Lecture 18: Minimal sufficiency

Maximal reduction without loss of information

- There are many sufficient statistics for a given family \mathcal{P}.
- In fact, X (the whole data set) is sufficient.
- If T is a sufficient statistic and $T = \psi(S)$, where ψ is measurable and S is another statistic, then S is sufficient.
- This is obvious from Theorem 2.2 if the population has a p.d.f., but it can be proved directly from Definition 2.4 (Exercise 25).
- For instance, if X_1, \ldots, X_n are iid with $P(X_i = 1) = \theta$ and $P(X_i = 0) = 1 - \theta$, then $(\sum_{i=1}^{m} X_i, \sum_{i=m+1}^{n} X_i)$ is sufficient for θ, where m is any fixed integer between 1 and n.
- If T is sufficient and $T = \psi(S)$ with a measurable function ψ that is not one-to-one, then $\sigma(T) \subset \sigma(S)$, and T is more useful than S, since T provides a further reduction of the data (or σ-field) without loss of information.
- Is there a sufficient statistics that provides “maximal” reduction of the data?
Minimal sufficiency

Convention

If a statement holds except for outcomes in an event A satisfying $P(A) = 0$ for all $P \in \mathcal{P}$, then we say that the statement holds a.s. \mathcal{P}.

Definition 2.5 Minimal sufficiency

Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a *minimal sufficient* Statistic iff, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}.

Existence

Minimal sufficient statistics exist under weak assumptions, e.g. \mathcal{P} contains distributions on \mathbb{R}^k dominated by a σ-finite measure (Bahadur, 1957).
Minimal sufficiency

Convention
If a statement holds except for outcomes in an event A satisfying $P(A) = 0$ for all $P \in \mathcal{P}$, then we say that the statement holds a.s. \mathcal{P}.

Definition 2.5 Minimal sufficiency
Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a minimal sufficient Statistic iff, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}

Existence
Minimal sufficient statistics exist under weak assumptions, e.g. \mathcal{P} contains distributions on \mathbb{R}^k dominated by a σ-finite measure (Bahadur, 1957).
Minimal sufficiency

Convention

If a statement holds except for outcomes in an event A satisfying $P(A) = 0$ for all $P \in \mathcal{P}$, then we say that the statement holds a.s. \mathcal{P}.

Definition 2.5 Minimal sufficiency

Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a *minimal sufficient* Statistic iff, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}

Existence

Minimal sufficient statistics exist under weak assumptions, e.g. \mathcal{P} contains distributions on \mathbb{R}^k dominated by a σ-finite measure (Bahadur, 1957).
Uniqueness

If both T and S are minimal sufficient statistics, then by definition there is one-to-one measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}

Hence, the minimal sufficient statistic is unique in the sense that two statistics that are one-to-one measurable functions of each other can be treated as one statistic.

Example 2.13

Let X_1, \ldots, X_n be i.i.d. random variables form P_θ, the uniform distribution $U(\theta, \theta + 1)$, $\theta \in \mathbb{R}$, $n > 1$.

The joint Lebesgue p.d.f. of (X_1, \ldots, X_n) is

$$f_\theta(x) = \prod_{i=1}^{n} l_{(\theta, \theta+1)}(x_i) = l_{(x(n)-1, x(1))}(\theta), \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n,$$

where $x(i)$ denotes the ith smallest value of x_1, \ldots, x_n.

By Theorem 2.2, $T = (X(1), X(n))$ is sufficient for θ.
Uniqueness

If both \(T \) and \(S \) are minimal sufficient statistics, then by definition there is one-to-one measurable function \(\psi \) such that \(T = \psi(S) \) a.s. \(\mathcal{P} \).

Hence, the minimal sufficient statistic is unique in the sense that two statistics that are one-to-one measurable functions of each other can be treated as one statistic.

Example 2.13

Let \(X_1, \ldots, X_n \) be i.i.d. random variables form \(P_\theta \), the uniform distribution \(U(\theta, \theta + 1) \), \(\theta \in \mathbb{R} \), \(n > 1 \).

The joint Lebesgue p.d.f. of \((X_1, \ldots, X_n)\) is

\[
f_\theta(x) = \prod_{i=1}^{n} l_{(\theta, \theta+1)}(x_i) = l_{(x(n)-1, x(1))}(\theta), \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n,
\]

where \(x(i) \) denotes the \(i \)th smallest value of \(x_1, \ldots, x_n \).

By Theorem 2.2, \(T = (X(1), X(n)) \) is sufficient for \(\theta \).
We now show that \(T = (X_1, X_n) \) is minimal sufficient.

Note that

\[
x_{(1)} = \sup \{ \theta : f_\theta(x) > 0 \} \quad \text{and} \quad x_{(n)} = 1 + \inf \{ \theta : f_\theta(x) > 0 \}.
\]

If \(S(X) \) is a statistic sufficient for \(\theta \), then by Theorem 2.2, there are Borel functions \(h \) and \(g_\theta \) such that \(f_\theta(x) = g_\theta(S(x)) h(x) \).

