Application

- One or a series of random experiments is performed.
- Some data from the experiment(s) are collected.
- Planning experiments and collecting data (not discussed in the textbook).
- Data analysis: extract information from the data, interpret the results, and draw some conclusions.

Descriptive data analysis

- Summary measures of the data, such as the mean, median, range, standard deviation, etc., and some graphical displays, such as the histogram and box-and-whisker diagram, etc.
- It is simple and requires almost no assumptions, but may not allow us to gain enough insight into the problem.
Application

- One or a series of random experiments is performed.
- Some data from the experiment(s) are collected.
- Planning experiments and collecting data (not discussed in the textbook).
- Data analysis: extract information from the data, interpret the results, and draw some conclusions.

Descriptive data analysis

- Summary measures of the data, such as the mean, median, range, standard deviation, etc., and some graphical displays, such as the histogram and box-and-whisker diagram, etc.
- It is simple and requires almost no assumptions, but may not allow us to gain enough insight into the problem.
We focus on more sophisticated methods of analyzing data: *statistical inference* and *decision theory*.

The data set is a realization of a random element defined on a probability space \((\Omega, \mathcal{F}, P)\).

*\(P\) is called the *population*.

The data set or the random element that produces the data is called a *sample* from *\(P\)*.

The size of the data set is called the *sample size*.

Our task

- A population *\(P\)* is *known* iff *\(P(A)\)* is a known value for every event *\(A \in \mathcal{F}\).*
- In a statistical problem, the population *\(P\)* is at least partially unknown.
- We would like to deduce some properties of *\(P\)* based on the available sample.
We focus on more sophisticated methods of analyzing data: *statistical inference* and *decision theory*. The data set is a realization of a random element defined on a probability space \((\Omega, \mathcal{F}, P)\).

P is called the *population*. The data set or the random element that produces the data is called a *sample* from *P*. The size of the data set is called the *sample size*.

A population *P* is *known* iff \(P(A)\) is a known value for every event \(A \in \mathcal{F}\). In a statistical problem, the population *P* is at least partially unknown. We would like to deduce some properties of *P* based on the available sample.
Read Examples 2.1-2.3

Statistical model

- A **statistical model** is a set of assumptions on the population P and is often postulated to make the analysis possible or easy.
- Postulated models are often based on knowledge of the problem under consideration.

Definition 2.1

A set of probability measures P_{θ} on (Ω, \mathcal{F}) indexed by a **parameter** $\theta \in \Theta$ is said to be a **parametric family** iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d and each P_{θ} is a known probability measure when θ is known.

The set Θ is called the **parameter space** and d is called its **dimension**.

Parametric model

The population P is in a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$.
Statistical model

- A statistical model is a set of assumptions on the population P and is often postulated to make the analysis possible or easy.
- Postulated models are often based on knowledge of the problem under consideration.

Definition 2.1

A set of probability measures P_θ on (Ω, \mathcal{F}) indexed by a parameter $\theta \in \Theta$ is said to be a parametric family iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d and each P_θ is a known probability measure when θ is known.

The set Θ is called the parameter space and d is called its dimension.

Parametric model

The population P is in a parametric family $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$.
A *statistical model* is a set of assumptions on the population P and is often postulated to make the analysis possible or easy. Postulated models are often based on knowledge of the problem under consideration.

Definition 2.1

A set of probability measures P_θ on (Ω, \mathcal{F}) indexed by a parameter $\theta \in \Theta$ is said to be a *parametric family* iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d and each P_θ is a known probability measure when θ is known. The set Θ is called the *parameter space* and d is called its *dimension*.
Statistical model

- A *statistical model* is a set of assumptions on the population P and is often postulated to make the analysis possible or easy.
- Postulated models are often based on knowledge of the problem under consideration.

Definition 2.1

A set of probability measures P_{θ} on (Ω, \mathcal{F}) indexed by a *parameter* $\theta \in \Theta$ is said to be a *parametric family* iff $\Theta \subset \mathbb{R}^d$ for some fixed positive integer d and each P_{θ} is a *known* probability measure when θ is known.

The set Θ is called the *parameter space* and d is called its *dimension*.

