i . (1)

If there is a ℑ1-optimal rule T∗, then (c∗1, ...,c
∗
n) is a minimum of the

function of (c1, ...,cn) on the right-hand side of (1).
Then c∗1, ...,c

∗
n must be the same and equal to µ2/(σ2 + nµ2), which

depends on P, i.e., T∗ is not a statistic.
Consider now a subclass ℑ2 ⊂ ℑ1 with ci ’s satisfying ∑

n
i=1 ci = 1.

From (1), RT (P) = σ2
∑

n
i=1 c2

i if T ∈ ℑ2.
Minimizing σ2

∑
n
i=1 c2

i subject to ∑
n
i=1 ci = 1 leads to ci = n−1.
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Thus, the sample mean X̄ is ℑ2-optimal.
There may not be any optimal rule if we consider a small class of rules.

In view of the fact that an optimal rule often does not exist, statisticians
adopt two approaches to choose a decision rule.

Approach I
Define a class ℑ of decision rules that have some desirable properties
(statistical and/or nonstatistical) and then try to find the best rule in ℑ.
In Example 2.22, for instance, any estimator T in ℑ2 has the property
that T is linear in X and E [T (X )] = µ.
In a general estimation problem, we can use the following concept.

Definition 2.8 (Unbiasedness)
In an estimation problem, the bias of an estimator T (X ) of a parameter
ϑ of the unknown population is defined to be

bT (P) = E [T (X )]−ϑ

(denoted by bT (θ) when P is in a parametric family indexed by θ ).
An estimator T (X ) is unbiased for ϑ iff bT (P) = 0 for any P ∈P.
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Remarks
ℑ2 in Example 2.22 is the class of unbiased estimators linear in X .
In Chapter 3, we study how to find a ℑ-optimal estimator when ℑ

contains unbiased estimators or unbiased estimators linear in X .
Another property we may consider is invariance (see textbook).

Approach II
The second approach to finding a good decision rule is to consider
some characteristic RT of RT (P), for a given decision rule T , and then
minimize RT over T ∈ ℑ.

The first method: the Bayes rule
Consider an average of RT (P) over P ∈P:

rT (Π) =
∫

P
RT (P)dΠ(P),

where Π is a known probability measure on (P,FP).
rT (Π) is called the Bayes risk of T w.r.t. Π.
If T∗ ∈ ℑ and rT∗ (Π)≤ rT (Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes
rule (or Bayes rule when ℑ contains all possible rules) w.r.t. Π.
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The second method: the minimax rule
Consider the worst situation, i.e., supP∈P RT (P).
If T∗ ∈ ℑ and

sup
P∈P

RT∗(P)≤ sup
P∈P

RT (P)

for any T ∈ ℑ, then T∗ is called a ℑ-minimax rule (or minimax rule
when ℑ contains all possible rules).

Example 2.25

Consider the estimation of θ ∈R under loss L(θ ,a) = (θ −a)2 and

rT (Π) =
∫

R
E [θ −T (X )]2dΠ(θ),

which is equivalent to E [~θ −T (X )]2, where ~θ is random and distributed
as Π and, given ~θ = θ , the conditional distribution of X is Pθ .
The problem becomes to predict ~θ using functions of X .
Using the result in Example 1.22, the best predictor is E(~θ |X ), which is
the ℑ-Bayes rule w.r.t. Π with ℑ being the class of rules T (X ) satisfying
E [T (X )]2 < ∞ for any θ .

More on Bayes and minimax rules will be studied in Chapter 4.
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Statistical inference

A major approach in statistical analysis does not use any loss-risk.

Three components in statistical inference
Point estimators (Chapters 3-5)
Hypothesis tests (Chapter 6)
Confidence sets (Chapter 7)

Point estimators
Let T (X ) be an estimator of ϑ ∈R
Bias: bT (P) = E [T (X )]−ϑ

Mean squared error (mse):

mseT (P) = E [T (X )−ϑ ]2 = [bT (P)]2 + Var(T (X )).

Bias and mse are two common criteria for the performance of point
estimators, i.e., instead of considering risk functions, we use bias and
mse to evaluate point estimators.