For \(x \) with \(h(x) > 0 \),

\[
x_{(1)} = \sup \{ \theta : g_\theta(S(x)) > 0 \} \quad \text{and} \quad x_{(n)} = 1 + \inf \{ \theta : g_\theta(S(x)) > 0 \}.
\]

Hence, there is a measurable function \(\psi \) such that \(T(x) = \psi(S(x)) \) when \(h(x) > 0 \).

Since \(h > 0 \), a.s. \(\mathcal{P} \), we conclude that \(T \) is minimal sufficient.

Useful tools for finding minimal sufficient statistics

Finding a minimal sufficient statistic by definition is not convenient. The next theorem is a useful tool.
Example 2.13 (continued)

We now show that \(T = (X_1, X_n) \) is minimal sufficient.

Note that

\[
x_{(1)} = \sup\{ \theta : f_\theta(x) > 0 \} \quad \text{and} \quad x_{(n)} = 1 + \inf\{ \theta : f_\theta(x) > 0 \}.
\]

If \(S(X) \) is a statistic sufficient for \(\theta \), then by Theorem 2.2, there are Borel functions \(h \) and \(g_\theta \) such that \(f_\theta(x) = g_\theta(S(x))h(x) \).

For \(x \) with \(h(x) > 0 \),

\[
x_{(1)} = \sup\{ \theta : g_\theta(S(x)) > 0 \} \quad \text{and} \quad x_{(n)} = 1 + \inf\{ \theta : g_\theta(S(x)) > 0 \}.
\]

Hence, there is a measurable function \(\psi \) such that \(T(x) = \psi(S(x)) \) when \(h(x) > 0 \).

Since \(h > 0 \), a.s. \(\mathcal{P} \), we conclude that \(T \) is minimal sufficient.

Useful tools for finding minimal sufficient statistics

Finding a minimal sufficient statistic by definition is not convenient. The next theorem is a useful tool.
Theorem 2.3

Let \mathcal{P} be a family of distributions on \mathbb{R}^k.

(i) Suppose that $\mathcal{P}_0 \subset \mathcal{P}$ and a.s. \mathcal{P}_0 implies a.s. \mathcal{P}.
If T is sufficient for $P \in \mathcal{P}$ and minimal sufficient for $P \in \mathcal{P}_0$, then T is minimal sufficient for $P \in \mathcal{P}$.

(ii) Suppose that \mathcal{P} contains p.d.f.'s f_0, f_1, f_2, \ldots, w.r.t. a σ-finite measure.
Let $f_\infty(x) = \sum_{i=0}^{\infty} c_i f_i(x)$, where $c_i > 0$ for all i and $\sum_{i=0}^{\infty} c_i = 1$, and let $T_i(x) = f_i(x)/f_\infty(x)$ when $f_\infty(x) > 0$, $i = 0, 1, 2, \ldots$.
Then $T(X) = (T_0, T_1, T_2, \ldots)$ is minimal sufficient for $P \in \mathcal{P}$.
Furthermore, if $\{x: f_i(x) > 0\} \subset \{x: f_0(x) > 0\}$ for all i, then we may replace $f_\infty(x)$ by $f_0(x)$, in which case $T(X) = (T_1, T_2, \ldots)$ is minimal sufficient for $P \in \mathcal{P}$.

(iii) Suppose that \mathcal{P} contains p.d.f.'s f_p w.r.t. a σ-finite measure and that there exists a sufficient statistic $T(X)$ such that, for any possible values x and y of X, $f_p(x) = f_p(y)\phi(x, y)$ for all P implies $T(x) = T(y)$, where ϕ is a measurable function.
Then $T(X)$ is minimal sufficient for $P \in \mathcal{P}$.
Proof

(i) If S is sufficient for $P \in \mathcal{P}$, then it is also sufficient for $P \in \mathcal{P}_0$ and, therefore, $T = \psi(S)$ a.s. \(\mathcal{P}_0 \) holds for a measurable function ψ. The result follows from the assumption that a.s. \mathcal{P}_0 implies a.s. \mathcal{P}.

(ii) Note that $f_\infty > 0$ a.s. \mathcal{P}.
Let $g_i(T) = T_i, \ i = 0, 1, 2, \ldots$.
Then $f_i(x) = g_i(T(x)) f_\infty(x)$ a.s. \mathcal{P}.
By Theorem 2.2, T is sufficient for $P \in \mathcal{P}$.
Suppose that $S(X)$ is another sufficient statistic.
By Theorem 2.2, there are Borel functions h and \tilde{g}_i such that

$$f_i(x) = \tilde{g}_i(S(x)) h(x), \ i = 0, 1, 2, \ldots$$

Then

$$T_i(x) = \tilde{g}_i(S(x)) \left/ \sum_{j=1}^\infty c_j \tilde{g}_j(S(x)) \right.$$

for x’s satisfying $f_\infty(x) > 0$.
By Definition 2.5, T is minimal sufficient for $P \in \mathcal{P}$.
The proof for the case where f_∞ is replaced by f_0 is the same.
(iii) From Bahadur (1957), there is a minimal sufficient statistic \(S(X) \). The result follows if we can show that \(T(X) = \psi(S(X)) \) a.s. \(\mathcal{P} \) for a measurable function \(\psi \).

