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Lecture 14: Inference and asymptotic approach
Example 2.28

Let X1, ...,Xn be i.i.d. from the N(µ,σ2) distribution with an unknown
µ ∈R and a known σ2.
Consider the hypotheses H0 : µ ≤ µ0 versus H1 : µ > µ0, where µ0 is a
fixed constant.
Since the sample mean X̄ is sufficient for µ ∈R, it is reasonable to
consider the following class of tests: Tc(X ) = I(c,∞)(X̄ ), i.e., H0 is
rejected (accepted) if X̄ > c (X̄ ≤ c), where c ∈R is a fixed constant.
Let Φ be the c.d.f. of N(0,1).
By the property of the normal distributions,

αTc (µ) = P(Tc(X ) = 1) = 1−Φ

(√
n(c−µ)

σ

)
.

Figure 2.2 provides an example of a graph of two types of error
probabilities, with µ0 = 0.
Since Φ(t) is an increasing function of t ,
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sup
P∈P0

αTc (µ) = 1−Φ

(√
n(c−µ0)

σ

)
.

In fact, it is also true that

sup
P∈P1

[1−αTc (µ)] = Φ

(√
n(c−µ0)

σ

)
.

If we would like to use an α as the level of significance, then the most
effective way is to choose a cα (a test Tcα

(X )) such that

α = sup
P∈P0

αTcα
(µ),

in which case cα must satisfy

1−Φ

(√
n(cα −µ0)

σ

)
= α,

i.e., cα = σz1−α/
√

n + µ0, where za = Φ−1(a).
In Chapter 6, it is shown that for any test T (X ) satisfying
supP∈P0

αT (P)≤ α,

1−αT (µ)≥ 1−αTcα
(µ), µ > µ0.
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Choice of significance level
The choice of a level of significance α is usually somewhat
subjective.
In most applications there is no precise limit to the size of T that
can be tolerated.
Standard values, 0.10, 0.05, and 0.01, are often used for
convenience.
For most tests satisfying supP∈P0

αT (P)≤ α, a small α leads to a
“small" rejection region.

p-value
It is good practice to determine not only whether H0 is rejected for a
given α and a chosen test Tα , but also the smallest possible level of
significance at which H0 would be rejected for the computed Tα (x),
i.e.,

α̂ = inf{α ∈ (0,1) : Tα (x) = 1}.
Such an α̂, which depends on x and the chosen test and is a statistic,
is called the p-value for the test Tα .
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Example 2.29
Let us calculate the p-value for Tcα

in Example 2.28.
Note that

α = 1−Φ

(√
n(cα −µ0)

σ

)
> 1−Φ

(√
n(x̄−µ0)

σ

)
if and only if x̄ > cα (or Tcα

(x) = 1).
Hence

1−Φ

(√
n(x̄−µ0)

σ

)
= inf{α ∈ (0,1) : Tcα

(x) = 1}= α̂(x)

is the p-value for Tcα
.

It turns out that Tcα
(x) = I(0,α)(α̂(x)).

Remarks
With the additional information provided by p-values, using
p-values is typically more appropriate than using fixed-level tests
in a scientific problem.
In some cases, a fixed level of significance is unavoidable when
acceptance or rejection of H0 is a required decision.
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Randomized tests
In Example 2.28, supP∈P0

αT (P) = α can always be achieved by a
suitable choice of c.
This is, however, not true in general.
We need to consider randomized tests.
Recall that a randomized decision rule is a probability measure δ (x , ·)
on the action space for any fixed x .
Since the action space contains only two points, 0 and 1, for a
hypothesis testing problem, any randomized test δ (X ,A) is equivalent
to a statistic T (X ) ∈ [0,1] with T (x) = δ (x ,{1}) and
1−T (x) = δ (x ,{0}).
A nonrandomized test is obviously a special case where T (x) does not
take any value in (0,1).
For any randomized test T (X ), we define the type I error probability to
be αT (P) = E [T (X )], P ∈P0, and the type II error probability to be
1−αT (P) = E [1−T (X )], P ∈P1.
For a class of randomized tests, we would like to minimize 1−αT (P)
subject to supP∈P0

αT (P) = α.
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Example 2.30
Assume that the sample X has the binomial distribution Bi(θ ,n) with
an unknown θ ∈ (0,1) and a fixed integer n > 1.
Consider the hypotheses H0 : θ ∈ (0,θ0] versus H1 : θ ∈ (θ0,1), where
θ0 ∈ (0,1) is a fixed value.
Consider the following class of randomized tests:

Tj ,q(X ) =


1 X > j
q X = j
0 X < j ,

where j = 0,1, ...,n−1 and q ∈ [0,1].

