Lecture 17: Characteristic of UMVUE and Fisher

information bound

When a complete and sufficient statistic is not available, it is usually
very difficult to derive a UMVUE.

In some cases, the following result can be applied, if we have enough
knowledge about unbiased estimators of 0.

Theorem 3.2

Let % be the set of all unbiased estimators of 0 with finite variances
and T be an unbiased estimator of © with E(T2) < oo.

(i) A necessary and sufficient condition for T(X) to be a UMVUE of ¥
is that E[T(X)U(X)]=0forany U € % and any P € 2.

(i) Suppose that T = h(T), where T is a sufficient statistic for P € 2
and his a Borel function.
Let %; be the subset of % consisting of Borel functions of T.
Then a necessary and sufficient condition for T to be a UMVUE of
¥ is that E[T(X)U(X)] =0 forany U € %3 and any P € .
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Proof of Theorem 3.2(i)

Suppose that T is a UMVUE of 9.
Then T, =T +cU, where U € % and c is a fixed constant, is also
unbiased for ¥ and, thus,

Var(T;) > Var(T) ceZ, PeZ,
which is the same as
¢ Var(U)+2cCov(T,U) >0 ce %, Pec 2.
This is impossible unless Cov(T,U) = E(TU) =0 forany P € 2.
Suppose now E(TU) =0 forany U € % and P e &.

Let Ty be another unbiased estimator of ¢ with Var(Tp) < eo.
Then T — Ty € % and, hence,

E[T(T—Ty)]=0 Pez,
which with the fact that ET = ET, implies that
Var(T) = Cov(T, Tp) Pez.

Note that [ Cov(T, Tg)]? < Var(T) Var(Ty).
Hence Var(T) < Var(Ty) forany P € 2.
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Proof of Theorem 3.2(ii)
It suffices to show that E(TU) = 0 for any U € %> and P € &7 implies
that E(TU) =0forany Ue % and P € &.
If Uecu,then E(U|T) € ;.
The result follows from the fact that T = h(T) and
E(TU) = E[E(TU|T)] = E[E(h(T)U|T)] = E[h(T)E(U| T)].

Theorem 3.2 can be used to

@ find a UMVUE,

@ check whether a particular estimator is a UMVUE, and

@ show the nonexistence of any UMVUE.
Theorem 3.2(ii) is more convenient to use.

(i) If Tjisa UMVUE of 9, j=1,...,k, then Zj’-‘:1 ¢;T;is a UMVUE of
Y= Z/’-‘:1 ¢;v; for any constants ¢, ..., Ck.

(iiy If Ty and T, are two UMVUE’s of ¢, then T; = T, a.s. P for any
Pe 2.
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(i) Obviously, ¥/ ¢;T; is a unbiased for & = ¥, ¢;v);
For each j,

E(T;U)=0, Uecyw
Then

E

K K
CZC,-T,-) U] =Y ¢gE(TjU)=0, Uec%
1 j=1

(ii) Let Ty and T, be two UMVUE’s of 9.
Then Ty — T> € % and

E[T(Ty-Tz)]=0 j=1,2
Then

E(Ti = T2)? = E[Ty(Ty — T2)] - E[To(T1 — T2)] = 0

Hence, T{ = T, a.s. Pforany P € &.

v
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Example 3.7
Let Xi,..., X, be i.i.d. from the uniform distribution on the interval (0, 6).
In Example 3.1, (14 n~") X, is shown to be the UMVUE for 6 when
the parameter space is © = (0, ).

Suppose now that © = [1,<0).

Then X, is not complete, although it is still sufficient for 6.

Thus, Theorem 3.1 does not apply to X(p.

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of 6.
Let U(X(n)) be an unbiased estimator of 0.

Since X(n,) has the Lebesgue p.d.f. n6~"x"1]q ¢)(x),

1 0
0= / UO)X™ Vdx + / U(x)x"'dx forall > 1.
0 1
This implies that U(x) = 0 a.e. Lebesgue measure on [1,) and
1
/ U(x)x"tdx =0.
0

Consider T = h(Xp))-
To have E(TU) =0, we must have
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1
/ h(x)U(x)x"dx =0.
0
Thus, we may consider the following function:

c 0<x<A1
h(X){bx x> 1,

where ¢ and b are some constants.
From the previous discussion,

E[h(X(n)U(X(n))] =0, 6>1.
Since E[h(X(n))] = 6, we obtain that
0= CP(X(n) < 1)+bE[X(n) /(1700)()((”))]
=cO "+[bn/(n+1)](6 —6~").
Thus,c=1and b= (n+1)/n.
The UMVUE of 6 is then

1 0< X <1
— = \(n) =
h(X(n)) N { (1 —I—n_1)X(n) X(n) > 1.
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@ This estimator is better than (14 n~")X(,,), which is the UMVUE
when © = (0,) and does not make use of the information about
6>1.

