Lecture 18: Sufficient statistics and factorization theorem

Data reduction without loss of information

A statistic $T(X)$ provides a reduction of the σ-field $\sigma(X)$

Does such a reduction results in any loss of information concerning the unknown population?

If a statistic $T(X)$ is fully as informative as the original sample X, then statistical analyses can be done using $T(X)$ that is simpler than X.

The next concept describes what we mean by fully informative.

Definition 2.4 (Sufficiency)

Let X be a sample from an unknown population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations.

A statistic $T(X)$ is said to be sufficient for $P \in \mathcal{P}$ (or for $\theta \in \Theta$ when $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$ is a parametric family) iff the conditional distribution of X given T is known (does not depend on P or θ).
Lecture 18: Sufficient statistics and factorization theorem

Data reduction without loss of information

A statistic $T(X)$ provides a reduction of the σ-field $\sigma(X)$

Does such a reduction results in any loss of information concerning the unknown population?

If a statistic $T(X)$ is fully as informative as the original sample X, then statistical analyses can be done using $T(X)$ that is simpler than X.

The next concept describes what we mean by fully informative.

Definition 2.4 (Sufficiency)

Let X be a sample from an unknown population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations.

A statistic $T(X)$ is said to be sufficient for $P \in \mathcal{P}$ (or for $\theta \in \Theta$ when $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$ is a parametric family) iff the conditional distribution of X given T is known (does not depend on P or θ).
Remarks

- Once we observe X and compute a sufficient statistic $T(X)$, the original data X do not contain any further information concerning the unknown population P (since its conditional distribution is unrelated to P) and can be discarded.

- A sufficient statistic $T(X)$ contains all information about P contained in X and provides a reduction of the data if T is not one-to-one.

- The concept of sufficiency depends on the given family \mathcal{P}.

- If T is sufficient for $P \in \mathcal{P}$, then T is also sufficient for $P \in \mathcal{P}_0 \subset \mathcal{P}$ but not necessarily sufficient for $P \in \mathcal{P}_1 \supset \mathcal{P}$.

Example 2.10

Suppose that $X = (X_1, ..., X_n)$ and $X_1, ..., X_n$ are i.i.d. from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

$$f_\theta(z) = \theta^z (1 - \theta)^{1-z} I_{\{0,1\}}(z), \quad z \in \mathbb{R}, \quad \theta \in (0,1).$$

Consider the statistic $T(X) = \sum_{i=1}^n X_i$, which is the number of ones in X.
Remarks

- Once we observe X and compute a sufficient statistic $T(X)$, the original data X do not contain any further information concerning the unknown population P (since its conditional distribution is unrelated to P) and can be discarded.

- A sufficient statistic $T(X)$ contains all information about P contained in X and provides a reduction of the data if T is not one-to-one.

- The concept of sufficiency depends on the given family \mathcal{P}.

- If T is sufficient for $P \in \mathcal{P}$, then T is also sufficient for $P \in \mathcal{P}_0 \subset \mathcal{P}$ but not necessarily sufficient for $P \in \mathcal{P}_1 \supset \mathcal{P}$.

Example 2.10

Suppose that $X = (X_1, \ldots, X_n)$ and X_1, \ldots, X_n are i.i.d. from the binomial distribution with the p.d.f. (w.r.t. the counting measure)

$$f_\theta(z) = \theta^z (1-\theta)^{1-z} I_{\{0,1\}}(z), \quad z \in \mathbb{R}, \quad \theta \in (0,1).$$

Consider the statistic $T(X) = \sum_{i=1}^n X_i$, which is the number of ones in X.
Example 2.10 (continued)

For any realization \(x \) of \(X \), \(x \) is a sequence of \(n \) ones and zeros. \(T \) contains all information about \(\theta \), since \(\theta \) is the probability of an occurrence of a one in \(x \) and given \(T = t \), what is left in the data set \(x \) is the redundant information about the positions of \(t \) ones. To show \(T \) is sufficient for \(\theta \), we compute \(P(X = x \mid T = t) \).