Parametric model

The population P is in a parametric family $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$
Terminology

- \(\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \) is *identifiable* iff \(\theta_1 \neq \theta_2 \) and \(\theta_i \in \Theta \) imply \(P_{\theta_1} \neq P_{\theta_2} \).

- In most cases an identifiable parametric family can be obtained through reparameterization.

- A family of populations \(\mathcal{P} \) is dominated by \(\nu \) (a \(\sigma \)-finite measure) if \(P \ll \nu \) for all \(P \in \mathcal{P} \).

- \(\mathcal{P} \) can be identified by the family of densities \(\left\{ \frac{dP}{d\nu} : P \in \mathcal{P} \right\} \) or \(\left\{ \frac{dP_\theta}{d\nu} : \theta \in \Theta \right\} \).

Parametric methods

Methods designed for parametric models

Nonparametric family

\(\mathcal{P} \) is not parametric according to Definition 2.1.

A nonparametric model

The population \(\mathcal{P} \) is in a given nonparametric family.
Terminology

- $\mathcal{P} = \{ P_\theta : \theta \in \Theta \}$ is identifiable iff $\theta_1 \neq \theta_2$ and $\theta_i \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$.
- In most cases an identifiable parametric family can be obtained through reparameterization.
- A family of populations \mathcal{P} is dominated by ν (a σ-finite measure) if $P \ll \nu$ for all $P \in \mathcal{P}$.
- \mathcal{P} can be identified by the family of densities $\{ \frac{dP}{d\nu} : P \in \mathcal{P} \}$ or $\{ \frac{dP_\theta}{d\nu} : \theta \in \Theta \}$.

Parametric methods

Methods designed for parametric models

Nonparametric family

\mathcal{P} is not parametric according to Definition 2.1.

A nonparametric model

The population \mathcal{P} is in a given nonparametric family.
Terminology

- \(\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \) is identifiable iff \(\theta_1 \neq \theta_2 \) and \(\theta_i \in \Theta \) imply \(P_{\theta_1} \neq P_{\theta_2} \).
- In most cases an identifiable parametric family can be obtained through reparameterization.
- A family of populations \(\mathcal{P} \) is dominated by \(\nu \) (a \(\sigma \)-finite measure) if \(P \ll \nu \) for all \(P \in \mathcal{P} \).
- \(\mathcal{P} \) can be identified by the family of densities \(\{ \frac{dP}{d\nu} : P \in \mathcal{P} \} \) or \(\{ \frac{dP_\theta}{d\nu} : \theta \in \Theta \} \).

Parametric methods

Methods designed for parametric models

Nonparametric family

\(\mathcal{P} \) is not parametric according to Definition 2.1.

A nonparametric model

The population \(\mathcal{P} \) is in a given nonparametric family.
Terminology

- $\mathcal{P} = \{ P_\theta : \theta \in \Theta \}$ is identifiable iff $\theta_1 \neq \theta_2$ and $\theta_i \in \Theta$ imply $P_{\theta_1} \neq P_{\theta_2}$.

- In most cases an identifiable parametric family can be obtained through reparameterization.

- A family of populations \mathcal{P} is dominated by ν (a σ-finite measure) if $P \ll \nu$ for all $P \in \mathcal{P}$

- \mathcal{P} can be identified by the family of densities $\{ \frac{dP}{d\nu} : P \in \mathcal{P} \}$ or $\{ \frac{dP_{\theta}}{d\nu} : \theta \in \Theta \}$.

Parametric methods

Methods designed for parametric models

Nonparametric family

\mathcal{P} is not parametric according to Definition 2.1.

A nonparametric model

The population \mathcal{P} is in a given nonparametric family.
Nonparametric methods

Methods designed for nonparametric models

Semi-parametric models and methods

Example (The \(k \)-dimensional normal family)

\[
\mathcal{P} = \{ N_k(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in \mathcal{M}_k \},
\]

where \(\mathcal{M}_k \) is a collection of \(k \times k \) symmetric positive definite matrices. This family is a parametric family dominated by the Lebesgue measure on \(\mathbb{R}^k \).

