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Chapter 3: Unbiased Estimation
Lecture 15: UMVUE: functions of sufficient and
complete statistics
Unbiased estimation
Unbiased or asymptotically unbiased estimation plays an important
role in point estimation theory.
Unbiased estimators can be used as “building blocks" for the
construction of better estimators.
Asymptotic unbiasedness is necessary for consistency.
Our main focus:

How to derive unbiased estimators
How to find the best unbiased estimators

X : a sample from an unknown population P ∈P.
ϑ : a real-valued parameter related to P.
An estimator T (X ) of ϑ is unbiased iff E [T (X )] = ϑ for any P ∈P.
If there exists an unbiased estimator of ϑ , then ϑ is called an
estimable parameter.
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Definition 3.1 (UMVUE)
An unbiased estimator T (X ) of ϑ is called the uniformly minimum
variance unbiased estimator (UMVUE) iff Var(T (X ))≤ Var(U(X )) for
any P ∈P and any other unbiased estimator U(X ) of ϑ .

Remarks
Since the mse of any unbiased estimator is its variance, a UMVUE
is ℑ-optimal in mse with ℑ being the class of all unbiased
estimators.
One can similarly define the uniformly minimum risk unbiased
estimator in statistical decision theory when we use an arbitrary
loss instead of the squared error loss that corresponds to the mse.

Sufficient and complete statistics
The derivation of a UMVUE is relatively simple if there exists a
sufficient and complete statistic for P ∈P.
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Theorem 3.1 (Lehmann-Scheffé theorem)
Suppose that there exists a sufficient and complete statistic T (X ) for
P ∈P.
If ϑ is estimable, then there is a unique unbiased estimator of ϑ that is
of the form h(T ) with a Borel function h.
Furthermore, h(T ) is the unique UMVUE of ϑ .
(Two estimators that are equal a.s. P are treated as one estimator.)

Remarks
This theorem is a consequence of Theorem 2.5(ii) (Rao-Blackwell
theorem).
One can easily extend this theorem to the case of the uniformly
minimum risk unbiased estimator under any loss function L(P,a)
that is strictly convex in a.
The uniqueness of the UMVUE follows from the completeness of
T (X ).

There are two typical ways to derive a UMVUE when a sufficient and
complete statistic T is available.
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The first method: Directly solving for h
Need the distribution of T
Try some function h to see if E [h(T )] is related to ϑ

If E [h(T )] = ϑ for all P, what should h be?

Example 3.1
Let X1, ...,Xn be i.i.d. from the uniform distribution on (0,θ), θ > 0.
Consider ϑ = θ .
Since the sufficient and complete statistic X(n) has the Lebesgue p.d.f.
nθ−nxn−1I(0,θ)(x),

EX(n) = nθ
−n
∫

θ

0
xndx =

n
n + 1

θ .

An unbiased estimator of θ is (n + 1)X(n)/n, which is the UMVUE.
Consider now ϑ = g(θ), where g is a differentiable function on (0,∞).
An unbiased estimator h(X(n)) of ϑ must satisfy

θ
ng(θ) = n

∫
θ

0
h(x)xn−1dx for all θ > 0.

UW-Madison (Statistics) Stat 709 Lecture 15 2018 4 / 16



beamer-tu-logo

Example 3.1 (continued)
Differentiating both sizes of the previous equation and applying the
result of differentiation of an integral (Royden (1968, §5.3)) lead to

nθ
n−1g(θ) + θ

ng′(θ) = nh(θ)θ
n−1.

Hence, the UMVUE of ϑ is

h(X(n)) = g(X(n)) + n−1X(n)g′(X(n)).

In particular, if ϑ = θ , then the UMVUE of θ is (1 + n−1)X(n).

Example 3.2
Let X1, ...,Xn be i.i.d. from the Poisson distribution P(θ) with an
unknown θ > 0.
T (X ) = ∑

n
i=1 Xi is sufficient and complete for θ > 0 and has the

Poisson distribution P(nθ).
Since E(T ) = nθ , the UMVUE of θ is T/n.
Suppose that ϑ = g(θ), where g is a smooth function such that
g(x) = ∑

∞

j=0 ajx j , x > 0.
An unbiased estimator h(T ) of ϑ must satisfy (for any θ > 0):
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Example 3.2 (continued)
∞

∑
t=0

h(t)nt

t!
θ

t = enθ g(θ)

=
∞

∑
k=0

nk

k !
θ

k
∞

∑
j=0

ajθ
j

=
∞

∑
t=0

(
∑

j ,k :j+k=t

nkaj

k !