Let \(t = 0, 1, \ldots, n \) and \(B_t = \{(x_1, \ldots, x_n) : x_i = 0, 1, \sum_{i=1}^{n} x_i = t \} \).

If \(x \notin B_t \), then \(P(X = x, T = t) = 0 \).

If \(x \in B_t \), then

\[
P(X = x, T = t) = \prod_{i=1}^{n} P(X_i = x_i) = \theta^t (1 - \theta)^{n-t} \prod_{i=1}^{n} I_{\{0,1\}}(x_i).
\]

Also

\[
P(T = t) = \binom{n}{t} \theta^t (1 - \theta)^{n-t} I_{\{0,1,\ldots,n\}}(t).
\]

Then

\[
P(X = x \mid T = t) = \frac{P(X = x, T = t)}{P(T = t)} = \frac{1}{\binom{n}{t}} I_{B_t}(x)
\]

is a known p.d.f. (does not depend on \(\theta \)).

Hence \(T(X) \) is sufficient for \(\theta \in (0, 1) \) according to Definition 2.4.
How to find a sufficient statistic?

Finding a sufficient statistic by means of the definition is not convenient. It involves guessing a statistic T that might be sufficient and computing the conditional distribution of X given $T = t$.

For families of populations having p.d.f.’s, a simple way of finding sufficient statistics is to use the factorization theorem.

Theorem 2.2 (The factorization theorem)

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathbb{R}^n, \mathcal{B}^n)$ dominated by a σ-finite measure ν. Then $T(X)$ is sufficient for $P \in \mathcal{P}$ iff there are nonnegative Borel functions h (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$ and g_P (which depends on P) on the range of T such that

$$
\frac{dP}{d\nu}(x) = g_P(T(x)) h(x).
$$

To prove Theorem 2.2, we need the following lemma whose proof can be found in the textbook.
How to find a sufficient statistic?

Finding a sufficient statistic by means of the definition is not convenient. It involves guessing a statistic T that might be sufficient and computing the conditional distribution of X given $T = t$. For families of populations having p.d.f.’s, a simple way of finding sufficient statistics is to use the factorization theorem.

Theorem 2.2 (The factorization theorem)

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathbb{R}^n, \mathcal{B}^n)$ dominated by a σ-finite measure ν. Then $T(X)$ is sufficient for $P \in \mathcal{P}$ iff there are nonnegative Borel functions h (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$ and g_P (which depends on P) on the range of T such that

$$\frac{dP}{d\nu}(x) = g_P(T(x)) h(x).$$

To prove Theorem 2.2, we need the following lemma whose proof can be found in the textbook.
How to find a sufficient statistic?

Finding a sufficient statistic by means of the definition is not convenient. It involves guessing a statistic T that might be sufficient and computing the conditional distribution of X given $T = t$. For families of populations having p.d.f.’s, a simple way of finding sufficient statistics is to use the factorization theorem.

Theorem 2.2 (The factorization theorem)

Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathbb{R}^n, \mathcal{B}^n)$ dominated by a σ-finite measure ν. Then $T(X)$ is sufficient for $P \in \mathcal{P}$ iff there are nonnegative Borel functions h (which does not depend on P) on $(\mathbb{R}^n, \mathcal{B}^n)$ and g_P (which depends on P) on the range of T such that

$$
\frac{dP}{d\nu}(x) = g_P(T(x)) h(x).
$$

To prove Theorem 2.2, we need the following lemma whose proof can be found in the textbook.
Lemma 2.1
If a family \(\mathcal{P} \) is dominated by a \(\sigma \)-finite measure, then \(\mathcal{P} \) is dominated by a probability measure \(Q = \sum_{i=1}^{\infty} c_i P_i \), where \(c_i \)'s are nonnegative constants with \(\sum_{i=1}^{\infty} c_i = 1 \) and \(P_i \in \mathcal{P} \).