When \(k = 1 \), \(\mathcal{P} = \{ N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \} \).

Examples of nonparametric family on \((\mathbb{R}^k, \mathcal{B}^k)\)

- The joint c.d.f.’s are continuous.
- The joint c.d.f.’s have finite moments of order \(\leq \) a fixed integer.
- The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).
- \(k = 1 \) and the c.d.f.’s are symmetric.
- The family of all probability measures on \((\mathbb{R}^k, \mathcal{B}^k)\).
Nonparametric methods
Methods designed for nonparametric models

Semi-parametric models and methods

Example (The k-dimensional normal family)

$$P = \{ N_k(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in M_k \},$$

where M_k is a collection of $k \times k$ symmetric positive definite matrices. This family is a parametric family dominated by the Lebesgue measure on \mathbb{R}^k.

When $k = 1$, $P = \{ N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \}$.

Examples of nonparametric family on $(\mathbb{R}^k, \mathcal{B}^k)$

- The joint c.d.f.’s are continuous.
- The joint c.d.f.’s have finite moments of order \leq a fixed integer.
- The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).
- $k = 1$ and the c.d.f.’s are symmetric.
- The family of all probability measures on $(\mathbb{R}^k, \mathcal{B}^k)$.
Nonparametric methods
Methods designed for nonparametric models

Semi-parametric models and methods

Example (The k-dimensional normal family)

$$\mathcal{P} = \{N_k(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in \mathcal{M}_k\},$$

where \mathcal{M}_k is a collection of $k \times k$ symmetric positive definite matrices. This family is a parametric family dominated by the Lebesgue measure on \mathbb{R}^k.

When $k = 1$, $\mathcal{P} = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0\}$.

Examples of nonparametric family on $(\mathbb{R}^k, \mathcal{B}^k)$

- The joint c.d.f.’s are continuous.
- The joint c.d.f.’s have finite moments of order \leq a fixed integer.
- The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).
- $k = 1$ and the c.d.f.’s are symmetric.
- The family of all probability measures on $(\mathbb{R}^k, \mathcal{B}^k)$.
Nonparametric methods
Methods designed for nonparametric models

Semi-parametric models and methods

Example (The k-dimensional normal family)

$$\mathcal{P} = \{ N_k(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in \mathcal{M}_k \},$$
where \mathcal{M}_k is a collection of $k \times k$ symmetric positive definite matrices. This family is a parametric family dominated by the Lebesgue measure on \mathbb{R}^k.

When $k = 1$, $\mathcal{P} = \{ N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0 \}$.

Examples of nonparametric family on $(\mathbb{R}^k, \mathcal{B}^k)$

- The joint c.d.f.’s are continuous.
- The joint c.d.f.’s have finite moments of order \leq a fixed integer.
- The joint c.d.f.’s have p.d.f.’s (e.g., Lebesgue p.d.f.’s).
- $k = 1$ and the c.d.f.’s are symmetric.
- The family of all probability measures on $(\mathbb{R}^k, \mathcal{B}^k)$.
Statistics and their distributions

- Our data set is a realization of a sample (random vector) X from an unknown population P
- Statistic $T(X)$: A measurable function T of X; $T(X)$ is a known value whenever X is known.
- Statistical analyses are based on various statistics, for various purposes.
- X itself is a statistic, but it is a trivial statistic.
- The range of a nontrivial statistic $T(X)$ is usually simpler than that of X.
- For example, X may be a random n-vector and $T(X)$ may be a random p-vector with a p much smaller than n.
- $\sigma(T(X)) \subset \sigma(X)$ and the two σ-fields are the same iff T is one-to-one.
- Usually $\sigma(T(X))$ simplifies $\sigma(X)$, i.e., a statistic provides a “reduction” of the σ-field.
The “information” within a statistic

- The “information” within the statistic $T(X)$ concerning the unknown distribution of X is contained in the σ-field $\sigma(T(X))$.
- S is any other statistic for which $\sigma(S(X)) = \sigma(T(X))$. By Lemma 1.2, S is a measurable function of T, and T is a measurable function of S. Thus, once the value of S (or T) is known, so is the value of T (or S).
- It is not the particular values of a statistic that contain the information, but the generated σ-field of the statistic.
- Values of a statistic may be important for other reasons.

