Lecture 16: UMVUE: conditioning on sufficient and
complete statistics

The 2nd method of deriving a UMVUE when a sufficient and
complete statistic is available
@ Find an unbiased estimator of 9, say U(X).
@ Conditioning on a sufficient and complete statistic T(X):
E[U(X)|T] is the UMVUE of 9.
@ We need to derive an explicit form of E[U(X)|T]
@ From the uniqueness of the UMVUE, it does not matter which
U(X) is used.
@ Thus, we should choose U(X) so as to make the calculation of
E[U(X)|T] as easy as possible.
@ We do not need the distribution of T.
But we need to work out the conditional expectation E[U(X)|T].

@ Using the independence of some statistics (Basu’s theorem), we
may avoid to work on conditional distributions.
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Example 7.3.24 (binomial family)

Let Xi,..., X, be iid from binomial(k, 6) with known k and unknown
0 <(0,1).

We want to estimate g(0) = Po(X; = 1) = k(1 — )<,

Note that T =Y/, X; ~ binomial(kn, 6) is the sufficient and complete
statistic for 6.

But no unbiased estimator based on it is immediately evident.

To apply conditioning, we take the simple unbiased estimator of
Py(Xy = 1), the indicator function /(X; =1).

By Theorem 7.3.23, the UMVUE of g(0) is
w(T) = E[I(X: =1)IT)
= P(Xy =1|T)

We need to simply y(T) and obtain an explicit form.
When T =0, P(X; =1|T=0)=0.
Fort=1,....kn,
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y(t) = P(Xi=1T=1)
Po(X1=1,X71Xi=1)
Po(LiLi Xi=1)
Po(X1 =1,EiLp Xi=1—1)
Po(Ls Xi=1)

Po(X1 =1)Pe(Xl o Xi=t—1)

Po(LiLs Xi=1)
ko(1— @)k [(k(n—11))9171(1 _g)k(n=1)=(t-1)

t—
(ktn) 0t(1 — )kn-t

k(")
(‘F)

Hence, the UMVUE of g(8) = k6(1 — ) 'is
{ YD) T_q. o kn

(7)
0 T=0
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Example 3.3

Let Xi,..., X, be i.i.d. from the exponential distribution E(0, 0).
F@(X) = (1 = eix/e)l(opo)(X).
Consider the estimation of & =1 — Fy(t).
X is sufficient and complete for 6 > 0.
lit)(X1) is unbiased for ¥,
E[I(t7°°)(X1 )] = P(X1 > t) =9
Hence _ B
T(X) = Ellit)(X1)|X] = P(X1 > 1| X)
is the UMVUE of ¢. B
If the conditional distribution of X; given X is available, then we can
calculate P(X7 > t|X) directly. _ .
By Basu’s theorem (Theorem 2.4), X;/X and X are independent.
By Proposition 1.10(vii),
P(X; > t|1X =X) = P(X;/X > t/X|X = X)
= P(X1/X > t/X)
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To compute this unconditional probability, we need the distribution of

X1/§)G=X1/<X1+éx,->.

Using the transformation technique discussed in §1.3.1 and the fact
that Y7, X; is independent of X; and has a gamma distribution, we
obtain that X;/Y./_; X; has the Lebesgue p.d.f.

(n=1)(1 = x)""2ko,1)(X)-

Hence

_ 1
P(X; >t|X:)'():(n—1)/ (1 - x)"2dx
t/(%)

and the UMVUE of ¢ is

T(X) = (1 - ni_(>n_1.
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Example 3.4

Let Xi,..., X be i.i.d. from N(u,c?) with unknown u € #Z and 62 > 0.
From Example 2.18, T = (X, S?) is sufficient and complete for

Q - (u, 0-2)

X and (n—1)S?/o? are independent

X has the N(u,5?/n) distribution

S? has the chi-square distribution 2 .

Using the method of solving for h directly, we find that
@ the UMVUE for i is X;
@ the UMVUE of u?is X? — 82/n;
@ the UMVUE for ¢” with r > 1 —n'is k,_4 ,S", where

2 (3)
= B (25)

o the UMVUE of u/c is ko1 _1X/S, if n> 2.

.
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Example 3.4 (continued)

Suppose that ¥ satisfies P(X; < ©) = p with a fixed p € (0,1).
Let ® be the c.d.f. of the standard normal distribution.
Then

¥ =pu+0d'(p)

and its UMVUE is _
X +kn 11807 ().

Let ¢ be a fixed constant and

19:P(X1§c):¢<c;u>.

We can find the UMVUE of ¢ using the method of conditioning.
Since I(,m,c)(X1) is an unbiased estimator of ¥, the UMVUE of ¢ is
El(—coc)(X1)IT] = P(X1 < | T).

By Basu’s theorem, the ancillary statistic Z(X) = (X; — X)/Sis
independent of T = (X, S?).

v
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Example 3.4 (continued)
Then, by Proposition 1.10(vii),

P(MSCUE%X§0:P<Z§C;XP¥4X§O

:P<Z§CX>.
S

It can be shown that Z has the Lebesgue p.d.f.