Proof of Theorem 2.2
(i) Suppose that \(T \) is sufficient for \(P \in \mathcal{P} \).
For any \(A \in \mathcal{B}^n \), \(P(A|T) \) does not depend on \(P \).
Let \(Q \) be the probability measure in Lemma 2.1.
By Fubini’s theorem and the result in Exercise 35 of §1.6,
\[
Q(A \cap B) = \sum_{j=1}^{\infty} c_j P_j(A \cap B) = \sum_{j=1}^{\infty} c_j \int_B P(A|T) dP_j \\
= \int_B \sum_{j=1}^{\infty} c_j P(A|T) dP_j = \int_B P(A|T) dQ
\]
for any \(B \in \sigma(T) \).
Hence, \(P(A|T) = E_Q(I_A|T) \) a.s. \(Q \), where \(E_Q(I_A|T) \) denotes the conditional expectation of \(I_A \) given \(T \) w.r.t. \(Q \).
Lemma 2.1
If a family \mathcal{P} is dominated by a σ-finite measure, then \mathcal{P} is dominated by a probability measure $Q = \sum_{i=1}^{\infty} c_i P_i$, where c_i’s are nonnegative constants with $\sum_{i=1}^{\infty} c_i = 1$ and $P_i \in \mathcal{P}$.

Proof of Theorem 2.2
(i) Suppose that T is sufficient for $P \in \mathcal{P}$.
For any $A \in \mathcal{B}^n$, $P(A|T)$ does not depend on P.
Let Q be the probability measure in Lemma 2.1.
By Fubini’s theorem and the result in Exercise 35 of §1.6,
\begin{align*}
Q(A \cap B) &= \sum_{j=1}^{\infty} c_j P_j(A \cap B) = \sum_{j=1}^{\infty} c_j \int_B P(A|T) dP_j \\
&= \int_B \sum_{j=1}^{\infty} c_j P(A|T) dP_j = \int_B P(A|T) dQ
\end{align*}
for any $B \in \sigma(T)$.
Hence, $P(A|T) = E_Q(I_A|T)$ a.s. Q, where $E_Q(I_A|T)$ denotes the conditional expectation of I_A given T w.r.t. Q.
Lemma 2.1

If a family \mathcal{P} is dominated by a σ-finite measure, then \mathcal{P} is dominated by a probability measure $Q = \sum_{i=1}^{\infty} c_i P_i$, where c_i’s are nonnegative constants with $\sum_{i=1}^{\infty} c_i = 1$ and $P_i \in \mathcal{P}$.

Proof of Theorem 2.2

(i) Suppose that T is sufficient for $P \in \mathcal{P}$.
For any $A \in \mathcal{B}^n$, $P(A|T)$ does not depend on P.
Let Q be the probability measure in Lemma 2.1.
By Fubini’s theorem and the result in Exercise 35 of §1.6,

$$Q(A \cap B) = \sum_{j=1}^{\infty} c_j P_j(A \cap B) = \sum_{j=1}^{\infty} c_j \int_B P(A|T) dP_j$$

$$= \int_B \sum_{j=1}^{\infty} c_j P(A|T) dP_j = \int_B P(A|T) dQ$$

for any $B \in \sigma(T)$.
Hence, $P(A|T) = E_Q(I_A|T)$ a.s. Q, where $E_Q(I_A|T)$ denotes the conditional expectation of I_A given T w.r.t. Q.
Proof of Theorem 2.2 (continued)

Let \(g_P(T) \) be the Radon-Nikodym derivative \(dP/dQ \) on the space \((\mathbb{R}^n, \sigma(T), Q)\). Then

\[
P(A) = \int P(A \mid T) dP = \int E_Q(I_A \mid T) dP = \int E_Q(I_A \mid T) g_P(T) dQ
\]

\[
= \int E_Q[I_A g_P(T) \mid T] dQ = \int I_A g_P(T) dQ = \int_A g_P(T) \frac{dQ}{d\nu} d\nu
\]

for any \(A \in \mathcal{B}^n \). Hence,

\[
\frac{dP}{d\nu}(x) = g_P(T(x)) h(x)
\]

(1)

holds with \(h = dQ/d\nu \).