Distribution of a statistic

- A statistic $T(X)$ is a random element.
- If the distribution of X is unknown, then the distribution of T may also be unknown, although T is a known function.
The “information” within a statistic

- The “information” within the statistic $T(X)$ concerning the unknown distribution of X is contained in the σ-field $\sigma(T(X))$.
- S is any other statistic for which $\sigma(S(X)) = \sigma(T(X))$. By Lemma 1.2, S is a measurable function of T, and T is a measurable function of S.
- Thus, once the value of S (or T) is known, so is the value of T (or S).
- It is not the particular values of a statistic that contain the information, but the generated σ-field of the statistic.
- Values of a statistic may be important for other reasons.

Distribution of a statistic

- A statistic $T(X)$ is a random element.
- If the distribution of X is unknown, then the distribution of T may also be unknown, although T is a known function.
Distribution of a statistic

- Finding the form of the distribution of T is one of the major problems in statistical inference and decision theory.
- Since T is a transformation of X, tools we learn in Chapter 1 for transformations may be useful in finding the distribution or an approximation to the distribution of $T(X)$.

Example 2.8.

Let X_1, \ldots, X_n be i.i.d. random variables having a common distribution P and $X = (X_1, \ldots, X_n)$. The sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and the sample variance

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

are two commonly used statistics.
Distribution of a statistic

- Finding the form of the distribution of T is one of the major problems in statistical inference and decision theory.

- Since T is a transformation of X, tools we learn in Chapter 1 for transformations may be useful in finding the distribution or an approximation to the distribution of $T(X)$.

Example 2.8.

Let X_1, \ldots, X_n be i.i.d. random variables having a common distribution P and $X = (X_1, \ldots, X_n)$.

The sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and the sample variance

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

are two commonly used statistics.
Example 2.28 (continued)

Can we find the joint or the marginal distributions of \bar{X} and S^2? It depends on how much we know about P.

<table>
<thead>
<tr>
<th>Moments of \bar{X} and S^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If P has a finite mean μ, then $E\bar{X} = \mu$.</td>
</tr>
<tr>
<td>• If $P \in { P_\theta : \theta \in \Theta }$, then $E\bar{X} = \int x dP_\theta = \mu(\theta)$ for some function $\mu(.)$.</td>
</tr>
<tr>
<td>• Even if the form of μ is known, $\mu(\theta)$ is still unknown when θ is unknown.</td>
</tr>
<tr>
<td>• If P has a finite variance σ^2, then $\text{var}(\bar{X}) = \sigma^2/n$, which equals $\sigma^2(\theta)/n$ for some function $\sigma^2(.)$ if P is in a parametric family.</td>
</tr>
<tr>
<td>• With a finite $\sigma^2 = \text{var}(X_1)$, we can also obtain that $ES^2 = \sigma^2$.</td>
</tr>
<tr>
<td>• With a finite $E</td>
</tr>
<tr>
<td>• With a finite $E(X_1)^4$, we can obtain $\text{var}(S^2)$ (exercise).</td>
</tr>
</tbody>
</table>
Example 2.28 (continued)

Can we find the joint or the marginal distributions of \bar{X} and S^2? It depends on how much we know about P.

Moments of \bar{X} and S^2

- If P has a finite mean μ, then $E\bar{X} = \mu$.
- If $P \in \{ P_\theta : \theta \in \Theta \}$, then $E\bar{X} = \int xdP_\theta = \mu(\theta)$ for some function $\mu(.)$.
- Even if the form of μ is known, $\mu(\theta)$ is till unknown when θ is unknown.
- If P has a finite variance σ^2, then $\text{var}(\bar{X}) = \sigma^2/n$, which equals $\sigma^2(\theta)/n$ for some function $\sigma^2(.)$ if P is in a parametric family.
- With a finite $\sigma^2 = \text{var}(X_1)$, we can also obtain that $ES^2 = \sigma^2$.
- With a finite $E|X_1|^3$, we can obtain $E(\bar{X})^3$ and $\text{Cov}(\bar{X}, S^2)$.
- With a finite $E(X_1)^4$, we can obtain $\text{var}(S^2)$ (exercise).
Example 2.28 (continued)

The distribution of \bar{X}

If P is in a parametric family, we can often find the distribution of \bar{X}. For example:

- \bar{X} is $N(\mu, \sigma^2/n)$ if P is $N(\mu, \sigma^2)$;
- $n\bar{X}$ has the gamma distribution $\Gamma(n, \theta)$ if P is the exponential distribution $E(0, \theta)$;
- See Example 1.20 and some exercises in §1.6.