αTj ,q (θ) = P(X > j) + qP(X = j) 0 < θ ≤ θ0

1−αTj ,q (θ) = P(X < j) + (1−q)P(X = j) θ0 < θ < 1.

It can be shown that for any α ∈ (0,1), there exist an integer j and
q ∈ (0,1) such that the size of Tj ,q is α.
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Asymptotic approach

In decision theory and inference, a key is to find moments and/or
distributions of various statistics, which is difficult in general.
When the sample size n is large, we may approximate the
moments and distributions of statistics by those of the limiting
distributions using the asymptotic tools discussed in §1.5, which
leads to some asymptotic statistical procedures and asymptotic
criteria for assessing performances.
The asymptotic approach also provides a simpler solution (e.g., in
computation) and requires less stringent model/loss assumption
that itself is an approximation, as for a large sample, the statistical
properties is less dependent on the loss functions and models.
A major weakness of the asymptotic approach is that typically we
don’t know whether a particular n in a problem is large enough.
To overcome this difficulty, asymptotic results are often used with
some numerical/empirical studies for selected values of n to
examine the finite sample performance of asymptotic procedures.
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Definition 2.10 (Consistency of point estimators)
Let X = (X1, ...,Xn) be a sample from P ∈P, Tn(X ) be an estimator of
ϑ for every n, and {an} be a sequence of positive constants, an→ ∞.

(i) Tn(X ) is consistent for ϑ iff Tn(X )→p ϑ w.r.t. any P.
(ii) Tn(X ) is an-consistent for ϑ iff an[Tn(X )−ϑ ] = Op(1) w.r.t. any P.
(iii) Tn(X ) is strongly consistent for ϑ iff Tn(X )→a.s. ϑ w.r.t. any P.
(iv) Tn(X ) is Lr -consistent for ϑ iff Tn(X )→Lr ϑ w.r.t. any P for some

fixed r > 0; if r = 2, L2-consistency is called consistency in mse.

Consistency is actually a concept relating to a sequence of
estimators, {Tn}, but we just say “consistency of Tn" for simplicity.
Each of the four types of consistency in Definition 2.10 describes
the convergence of Tn(X ) to ϑ in some sense, as n→ ∞.
A reasonable point estimator is expected to perform better, at
least on the average, if more data (larger n) are available.
Although the estimation error of Tn for a fixed n may never be 0, it
is distasteful to use Tn which, if sampling were to continue
indefinitely, could still have a nonzero estimation error.
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Methods of proving consistency
One or a combination of the WLLN, the CLT, Slutsky’s theorem, and
the continuous mapping theorem (Theorems 1.10 and 1.12) can
typically be applied to establish consistency of point estimators.
For example, X̄ is consistent for population mean µ (SLLN), and g(X̄ 2)
is consistent for g(µ) for any continuous function g.

Example 2.34
Let X1, ...,Xn be i.i.d. from an unknown P with a continuous c.d.f. F
satisfying F (θ) = 1 for some θ ∈R and F (x) < 1 for any x < θ .
Consider the largest order statistic X(n) as an estimator of θ .
For any ε > 0, F (θ − ε) < 1 and

P(|X(n)−θ | ≥ ε) = P(X(n) ≤ θ − ε) = [F (θ − ε)]n ,

which imply (according to Theorem 1.8(v)) X(n)→a.s. θ , i.e., X(n) is
strongly consistent for θ .
If we assume that F (i)(θ−), the i th-order left-hand derivative of F at θ ,
exists and vanishes for any i ≤m and that F (m+1)(θ−) exists and is
nonzero, where m is a nonnegative integer, then
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Example 2.34 (continued)

1−F (X(n)) =
(−1)mF (m+1)(θ−)

(m + 1)!
(θ −X(n))m+1 + o

(
|θ −X(n)|m+1

)
a.s.

This result and the fact that P
(
n[1−F (X(n))]≥ s

)
= (1−s/n)n imply

that (θ −X(n))m+1 = Op(n−1), i.e., X(n) is n(m+1)−1
-consistent.

If m = 0, then X(n) is n-consistent; if m = 1, then X(n) is
√

n-consistent.
The limiting distribution of n(m+1)−1

(X(n)−θ) can be derived as follows.
Let

hn(θ) =

[
(−1)m(m + 1)!

nF (m+1)(θ−)

](m+1)−1

.

For t ≤ 0, by Slutsky’s theorem,

lim
n→∞

P
(

X(n)−θ

hn(θ)
≤ t
)

= lim
n→∞

P

([
θ −X(n)

hn(θ)

]m+1

≥ (−t)m+1

)
= lim

n→∞
P
(

n[1−F (X(n))]≥ (−t)m+1
)

= lim
n→∞

[
1− (−t)m+1/n

]n
= e−(−t)m+1

.
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Consistency is an essential requirement
Like the admissibility, consistency is an essential requirement: any
inconsistent estimators should not be used, but there are many
consistent estimators and some may not be good.
Thus, consistency should be used together with other criteria.