(ii) Suppose that (1) holds. Then

\[
\frac{dP}{dQ} = \frac{dP}{d\nu} \left/ \sum_{i=1}^{\infty} c_i \frac{dP_i}{d\nu} \right. = g_P(T) \left/ \sum_{i=1}^{\infty} g_{P_i}(T) \right. \quad \text{a.s. } Q,
\]

(2)

where the second equality follows from Exercise 35 in §1.6.
Proof of Theorem 2.2 (continued)

Let \(g_P(T) \) be the Radon-Nikodym derivative \(dP/dQ \) on the space \((\mathbb{R}^n, \sigma(T), Q)\).

Then

\[
P(A) = \int P(A|T) dP = \int E_Q(I_A|T) dP = \int E_Q(I_A|T) g_P(T) dQ
\]

\[
= \int E_Q[I_A g_P(T)|T] dQ = \int I_A g_P(T) dQ = \int_A g_P(T) \frac{dQ}{d\nu} d\nu
\]

for any \(A \in \mathcal{B}^n \).

Hence,

\[
\frac{dP}{d\nu}(x) = g_P(T(x)) h(x) \tag{1}
\]

holds with \(h = \frac{dQ}{d\nu} \).

(ii) Suppose that (1) holds.

Then

\[
\frac{dP}{dQ} = \frac{dP}{d\nu} \left/ \sum_{i=1}^{\infty} c_i \frac{dP_i}{d\nu} \right. = g_P(T) \left/ \sum_{i=1}^{\infty} g_{P_i}(T) \right. \text{ a.s. } Q, \tag{2}
\]

where the second equality follows from Exercise 35 in §1.6.
Proof of Theorem 2.2 (continued)

Let $A \in \sigma(X)$ and $P \in \mathcal{P}$.

The sufficiency of T follows from

$$P(A|T) = E_Q(I_A|T) \quad \text{a.s. } P,$$

where $E_Q(I_A|T)$ is given in part (i) of the proof.

This is because $E_Q(I_A|T)$ does not vary with $P \in \mathcal{P}$, and result (3) and Theorem 1.7 imply that the conditional distribution of X given T is determined by $E_Q(I_A|T)$, $A \in \sigma(X)$.

By (2), dP/dQ is a Borel function of T.

For any $B \in \sigma(T)$,

$$\int_B E_Q(I_A|T)dP = \int_B E_Q(I_A|T) \frac{dP}{dQ} dQ$$

$$= \int_B E_Q \left(I_A \frac{dP}{dQ} \bigg| T \right) dQ = \int_B I_A \frac{dP}{dQ} dQ = \int_B I_A dP.$$

This proves (3) and completes the proof.
Proof of Theorem 2.2 (continued)

Let $A \in \sigma(X)$ and $P \in \mathcal{P}$. The sufficiency of T follows from

$$P(A|T) = E_Q(I_A|T) \quad \text{a.s. } P,$$

(3)

where $E_Q(I_A|T)$ is given in part (i) of the proof. This is because $E_Q(I_A|T)$ does not vary with $P \in \mathcal{P}$, and result (3) and Theorem 1.7 imply that the conditional distribution of X given T is determined by $E_Q(I_A|T)$, $A \in \sigma(X)$.

By (2), dP/dQ is a Borel function of T. For any $B \in \sigma(T)$,

$$\int_B E_Q(I_A|T) dP = \int_B E_Q(I_A|T) \frac{dP}{dQ} dQ$$

$$= \int_B E_Q \left(I_A \frac{dP}{dQ} \bigg| T \right) dQ = \int_B I_A \frac{dP}{dQ} dQ = \int_B I_A dP.$$

This proves (3) and completes the proof.
Exponential families

If \(\mathcal{P} \) is an exponential family, then Theorem 2.2 can be applied with

\[
g_\theta(t) = \exp\{[\eta(\theta)]^\tau t - \xi(\theta)\},
\]

i.e., \(T \) is a sufficient statistic for \(\theta \in \Theta \).

In Example 2.10 the joint distribution of \(X \) is in an exponential family with \(T(X) = \sum_{i=1}^{n} X_i \).