One can use the CLT to obtain an approximation to the distribution of \bar{X}.

Applying Corollary 1.2 (for the case of $k = 1$), we obtain that $\sqrt{n}(\bar{X} - \mu) \rightarrow_d N(0, \sigma^2)$, where μ and σ^2 are the mean and variance of P, respectively, and are assumed to be finite.

The distribution of \bar{X} can be approximated by $N(\mu, \sigma^2/n)$.
Example 2.28 (continued)

The distribution of S^2

If P is $N(\mu, \sigma^2)$, then $(n - 1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1} (see Example 2.18).

An approximate distribution for S^2 can be obtained from the approximate joint distribution of \bar{X} and S^2 discussed next.

Joint distribution of \bar{X} and S^2

If P is $N(\mu, \sigma^2)$, then \bar{X} and S^2 are independent (Example 2.18). Hence, the joint distribution of (\bar{X}, S^2) is the product of the marginal distributions of \bar{X} and S^2 given in the previous discussion.

Without the normality assumption, an approximate joint distribution can be obtained.
Example 2.28 (continued)

The distribution of S^2

If P is $N(\mu, \sigma^2)$, then $(n - 1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1} (see Example 2.18).

An approximate distribution for S^2 can be obtained from the approximate joint distribution of \bar{X} and S^2 discussed next.

Joint distribution of \bar{X} and S^2

If P is $N(\mu, \sigma^2)$, then \bar{X} and S^2 are independent (Example 2.18). Hence, the joint distribution of (\bar{X}, S^2) is the product of the marginal distributions of \bar{X} and S^2 given in the previous discussion.

Without the normality assumption, an approximate joint distribution can be obtained.
Example 2.28 (continued)

Assume that \(\mu = EX_1, \sigma^2 = \text{var}(X_1), \) and \(E|X_1|^4 \) are finite. Let \(Y_i = (X_i - \mu, (X_i - \mu)^2), \) \(i = 1, \ldots, n. \)
\(Y_1, \ldots, Y_n \) are i.i.d. random 2-vectors with \(EY_1 = (0, \sigma^2) \) and variance-covariance matrix
\[
\Sigma = \begin{pmatrix}
\sigma^2 & E(X_1 - \mu)^3 \\
E(X_1 - \mu)^3 & E(X_1 - \mu)^4 - \sigma^4
\end{pmatrix}.
\]
Note that \(\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i = (\bar{X} - \mu, \tilde{S}^2), \) where \(\tilde{S}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \mu)^2. \)

Applying the CLT (Corollary 1.2) to \(Y_i \)'s, we obtain that
\[\sqrt{n}(\bar{X} - \mu, \tilde{S}^2 - \sigma^2) \to_d N_2(0, \Sigma). \]

Since
\[S^2 = \frac{n}{n-1} \left[\tilde{S}^2 - (\bar{X} - \mu)^2 \right] \]
and \(\bar{X} \to_{a.s.} \mu \) (the SLLN), an application of Slutsky’s theorem leads to
\[\sqrt{n}(\bar{X} - \mu, S^2 - \sigma^2) \to_d N_2(0, \Sigma). \]
Example 2.28 (continued)

Assume that $\mu = EX_1$, $\sigma^2 = \text{var}(X_1)$, and $E|X_1|^4$ are finite.
Let $Y_i = (X_i - \mu, (X_i - \mu)^2)$, $i = 1, \ldots, n$.
Y_1, \ldots, Y_n are i.i.d. random 2-vectors with $EY_1 = (0, \sigma^2)$ and variance-covariance matrix

$$
\Sigma = \begin{pmatrix}
\sigma^2 & E(X_1 - \mu)^3 \\
E(X_1 - \mu)^3 & E(X_1 - \mu)^4 - \sigma^4
\end{pmatrix}.
$$

Note that $\bar{Y} = n^{-1} \sum_{i=1}^n Y_i = (\bar{X} - \mu, \tilde{S}^2)$, where $\tilde{S}^2 = n^{-1} \sum_{i=1}^n (X_i - \mu)^2$.

