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Lecture 19: Construction of unbiased or approximately
unbiased estimators and method of moments
Survey samples from a finite population
Let P = {1, ...,N} be a finite population of interest
For each i ∈P, let yi be a value of interest associated with unit i
Let s = {i1, ..., in} be a subset of distinct elements of P, which is a
sample selected with selection probability p(s), where p is known.
The value yi is observed if and only if i ∈ s.
Y = ∑

N
j=1 yj is the unknown population total of interest.

Define
πi = probability that i ∈ s, i = 1, ...,N.

Horvitz-Thompson estimators
It gives a general method to obtain unbiased estimators.
All we need is the inclusion probability πi , which is known in
sample surveys since p(s) is known.
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Theorem 3.15.
(i) (Horvitz-Thompson). If πi > 0 for i = 1, ...,N and πi is known when

i ∈ s, then Ŷht = ∑i∈s yi/πi is an unbiased estimator of the
population total Y .

(ii) Define

πij = probability that i ∈ s and j ∈ s, i = 1, ...,N, j = 1, ...,N.

Then

Var(Ŷht ) =
N

∑
i=1

1−πi

πi
y2

i + 2
N

∑
i=1

N

∑
j=i+1

πij −πiπj

πiπj
yiyj (1)

=
N

∑
i=1

N

∑
j=i+1

(πiπj −πij)

(
yi

πi
−

yj

πj

)2

. (2)

Horvitz-Thompson’s idea: inverse probability weighting
The unbiasedness of the sample mean under simple random
sampling without replacement is a special case of Theorem 3.15.
Extension: P is a sample of size N and yi is missing if i 6∈ s
If πi is unknown, we need to replace it by an estimator.
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Proof.
(i) Let ai = 1 if i ∈ s and ai = 0 if i 6∈ s, i = 1, ...,N.
Then E(ai) = πi and

E(Ŷht ) = E

(
N

∑
i=1

aiyi

πi

)
=

N

∑
i=1

yi = Y .

(ii) Since a2
i = ai ,

Var(ai) = E(ai)− [E(ai)]2 = πi(1−πi).

Cov(ai ,aj) = E(aiaj)−E(ai)E(aj) = πij −πiπj , i 6= j .
Then

Var(Ŷht ) = Var

(
N

∑
i=1

aiyi

πi

)

=
N

∑
i=1

y2
i

π2
i

Var(ai) + 2
N

∑
i=1

N

∑
j=i+1

yiyj

πiπj
Cov(ai ,aj)

=
N

∑
i=1

1−πi

πi
y2

i + 2
N

∑
i=1

N

∑
j=i+1

πij −πiπj

πiπj
yiyj .
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Proof (continued)
Hence (1) follows.
To show (2), note that

N

∑
i=1

πi = n and ∑
j=1,...,N,j 6=i

πij = (n−1)πi ,

which implies

∑
j=1,...,N,j 6=i

(πij −πiπj) = (n−1)πi −πi(n−πi) =−πi(1−πi).

Hence
N

∑
i=1

1−πi

πi
y2

i =
N

∑
i=1

∑
j=1,...,N,j 6=i

(πiπj −πij)
y2

i

π2
i

=
N

∑
i=1

N

∑
j=i+1

(πiπj −πij)

(
y2

i

π2
i

+
y2

j

π2
j

)

and, (2) follows from (1).
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How do we get an unbiased estimator of Var(Ŷht)?
Using Horvitz-Thompson’s idea, the following estimators are unbiased:

v1 = ∑
i∈s

1−πi

π2
i

y2
i + 2∑

i∈s
∑

j∈s,j>i

πij −πiπj

πiπjπij
yiyj

v2 = ∑
i∈s

∑
j∈s,j>i

πiπj −πij

πij

(
yi

πi
−

yj

πj

)2

.