@ When © = (0, ), this estimator is not unbiased.
@ Infact, h(X,)) is complete and sufficient for 6 € [1,).

Example 3.8

Let X be a sample (of size 1) from the uniform distribution
Ue—3,0+3),0cz.

We now apply Theorem 3.2 to show that there is no UMVUE of
¥ = g(0) for any nonconstant function g.

Note that an unbiased estimator U(X) of 0 must satisfy

0+3
/ FUM)dx=0  forall 6 %.
o—1

2
Differentiating both sides of the previous equation and applying the
result of differentiation of an integral lead to

Ux)=U(x+1) ae.m,
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where m is the Lebesgue measure on Z.
If Tisa UMVUE of g(0), then T(X)U(X) is unbiased for 0 and, hence,

Tx)Ux)=T(x+1)U(x+1) ae. m,

where U(X) is any unbiased estimator of 0.
Since this is true for all U,

T(x)=T(x+1) a.e.m.
Since T is unbiased for g(0),
0+3
g(0) :/ . T(x)ax  forall 6 € Z.
0-3
Differentiating both sides of the previous equation and applying the
result of differentiation of an integral, we obtain that

g/(G):T(Q‘F%)_T(G_%):O a.e. m.

Hence g is a constant a.e.
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Information inequality

Theorem 3.3 (Cramér-Rao lower bound)

Let X =(Xj,...,X) be a sample from P & = {Py : 6 € ©}, where ©

is an open set in ZX.

Suppose that T(X) is an estimator with E[T(X)] = g(6) being a
differentiable function of 8; Py has a p.d.f. f3 w.r.t. a measure v for all
6 € ©; and fy is differentiable as a function of 6 and satisfies

aae/h(x)fg /h 7f9 v, 6ceo, (1)
for h(x) =1 and h(x) = T(x).
Then .
Var(T(X)) = | 359(6)| [16)] ™ 559(6), @)
where

1(0) = E{aae log fa(X) { 9 Iogfg(X)] }

is assumed to be positive definite for any 6 € ©.

v
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Discussion
Suppose that we have a lower bound for the variances of all unbiased
estimators of 9.

If there is an unbiased estimator T of © whose variance is always the
same as the lower bound, then T is a UMVUE of 9.

Although this is not an effective way to find UMVUE'’s, it provides a way
of assessing the performance of UMVUE'’s.

| \

Proof of Theorem 3.3

We prove the univariate case (k = 1) only.
When k =1, (2) reduces to

g©Or
E | 5 10g1o(X)] °
From the Cauchy-Schwartz inequality, we only need to show that
E [8 log fg(X)] : = Var <8 log f@(X))
a0 a0
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Proof of Theorem 3.3 (continued)
and

g/(g) = Cov <T(X), aae |Og fe(X))
From condition (1) with h(x) =1,

E[aae jog fo (X)| :/;ef@(X)dv:aae/fg(X)dv:

From condition (1) with h(x) = T(x),

E[T( )8‘99 Iogfg(X): _/T 7f9 dv:aae/T(x)fg(X)dv,

which = g/(0).

The k x k matrix

1(6) = E{;e log fy (X) [ 9 Iogfg(X)] T}

is called the Fisher information matrix.

UW-Madison (Statistics) Stat 709 Lecture 17 2018 11/17



The greater /(0) is, the easier it is to distinguish 6 from neighboring
values and, therefore, the more accurately 6 can be estimated.

Thus, /(0) is a measure of the information that X contains about 6.
The inequality in (2) is called information inequalities.

The following result is helpful in finding the Fisher information matrix. |

Proposition 3.1

(i) If X and Y are independent with the Fisher information matrices
Ix(6) and Iy(6), respectively, then the Fisher information about 6
contained in (X, Y) is Ix(6)+ Iy(0).