Hence, we can conclude that \(T \) is sufficient for \(\theta \in (0, 1) \) without computing the conditional distribution of \(X \) given \(T \).

Example 2.11 (Truncation families)

Let \(\phi(x) \) be a positive Borel function on \((\mathbb{R}, \mathcal{B})\) such that

\[
\int_{a}^{b} \phi(x) \, dx < \infty \quad \text{for any } a \text{ and } b, \quad -\infty < a < b < \infty.
\]

Let \(\theta = (a, b) \), \(\Theta = \{(a, b) \in \mathbb{R}^2 : a < b\} \), and

\[
f_\theta(x) = c(\theta) \phi(x) I_{(a,b)}(x), \quad c(\theta) = \left[\int_{a}^{b} \phi(x) \, dx\right]^{-1}
\]
Exponential families

If \(\mathcal{P} \) is an exponential family, then Theorem 2.2 can be applied with

\[
g_\theta(t) = \exp\{[\eta(\theta)]^\tau t - \xi(\theta)\},
\]
i.e., \(T \) is a sufficient statistic for \(\theta \in \Theta \).

In Example 2.10 the joint distribution of \(X \) is in an exponential family with \(T(X) = \sum_{i=1}^n X_i \).

Hence, we can conclude that \(T \) is sufficient for \(\theta \in (0, 1) \) without computing the conditional distribution of \(X \) given \(T \).

Example 2.11 (Truncation families)

Let \(\phi(x) \) be a positive Borel function on \((\mathbb{R}, \mathcal{B}) \) such that

\[
\int_a^b \phi(x) dx < \infty \quad \text{for any } a \text{ and } b, \quad -\infty < a < b < \infty.
\]

Let \(\theta = (a, b), \ \Theta = \{(a, b) \in \mathbb{R}^2 : a < b\}, \) and

\[
f_\theta(x) = c(\theta)\phi(x)l_{(a,b)}(x), \quad c(\theta) = \left[\int_a^b \phi(x) dx \right]^{-1}
\]
Example 2.11 (continued)

Then \(\{f_\theta : \theta \in \Theta\} \), called a truncation family, is a parametric family dominated by the Lebesgue measure on \(\mathbb{R} \).

Let \(X_1, \ldots, X_n \) be i.i.d. random variables having the p.d.f. \(f_\theta \).

Then the joint p.d.f. of \(X = (X_1, \ldots, X_n) \) is

\[
\prod_{i=1}^{n} f_\theta(x_i) = [c(\theta)]^n l_{(a, \infty)}(x_{(1)}) l_{(-\infty, b)}(x_{(n)}) \prod_{i=1}^{n} \phi(x_i), \quad (4)
\]

where \(x_{(i)} \) is the \(i \)th ordered value of \(x_1, \ldots, x_n \).

Let \(T(X) = (X_{(1)}, X_{(n)}) \), \(g_\theta(t_1, t_2) = [c(\theta)]^n l_{(a, \infty)}(t_1) l_{(-\infty, b)}(t_2) \), and \(h(x) = \prod_{i=1}^{n} \phi(x_i) \).

By (4) and Theorem 2.2, \(T(X) \) is sufficient for \(\theta \in \Theta \).

If \(a \) is known, then \(X_{(n)} \) is sufficient.

Example: uniform on \((0, \theta) \)
Example 2.12 (Order statistics)

Let $X = (X_1, \ldots, X_n)$ and X_1, \ldots, X_n be i.i.d. random variables having a distribution $P \in \mathcal{P}$, where \mathcal{P} is the family of distributions on \mathbb{R} having Lebesgue p.d.f.’s.

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics given in Example 2.9. Note that the joint p.d.f. of X is

$$f(x_1) \cdots f(x_n) = f(x_{(1)}) \cdots f(x_{(n)}).$$

Hence, $T(X) = (X_{(1)}, \ldots, X_{(n)})$ is sufficient for $P \in \mathcal{P}$.

The order statistics can be shown to be sufficient even when \mathcal{P} is not dominated by any σ-finite measure, but Theorem 2.2 is not applicable (see Exercise 31 in §2.6).