Applying the CLT (Corollary 1.2) to Y_i’s, we obtain that

$$
\sqrt{n}(\bar{X} - \mu, \tilde{S}^2 - \sigma^2) \xrightarrow{d} \mathcal{N}_2(0, \Sigma).
$$

Since

$$
S^2 = \frac{n}{n-1} \left[\tilde{S}^2 - (\bar{X} - \mu)^2 \right]
$$

and $\bar{X} \xrightarrow{a.s.} \mu$ (the SLLN), an application of Slutsky’s theorem leads to

$$
\sqrt{n}(\bar{X} - \mu, S^2 - \sigma^2) \xrightarrow{d} \mathcal{N}_2(0, \Sigma).
$$
Example 2.9 (Order statistics)

Let $X = (X_1, ..., X_n)$ with i.i.d. random components. Let $X_{(i)}$ be the ith smallest value of $X_1, ..., X_n$. The statistics $X_{(1)}, ..., X_{(n)}$ are called the order statistics. Order statistics is a set of very useful statistics in addition to the sample mean and variance.

Suppose that X_i has a c.d.f. F having a Lebesgue p.d.f. f. Then the joint Lebesgue p.d.f. of $X_{(1)}, ..., X_{(n)}$ is

$$g(x_1, x_2, ..., x_n) = \begin{cases}
n! f(x_1)f(x_2)\cdots f(x_n) & x_1 < x_2 < \cdots < x_n \\
0 & \text{otherwise.} \end{cases}$$

The joint Lebesgue p.d.f. of $X_{(i)}$ and $X_{(j)}$, $1 \leq i < j \leq n$, is

$$g_{i,j}(x, y) = \begin{cases}
n![F(x)]^{i-1}[F(y) - F(x)]^{j-i-1}[1-F(y)]^{n-j}f(x)f(y) & x < y \\
0 & \text{otherwise} \end{cases}$$

and the Lebesgue p.d.f. of $X_{(i)}$ is

$$g_i(x) = \frac{n!}{(i-1)!(n-i)!}[F(x)]^{i-1}[1 - F(x)]^{n-i}f(x).$$
Example 2.9 (Order statistics)

Let \(X = (X_1, \ldots, X_n) \) with i.i.d. random components.
Let \(X(i) \) be the \(i \)th smallest value of \(X_1, \ldots, X_n \).
The statistics \(X(1), \ldots, X(n) \) are called the order statistics.
Order statistics is a set of very useful statistics in addition to the sample mean and variance.

Suppose that \(X_i \) has a c.d.f. \(F \) having a Lebesgue p.d.f. \(f \).
Then the joint Lebesgue p.d.f. of \(X(1), \ldots, X(n) \) is

\[
g(x_1, x_2, \ldots, x_n) = \begin{cases}
 n! f(x_1) f(x_2) \cdots f(x_n) & x_1 < x_2 < \cdots < x_n \\
 0 & \text{otherwise.}
\end{cases}
\]

The joint Lebesgue p.d.f. of \(X(i) \) and \(X(j), 1 \leq i < j \leq n \), is

\[
g_{i,j}(x, y) = \begin{cases}
 \frac{n! [F(x)]^{i-1} [F(y) - F(x)]^{j-i-1} [1 - F(y)]^{n-j} f(x)f(y)}{(i-1)!(j-i-1)!(n-j)!} & x < y \\
 0 & \text{otherwise}
\end{cases}
\]

and the Lebesgue p.d.f. of \(X(i) \) is

\[
g_i(x) = \frac{n!}{(i-1)!(n-i)!} [F(x)]^{i-1} [1 - F(x)]^{n-i} f(x).
\]