In particular, if Xj,..., X, are i.i.d. and /1(0) is the Fisher
information about 6 contained in a single X;, then the Fisher
information about 6 contained in X, ..., Xj is nl{(6).

(i) Suppose that X has the p.d.f. fy that is twice differentiable in 6 and
that (1) holds with h(x) =1 and fy replaced by dfy /6.

Then
2

I(6) = —E [aeaaer log fe(X)]
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Proof
Result (i) follows from the independence of X and Y and the definition
of the Fisher information.

Result (ii) follows from the equality

82 39391 fB(X) d
6907 8 (X) =50 38

log fa(X) [ log fg(X)] -

Example 3.9

Let Xi,..., X, be i.i.d. with the Lebesgue p.d.f. 1f(*:£), where f(x) > 0
and f'(x) exists for all x € Z, u € #, and ¢ > 0 (a location-scale
family).

Let 6 = (u, o). Then, the Fisher information about 6 contained in
Xi,...,Xp is (exercise)

[F'(x)12

cof U ax [ LUAMEW4] g

f(x)

(o) / /
I f'(x )[Xf((:))Jrf(X)] dx [ [xf (Xf)(J;)f(X)]2 dx
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@ Note that /(6) depends on the particular parameterization.

@ If 6 = y(n) and vy is differentiable, then the Fisher information that
X contains about 1 is

T
Svmiw(m) | Zrvm)| -

@ However, the Cramér-Rao lower bound in (2) is not affected by
any one-to-one reparameterization.

@ If we use inequality (2) to find a UMVUE T(X), then we obtain a
formula for Var(T(X)) at the same time.

@ On the other hand, the Cramér-Rao lower bound in (2) is typically
not sharp.

@ Under some regularity conditions, the Cramér-Rao lower bound is
attained iff fy is in an exponential family; see Propositions 3.2 and
3.3 and the discussion in Lehmann (1983, p. 123).

@ Some improved information inequalities are available (see, e.g.,
Lehmann (1983, Sections 2.6 and 2.7)).
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Proposition 3.2

Suppose that the distribution of X is from an exponential family
{fo : 0 € ©}, i.e., the p.d.f. of X w.r.t. a o-finite measure is

fo(x) = exp{[n(8)]" T(x) — £(6) }c(x), (3)

where © is an open subset of ZX.
(i) The regularity condition (1) is satisfied for any h with E|h(X)| <
and

2
1(6) = —E [aeaaer log fe(X)]

(i) If I(n) is the Fisher information matrix for the natural parameter 1,
then the variance-covariance matrix Var(T) = I(n).

(iii) If /() is the Fisher information matrix for the parameter
O = E[T(X)], then Var(T) = [I(9)].

A direct consequence of Proposition 3.2(ii) is that the variance of any
linear function of T in (3) attains the Cramér-Rao lower bound.
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(i) This is a direct consequence of Theorem 2.1.
(i) The p.d.f. under the natural parameter n is

fa(X) = exp{n*T(x) —{(n)} c(x).
From Theorem 2.1, E[T(X)] = -{(n).
The result follows from

Filogf(x) = T(x) = 7 ¢ (n).
(ii)) Since ¥ = E[T(X)] = ¢(n),

2

1) = 3219) (32) " = 525w C () [ 5pet(m)] "

By Theorem 2.1 and the result in (ii),

7=(n) = Var(T) = I(n).
Hence

1(9) = [U(m)] 1m)Um)] " = [Lm)] " = [ Var(T)] "
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Example 3.10

Let Xy,..., X, be i.i.d. from the N(u,c?) distribution with an unknown
u € Z and a known o2,
Let £, be the joint distribution of X = (Xi,..., Xs).

Then

n
Sloghu(X) = Y (Xi—p)/02.
i=1
Thus, /(1) = n/c>.
Consider the estimation of p.
It is obvious that Var(X) attains the Cramér-Rao lower bound in (2).
Consider now the estimation of & = u2. B B
Since EX? = u? + 62 /n, the UMVUE of ¢ is h(X) = X? — 62 /n.
A straightforward calculation shows that
4uc?®> 20*
n?
On the other hand, the Cramér-Rao lower bound in this case is
4u2c62/n: Var(h(X)) does not attain the Cramér-Rao lower bound.
The difference is 26*/n?.
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