By Theorem 2.2, there are Borel functions \(h \) and \(g_P \) such that
\[
 f_P(x) = g_P(S(x))h(x) \text{ for all } P.
\]
Let \(A = \{ x : h(x) = 0 \} \).
Then \(P(A) = 0 \) for all \(P \).
For \(x \) and \(y \) such that \(S(x) = S(y) \), \(x \notin A \) and \(y \notin A \),
\[
 f_P(x) = g_P(S(x))h(x) = g_P(S(y))h(x) = f_P(y)h(x)/h(y)
\]
for all \(P \).
Hence \(T(x) = T(y) \).
This shows that there is a function \(\psi \) such that \(T(x) = \psi(S(x)) \) except for \(x \in A \).
It remains to show that \(\psi \) is measurable.
Since \(S \) is minimal sufficient, \(g(T(X)) = S(X) \) a.s. \(\mathcal{P} \) for a measurable function \(g \). Hence \(g \) is one-to-one and \(\psi = g^{-1} \).
By Theorem 3.9 in Parthasarathy (1967), \(\psi \) is measurable.
Let $\mathcal{P} = \{f_\theta : \theta \in \Theta\}$ be an exponential family with p.d.f.'s

$$f_\theta(x) = \exp\{[\eta(\theta)]^\tau T(x) - \xi(\theta)\} h(x).$$

Suppose that there exists $\Theta_0 = \{\theta_0, \theta_1, \ldots, \theta_p\} \subset \Theta$ such that the vectors $\eta_i = \eta(\theta_i) - \eta(\theta_0), \ i = 1, \ldots, p$, are linearly independent in \mathbb{R}^p. (This is true if the family is of full rank).

We have shown that $T(X)$ is sufficient for $\theta \in \Theta$.

We now show that T is in fact minimal sufficient for $\theta \in \Theta$.

Let $\mathcal{P}_0 = \{f_\theta : \theta \in \Theta_0\}$.

Note that the set $\{x : f_\theta(x) > 0\}$ does not depend on θ.

It follows from Theorem 2.3(ii) with $f_\infty = f_{\theta_0}$ that

$$S(X) = \left(\exp\{\eta_1^\tau T(x) - \xi_1\}, \ldots, \exp\{\eta_p^\tau T(x) - \xi_p\}\right)$$

is minimal sufficient for $\theta \in \Theta_0$.

Since η_i’s are linearly independent, there is a one-to-one measurable function ψ such that $T(X) = \psi(S(X))$ a.s. \mathcal{P}_0.

Hence, T is minimal sufficient for $\theta \in \Theta_0$.

It is easy to see that a.s. \mathcal{P}_0 implies a.s. \mathcal{P}.

Thus, by Theorem 2.3(i), T is minimal sufficient for $\theta \in \Theta$.

Example 2.14
Example 2.14 (continued)

We now apply Theorem 2.3(iii) to obtain the same result.

For any \(\theta \),

\[
f_\theta(x)/f_\theta(y) = \exp\{\eta^\tau(\theta)(T(x) - T(y))\} h(x)/h(y)
\]

If, for any \(\theta \),

\[
f_\theta(x)/f_\theta(y) = \phi(x, y)
\]

then

\[
\eta^\tau(\theta)(T(x) - T(y)) = \log(\phi(x, y)) + \log(h(y)/h(x))
\]

Then

\[
[\eta(\theta_i) - \eta(\theta_0)]^\tau (T(x) - T(y)) = 0 \quad i = 1, ..., p.
\]

Since \(\eta(\theta_i) - \eta(\theta_0), \ i = 1, ..., p \), are linearly independent, we have \(T(x) = T(y) \).

By Theorem 2.3(iii), \(T \) is minimal sufficient.

The result in Example 2.13 can be proved by using Theorem 2.3(iii).
Remarks

- The sufficiency (and minimal sufficiency) depends on the postulated family \mathcal{P} of populations (statistical models).
- It may not be a useful concept if the proposed statistical model is wrong or at least one has some doubts about the correctness of the proposed model.
- From the examples in this section and some exercises in §2.6, one can find that for a wide variety of models, statistics such as the sample mean \bar{X}, the sample variance S^2, $(X_{(1)}, X_{(n)})$ in Example 2.11, and the order statistics in Example 2.9 are sufficient.
- Thus, using these statistics for data reduction and summarization does not lose any information when the true model is one of those models but we do not know exactly which model is correct.
- A minimal sufficient statistic is not always the “simplest sufficient statistic”.
- For example, if \bar{X} is minimal sufficient, then so is $(\bar{X}, \exp\{\bar{X}\})$.