)
θ

t .

Thus, a comparison of coefficients in front of θ t leads to

h(t) =
t!
nt ∑

j ,k :j+k=t

nkaj

k !
,

i.e., h(T ) is the UMVUE of ϑ .
In particular, if ϑ = θ r for some fixed integer r ≥ 1, then ar = 1 and
ak = 0 if k 6= r and

h(t) =

{
0 t < r

t!
nr (t−r)! t ≥ r
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Example 3.5
Let X1, ...,Xn be i.i.d. from a power series distribution (see Exercise 13
in §2.6), i.e.,

P(Xi = x) = γ(x)θ
x/c(θ), x = 0,1,2, ...,

with a known function γ(x)≥ 0 and an unknown parameter θ > 0.

It turns out that the joint distribution of X = (X1, ...,Xn) is in an
exponential family with a sufficient and complete statistic
T (X ) = ∑

n
i=1 Xi .

Furthermore, the distribution of T is also in a power series family, i.e.,

P(T = t) = γn(t)θ
t/[c(θ)]n, t = 0,1,2, ...,

where γn(t) is the coefficient of θ t in the power series expansion of
[c(θ)]n (Exercise 13 in §2.6).

This result can help us to find the UMVUE of ϑ = g(θ).
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Example 3.5 (continued)
For example, by comparing both sides of

∞

∑
t=0

h(t)γn(t)θ
t = [c(θ)]n−p

θ
r ,

we conclude that the UMVUE of θ r/[c(θ)]p is

h(T ) =

{
0 T < r
γn−p(T−r)

γn(T ) T ≥ r ,

where r and p are nonnegative integers.

In particular, the case of p = 1 produces the UMVUE γ(r)h(T ) of the
probability

P(X1 = r) = γ(r)θ
r/c(θ)

for any nonnegative integer r .
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Example 3.6
Let X1, ...,Xn be i.i.d. from an unknown population P in a
nonparametric family P.
We have discussed in §2.2 that in many cases the vector of order
statistics, T = (X(1), ...,X(n)), is sufficient and complete for P ∈P.
(For example, P is the collection of all Lebesgue p.d.f.’s.)
Note that an estimator ϕ(X1, ...,Xn) is a function of T iff the function ϕ

is symmetric in its n arguments.
Hence, if T is sufficient and complete, then a symmetric unbiased
estimator of any estimable ϑ is the UMVUE.

Specific examples

X̄ is the UMVUE of ϑ = EX1;
S2 is the UMVUE of Var(X1);
n−1

∑
n
i=1 X 2

i −S2 is the UMVUE of (EX1)2;
Fn(t) is the UMVUE of P(X1 ≤ t) for any fixed t .
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Example 3.6 (continued)
The previous conclusions are not true if T is not sufficient and
complete for P ∈P.

Claim
For example, if n > 2 and P contains all symmetric distributions
having Lebesgue p.d.f.’s and finite means, then there is no UMVUE for
µ = EX1.

Proof
Suppose that T is a UMVUE of µ.
Let P1 = {N(µ,1) : µ ∈R}.
Since the sample mean X̄ is UMVUE when P1 is considered, and the
Lebesgue measure is dominated by any P ∈P1, we conclude that
T = X̄ a.e. Lebesgue measure.
Let P2 be the family of uniform distributions on (θ1−θ2,θ1 + θ2),
θ1 ∈R, θ2 > 0.
Then (X(1) + X(n))/2 is the UMVUE when P2 is considered, where X(j)
is the j th order statistic.
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Proof (continued)

Then X̄ = (X(1) + X(n))/2 a.s. P for any P ∈P2, which is impossible if
n > 2.
Hence, there is no UMVUE of µ.

What if n = 1?
Consider the sub-family P1 = {N(µ,1) : µ ∈R}.
X1 is complete for P ∈P1.
Since P is dominated by P1, X1 is complete for P ∈P.
X1 is sufficient for P ∈P.
Thus, X1 is the UMVUE of µ.