Approximate and asymptotic bias
Unbiasedness is a criterion for point estimators (§2.3.2).
In some cases, however, there is no unbiased estimator.
Furthermore, having a “slight" bias in some cases may not be a
bad idea.
For a point estimator Tn(X ) of ϑ if E(Tn) exists for every n and
limn→∞ E(Tn−ϑ) = 0 for any P ∈P, then Tn is said to be
approximately unbiased.
There are many reasonable point estimators whose expectations
are not well defined.
It is desirable to define a concept of asymptotic bias for point
estimators whose expectations are not well defined.
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Definition 2.11
(i) Let ξ ,ξ1,ξ2, ... be random variables and {an} be a sequence of

positive numbers satisfying an→ ∞ or an→ a > 0.
If anξn→d ξ and E |ξ |< ∞, then Eξ/an is called an asymptotic
expectation of ξn.

(ii) For a point estimator Tn of ϑ , an asymptotic expectation of Tn−ϑ ,
if it exists, is called an asymptotic bias of Tn and denoted by
b̃Tn (P) (or b̃Tn (θ) if P is in a parametric family).
If limn→∞ b̃Tn (P) = 0 for any P, then Tn is asymptotically unbiased.

Like the consistency, the asymptotic expectation (or bias) is a concept
relating to sequences {ξn} and {Eξ/an} (or {Tn} and {b̃Tn (P)}).

Proposition 2.3 (asymptotic expectation is essentially unique)
For a sequence of random variables {ξn}, suppose both Eξ/an and
Eη/bn are asymptotic expectations of ξn defined by Definition 2.11(i).
Then, one of the following three must hold:
(a) Eξ = Eη = 0;
(b) Eξ 6= 0, Eη = 0, and bn/an→ 0;
(c) Eξ 6= 0, Eη 6= 0, and (Eξ/an)/(Eη/bn)→ 1.
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If Tn is consistent for ϑ , then Tn = ϑ + op(1) and Tn is asymptotically
unbiased, although Tn may not be approximately unbiased.

Precise order of asymptotic bias

When an(Tn−ϑ)→d Y with EY = 0 (e.g., Tn = X̄ 2 and ϑ = µ2 in
Example 2.33), the asymptotic bias of Tn is 0.
A more precise order of the asymptotic bias of Tn may be obtained (for
comparing different estimators in terms of their asymptotic biases).
In Example 2.34, X(n) has the asymptotic bias b̃X(n)

(P) = hn(θ)EY ,

which is of order n−(m+1)−1
.

Suppose that there is a sequence of random variables {ηn} such that

anηn→d Y and a2
n(Tn−ϑ −ηn)→d W ,

where Y and W are random variables with EY = 0 and EW 6= 0.
Then we may define a−2

n to be the order of b̃Tn (P) or define EW/a2
n to

be the a−2
n order asymptotic bias of Tn.

However, ηn may not be unique: some conditions have to be imposed
so that the order of asymptotic bias of Tn can be uniquely defined.
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Functions of sample means
We consider the case where X1, ...,Xn are i.i.d. random k -vectors with
finite Σ = Var(X1), Tn = g(X̄ ), where X̄ = n−1

∑
n
i=1 Xi and g is a

function on Rk that is second-order differentiable at µ = EX1 ∈Rk .
Consider Tn as an estimator of ϑ = g(µ).
By Taylor’s expansion,

Tn−ϑ = [∇g(µ)]τ (X̄ −µ) + 2−1(X̄ −µ)τ
∇

2g(µ)(X̄ −µ) + op(n−1),

where ∇g is the k -vector of partial derivatives of g and ∇2g is the k ×k
matrix of second-order partial derivatives of g.
By the CLT and Theorem 1.10(iii),

2−1n(X̄ −µ)τ
∇

2g(µ)(X̄ −µ)→d 2−1Z τ

Σ∇
2g(µ)ZΣ,

where ZΣ = Nk (0,Σ).
Thus,

E [Z τ

Σ∇2g(µ)ZΣ]

2n
=

tr
(
∇2g(µ)Σ

)
2n

is the n−1 order asymptotic bias of Tn = g(X̄ ), where tr(A) denotes the
trace of the matrix A.
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Example 2.35
Let X1, ...,Xn be i.i.d. binary random variables with P(Xi = 1) = p,
where p ∈ (0,1) is unknown.
Consider first the estimation of ϑ = p(1−p).
Since Var(X̄ ) = p(1−p)/n, the n−1 order asymptotic bias of
Tn = X̄ (1− X̄ ) according to the formula tr