Read Example 2.26
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Hypothesis tests
To test the hypotheses

H0 : P ∈P0 versus H1 : P ∈P1,

there are two types of errors we may commit:
rejecting H0 when H0 is true (called the type I error)
and accepting H0 when H0 is wrong (called the type II error).

A test T : a statistic from X to {0,1}.

Probabilities of making two types of errors
Type I error rate:

αT (P) = P(T (X ) = 1) P ∈P0

Type II error rate:

1−αT (P) = P(T (X ) = 0) P ∈P1,

αT (P) is also called the power function of T
Power function is αT (θ) if P is in a parametric family indexed by θ .

UW-Madison (Statistics) Stat 709 Lecture 13 2018 14 / 18



beamer-tu-logo

Remarks
Note that these are risks of T under the 0-1 loss in statistical
decision theory.
Type I and type II error probabilities cannot be minimized
simultaneously.
These two error probabilities cannot be bounded simultaneously
by a fixed α ∈ (0,1) when we have a sample of a fixed size.

Significance tests
A common approach of finding an “optimal" test is to assign a small
bound α to the type I error rate αT (P), P ∈P0, and then to attempt to
minimize the type II error rate 1−αT (P), P ∈P1, subject to

sup
P∈P0

αT (P)≤ α. (2)

The bound α is called the level of significance.
The left-hand side of (2) is called the size of the test T .
The level of significance should be positive, otherwise no test satisfies
(2) except the silly test T (X )≡ 0 a.s. P.
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Confidence sets
ϑ : a k -vector of unknown parameters related to the unknown P ∈P

If a Borel set C(X ) (in the range of ϑ ) depending only on the sample X
such that

inf
P∈P

P(ϑ ∈ C(X ))≥ 1−α, (3)

where α is a fixed constant in (0,1), then C(X ) is called a confidence
set for ϑ with level of significance 1−α.
The left-hand side of (3) is called the confidence coefficient of C(X ),
which is the highest possible level of significance for C(X ).
A confidence set is a random element that covers the unknown ϑ with
certain probability.
If (3) holds, then the coverage probability of C(X ) is at least 1−α,
although C(x) either covers or does not cover ϑ whence we observe
X = x .
The concepts of level of significance and confidence coefficient are
very similar to the level of significance and size in hypothesis testing.
Confidence sets are closely related to hypothesis tests (Chapter 7).
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Example 2.32

Let X1, ...,Xn be i.i.d. from the N(µ,σ2) distribution with both µ ∈R and
σ2 > 0 unknown.
Let θ = (µ,σ2) and α ∈ (0,1) be given.
Let X̄ be the sample mean and S2 be the sample variance.
Since (X̄ ,S2) is sufficient (Example 2.15), we focus on C(X ) that is a
function of (X̄ ,S2).

From Example 2.18, X̄ and S2 are independent and (n−1)S2/σ2 has
the chi-square distribution χ2

n−1.
Since

√
n(X̄ −µ)/σ has the N(0,1) distribution,

P
(
−c̃α ≤

X̄ −µ

σ/
√

n
≤ c̃α

)
=
√

1−α,

where c̃α = Φ−1
(

1+
√

1−α

2

)
(verify).

Since the chi-square distribution χ2
n−1 is a known distribution, we can

always find two constants c1α and c2α such that
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Example 2.32 (continued)

P
(

c1α ≤
(n−1)S2

σ2 ≤ c2α

)
=
√

1−α.

Then

P
(
−c̃α ≤

X̄ −µ

σ/
√

n
≤ c̃α ,c1α ≤

(n−1)S2

σ2 ≤ c2α

)
= 1−α,

or

P
(

n(X̄ −µ)2

c̃2
α

≤ σ
2,

(n−1)S2

c2α

≤ σ
2 ≤ (n−1)S2

c1α

)
= 1−α. (4)

The left-hand side of (4) defines a set in the range of θ = (µ,σ2)
bounded by two straight lines, σ2 = (n−1)S2/ciα , i = 1,2, and a curve
σ2 = n(X̄ −µ)2/c̃2

α (see the shadowed part of Figure 2.3).
This set is a confidence set for θ with confidence coefficient 1−α,
since (4) holds for any θ .
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