What if n = 2?
T = (X(1),X(2)) is complete for P ∈P2.
Since P is dominated by P2, T is complete for P ∈P.
T is also sufficient for P ∈P.
Thus, X̄ = (X1 + X2)/2 = (X(1) + X(2))/2 is the UMVUE of µ.
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Survey samples from a finite population
Let P = {1, ...,N} be a finite population of interest

For each i ∈P, let yi be a value of interest associated with unit i

Let s = {i1, ..., in} be a subset of distinct elements of P, which is a
sample selected with selection probability p(s), where p is known
(sampling plan or sampling design).

The value yi is observed if and only if i ∈ s

If p(s) is constant, the sampling plan is called the simple random
sampling without replacement.

Consider the estimation of Y = ∑
N
i=1 yi , the population total as the

parameter of interest

Issues to study
How do we find an unbiased estimator of Y ? Is Y estimable?
Is there a UMVUE of Y under some conditions?
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UMVUE under simple random sampling without replacement
Let X = (Xi , i ∈ s) be the vector such that

P(X1 = yi1 , ...,Xn = yin ) = p(s)/n!

Let Y be the range of yi , θ = (y1, ...,yN) and Θ = ∏
N
i=1 Y .

Under simple random sampling without replacement, the population
under consideration is a parametric family indexed by θ ∈Θ.

Theorem 3.13 (Watson-Royall theorem)
(i) If p(s) > 0 for all s, then the vector of order statistics

X(1) ≤ ·· · ≤ X(n) is complete for θ ∈Θ.
(ii) Under simple random sampling without replacement, the vector of

order statistics is sufficient for θ ∈Θ.
(iii) Under simple random sampling without replacement, for any

estimable function of θ , its unique UMVUE is the unbiased
estimator g(X1, ...,Xn), where g is symmetric in its n arguments.
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Proof.
(i) Let h(X ) be a function of the order statistics.
Then h is symmetric in its n arguments.
We need to show that if

E [h(X )] = ∑
s={i1,...,in}⊂{1,...,N}

p(s)h
(
yi1 , ...,yin

)
/n! = 0 (1)

for all θ ∈Θ, then h(yi1 , ...,yin ) = 0 for all yi1 , ...,yin .
First, suppose that all N elements of θ are equal to a ∈ Y .
Then (1) implies h(a, ...,a) = 0.
Next, suppose that N−1 elements in θ are equal to a and one is b > a.
Then (1) reduces to

q1h(a, ...,a) + q2h(a, ...,a,b),

where q1 and q2 are some known numbers in (0,1).
Since h(a, ...,a) = 0 and q2 6= 0, h(a, ...,a,b) = 0.
Using the same argument, we can show that h(a, ...,a,b, ...,b) = 0 for
any k a’s and n−k b’s.
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Suppose next that elements of θ are equal to a, b, or c, a < b < c.
Then we can show that h(a, ...,a,b, ...,b,c, ...,c) = 0 for any k a’s, l b’s,
and n−k − l c’s.
Continuing inductively, we see that h(y1, ...,yn) = 0 for all possible
y1, ...,yn.
This completes the proof of (i).

(ii) The result follows from the factorization theorem (Theorem 2.2), the
fact that p(s) is constant under simple random sampling, and

P(X1 = yi1 , ...,Xn = yin ) = P(X(1) = y(i1), ...,X(n) = y(in))/n!,

where y(i1) ≤ ·· · ≤ y(in) are the ordered values of yi1 , ...,yin .

(iii) The result follows directly from (i) and (ii).

Remark
Although we have a parametric problem under simple random
sampling, the sufficient and complete statistic is the same as that
in a nonparametric problem (Example 2.17).
For the completeness of the order statistics, we do not need the
assumption of simple random sampling.
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Example 3.19.
Under simple random sampling without replacement, we now show

E(X̄ ) = Y/N = Ȳ

i.e., the sample mean X̄ is unbiased for the population mean Ȳ .
To show this, note that every unit i appears in the same number of
samples, i.e.,

E(X1 + · · ·+ Xn) =

(
N
n

)−1

∑
all s

∑
i∈s

yi

= c(y1 + · · ·+ yN)

= cY

This holds for all yj ’s, hence it holds when y1 = y2 = · · ·= yN = 1, in
which case the left hand side = n and the right hand side = N.

Hence, we must have c = n/N.

Since X̄ is symmetric in its arguments, it is the UMVUE of Ȳ .
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