(
∇2g(µ)Σ

)
/2n with

g(x) = x(1−x) is −p(1−p)/n.
On the other hand, a direct computation shows
E [X̄ (1− X̄ )] = EX̄ −EX̄ 2 = p−(EX̄ )2− Var(X̄ ) = p(1−p)−p(1−p)/n.
The exact bias of Tn is the same as the n−1 order asymptotic bias.
Consider next the estimation of ϑ = p−1.
There is no unbiased estimator of p−1 (Exercise 84 in §2.6).
Let Tn = X̄−1.
Then, an n−1 order asymptotic bias of Tn according to the formula
tr
(
∇2g(µ)Σ

)
/2n with g(x) = x−1 is (1−p)/(p2n).

On the other hand, ETn = ∞ for every n.
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Like the bias, the mse of an estimator Tn of ϑ , mseTn (P) = E(Tn−ϑ)2,
is not well defined if the second moment of Tn does not exist.
We now define a version of asymptotic mean squared error (amse)
and a measure of assessing different estimators of a parameter.

Definition 2.12 (asymptotic variance and amse)
Let Tn be an estimator of ϑ for every n and {an} be a sequence of
positive numbers satisfying an→ ∞ or an→ a > 0.
Assume that an(Tn−ϑ)→d Y with 0 < EY 2 < ∞.

(i) The asymptotic mean squared error of Tn, denoted by amseTn (P)
or amseTn (θ) if P is in a parametric family indexed by θ , is defined
as the asymptotic expectation of (Tn−ϑ)2, amseTn (P) = EY 2/a2

n.
The asymptotic variance of Tn is defined as σ2

Tn
(P) = Var(Y )/a2

n.
(ii) Let T ′n be another estimator of ϑ .

The asymptotic relative efficiency of T ′n w.t.r. Tn is defined as
eT ′n,Tn (P) = amseTn (P)/amseT ′n (P).

(iii) Tn is said to be asymptotically more efficient than T ′n iff
limsupn eT ′n,Tn (P)≤ 1 for any P and < 1 for some P.
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The amse and asymptotic variance are the same iff EY = 0.
In Example 2.33, amseX̄ 2(P) = σ2

X̄ 2(P) = 4µ2σ2/n.
In Example 2.34, σ2

X(n)
(P) = [hn(θ)]2 Var(Y ),

amseX(n)
(P) = [hn(θ)]2EY 2.

When both mseTn (P) and mseT ′n (P) exist, one may compare Tn and T ′n
by evaluating the relative efficiency mseTn (P)/mseT ′n (P).
However, this comparison may be different from the one using the
asymptotic relative efficiency in Definition 2.12(ii) (Exercise 115).
The following result shows that when the exact mse of Tn exists, it is
no smaller than the amse of Tn, and when they are the same.

Proposition 2.4
Let Tn be an estimator of ϑ for every n and {an} be a sequence of
positive numbers satisfying an→ ∞ or an→ a > 0.
If an(Tn−ϑ)→d Y with 0 < EY 2 < ∞, then

(i) EY 2 ≤ liminfn E [a2
n(Tn−ϑ)2] and

(ii) EY 2 = limn→∞ E [a2
n(Tn−ϑ)2] if and only if {a2

n(Tn−ϑ)2} is
uniformly integrable.

UW-Madison (Statistics) Stat 709 Lecture 14 2018 17 / 18



beamer-tu-logo

Example 2.36
Let X1, ...,Xn be i.i.d. from the Poisson distribution P(θ) with an
unknown θ > 0.
Consider the estimation of ϑ = P(Xi = 0) = e−θ .
Let T1n = Fn(0), where Fn is the empirical c.d.f.
Then T1n is unbiased and has mseT1n (θ) = e−θ (1−e−θ )/n.
Also,

√
n(T1n−ϑ)→d N(0,e−θ (1−e−θ )) by the CLT.

Thus, in this case amseT1n (θ) = mseT1n (θ).

Consider T2n = e−X̄ .
Note that ET2n = enθ(e−1/n−1).
Hence nbT2n (θ)→ θe−θ/2.
Using Theorem 1.12 and the CLT, we can show that√

n(T2n−ϑ)→d N(0,e−2θ θ).
By Definition 2.12(i), amseT2n (θ) = e−2θ θ/n.
Thus, the asymptotic relative efficiency of T1n w.r.t. T2n is

eT1n,T2n (θ) = θ/(eθ −1) < 1

This shows that T2n is asymptotically more efficient than T1n.
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