B 5 |:1 B nZZ :|(”/2)2
—V/a(n—1)r (22) (n—1)2
Hence the UMVUE of ¥ is

ko,(n-1yvm)(121)

(c—X)/S
mmgqn:/ f(z)dz
~(n-1)/v/

v
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Example 3.4 (continued)
Suppose that we would like to estimate

O = lq)’ (Cu) ,
c c
the Lebesgue p.d.f. of X; evaluated at a fixed ¢, where @' is the
first-order derivative of ®.
By the previous result, the conditional p.d.f. of Xj given X = x and
S2=s2is s1f (X).
Let fr be the joint p.d.f. of T = (X, S?).

Then ~ -
3 ://lf(C;X> fr(t)dt = E [;f(c_sxﬂ .

Hence the UMVUE of ¢ is

lf c—X
S S ’
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Example

Let Xy, ..., X, be i.i.d. with Lebesgue p.d.f. fy(x) = 0x7 2/ .)(X), where
6 > 0 is unknown.

Suppose that ¥ = P(X; > t) for a constant { > 0.

The smallest order statistic X1y is sufficient and complete for 6.
Hence, the UMVUE of 9 is

P(Xi > t|X1)) = P(Xi > t|X1) = X))

X, ot )
—P( > ——|Xqy=x
<X(1) Xay| "0 =7
X, t )
—P (> —| X4y =x
(Xm) x| "0

(Basu’s theorem), where s = t/x(4).
If s <1, this probability is 1.
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Example (continued)
Consider s > 1 and assume 0 = 1 in the calculation:

X, n X
P<>s>: P<>s,X1 :X-)
X1) ,:21 X S

X
= (n—1)P<X(1) > 8, X(4) :Xn>

=(n—1)P(Xi > sXp, Xo > Xn,..., Xp_1 > Xn)
n
1

2
X1>8Xn,X2>Xn, s Xn—1>Xn j—1 X;

—(n—1)/oo /wﬁ /w1dx- ldx ldx
B 1 SXn ji—o \ /Xn x2 X12 1 X3 !

I
:(n1)/m1 dxn =
1

=(n-1) axq---dxy

(n —1 )X(1)
sx,’;'H nt
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Example (continued)
This shows that the UMVUE of P(X; > t) is

(n—1)X
WXy =4 s X<t

Another solution

The UMVUE must be h(X(4))
The Lebesgue p.d.f. of X(q) is

| _L
A,

ne"
ot o) (X):

Use the method of finding h

If 6 > t, then P(X1 > t) =1 and P(t > X(1)) =0.
Hence, if X(1) > t, h(X(1)) must be 1 a.s. Py
The value of h(X(4) for X1y < t is not specified.

.
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If 6 < t, - nan
HM&mpiéhuhﬂjm

. noe" * ne" . noe" 0"
=Amn;ﬁWﬁK;mW:AMﬂgnw+ﬁ
Since P(X; > t) = 6/t, we have

0 t ne" 0"
i.e.,

1 : n 1
T = J, M0t
Differentiating both sizes w.r.t. 6 leads to

n—1 n
T ten = _h(e)w

Hence, for any X(1) < t,
(n —1 )X(1)
nt '
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Unbiased estimators of O

If a sufficient and complete statistic is not available, then what should
we do?

If W is unbiased for © and T is sufficient, then by Theorem 2.5
(Rao-Blackwell), E(W/|T) is better than W.

If we have another sufficient statistic S, should we consider
E[E(W|T)|S]?

If there is a function h such that S = h(T), then by the properties of
conditional expectation,

E[E(W|T)|S] = E(W|S) = E[E(WIS)|T]
That is, we should always conditioning on a simpler sufficient statistic,
such as a minimal sufficient statistic.

To see when an unbiased estimator is best unbiased, we might ask
how could we improve upon a given unbiased estimator?

Suppose that T(X) is unbiased for g(6) and U(X) is a statistic
satisfying Eq(U) =0 for all 6, i.e., U is unbiased for 0.

Then, for any constant a,
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T(X)+aU(X)
is unbiased for g(6).
Can it be better than T(X)?

Varg (T + aU) = Varg(T) +2aCove (T, U) + & Varg (V)
If for some 6y, Covg,(T,U) < 0, then we can make
2aCove,(T,U) + & Varg,(U) < 0
by choosing 0 < a—2Covg, (T, U)/Varg,(U).
Hence, T(X)+ aU(X) is better than T(X) at least when 6 = 6, and

T(X) cannot be UMVUE.

Similarly, if Covg, (T, U) > 0 for some 6y, then T(X) cannot be UMVUE
either.

Thus, Covg(T,U) =0 is necessary for T(X) to be a UMVUE, for all
unbiased estimators of 0.

It turns out that Cove (T, U) = 0 for all U(X) unbiased for 0 is also
sufficient for T(X) being a UMVUE.
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