Simple random sampling without replacement
For simple random sampling without replacement,

πi = E(ai) = P(ai = 1) =

(N−1
n−1

)(N
n

) =
n
N

πij = E(aiaj) = P(ai = 1,aj = 1) =

(N−2
n−2

)(N
n

) =
n(n−1)

N(N−1)

Ŷht =
N
n ∑

i∈s
yi =

N
n

N

∑
i=1

aiyi = N(the sample mean)
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Var(Ŷht ) =
N

∑
i=1

1− n
N

n
N

y2
i + 2

N

∑
i=1

N

∑
j=i+1

n(n−1)
N(N−1) −

n2

N2

n2

N2

yiyj

=
N−n

n

N

∑
i=1

y2
i −

2(N−n)

n(N−1)

N

∑
i=1

N

∑
j=i+1

yiyj

=
N−n

n

[
N

∑
i=1

y2
i −

1
N−1 ∑

i 6=j
yiyj

]

=
N−n

n
N

N−1

N

∑
i=1

(
yi −

Y
N

)2

=
(

1− n
N

) N2

n
1

N−1

N

∑
i=1

(
yi −

Y
N

)2

= N2
(

1− n
N

) S2

n
n
N is called the finite sample fraction and 1− n

N is called the finite
sample correction.
S2 is called the population variance.
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For simple random sampling without replacement, variance estimators
v1 and v2 are the same.

Note that

v1 = ∑
i∈s

1
n
N

n
N −

n2

N2

n2

N2

y2
i + 2∑

i∈s
∑

j∈s,j>i

1
n(n−1)
N(N−1)

n(n−1)
N(N−1) −

n2

N2

n2

N2

yiyj

=
N(N−n)

n2 ∑
i∈s

y2
i −

N(N−n)

n2(n−1) ∑
i ,j∈s,i 6=j

yiyj

=
N(N−n)

n(n−1) ∑
i∈s

y2
i −

N(N−n)

n2(n−1) ∑
i ,j∈s

yiyj

=
N(N−n)

n(n−1)

∑
i∈s

y2
i −

1
n

(
∑
i∈s

yi

)2


= N2
(

1− n
N

) s2

n
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where
s2 =

1
n−1 ∑

i∈s
(yi − ȳ)2

is called the sample variance.

Since E(v1) = Var(Ŷht ), we have shown that E(s2) = S2.

Since s2 is symmetric in its arguments, the early result implies that s2

is a UMVUE of S2 and v1 is a UMVUE of Var(Ŷht ), under simple
random sampling without replacement.

To finish, we note that

v2 = v1 + ∑
i ,j∈s

πij −πiπj

πij

y2
i

π2
i

= v1 + ∑
i ,j∈s

(
1

π2
i
− 1

πij

)
y2

i

= v1 +
N2

n ∑
i∈s

y2
i −

N
n ∑

i∈s
y2

i −
N(N−1)

n(n−1) ∑
i ,j∈s,j 6=i

y2
i

= v1
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Deriving asymptotically unbiased estimators
An exactly unbiased estimator may not exist, or is hard to obtain.
We often derive asymptotically unbiased estimators.
Functions of sample means are popular estimators.

Functions of unbiased estimators
If the parameter to be estimated is ϑ = g(θ) with a vector-valued
parameter θ and Un is a vector of unbiased estimators of components
of θ , then Tn = g(Un) is often asymptotically unbiased for ϑ .
Note that E(Tn) = Eh(Un) may not exist.
Assume that g is differentiable and

cn(Un−θ)→d Y .

Then, by Theorem 2.6,

amseTn (P) = E{[∇g(θ)]τY}2/c2
n

Hence, Tn has a good performance in terms of amse if Un is optimal in
terms of mse (such as the UMVUE or BLUE).
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Method of moments

The method of moments is the oldest method of deriving
asymptotically unbiased estimators, which may not be the best
estimators, but they are simple and can be used as initial estimators.
Consider a parametric problem where X1, ...,Xn are i.i.d. random
variables from Pθ , θ ∈Θ⊂Rk , and E |X1|k < ∞.

Let µj = EX j
1 be the j th moment of P and let

µ̂j =
1
n

n

∑
i=1

X j
i

be the j th sample moment, which is an unbiased estimator of µj ,
j = 1, ...,k .
Typically,

µj = hj(θ), j = 1, ...,k , (3)

for some functions hj on Rk .
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By substituting µj ’s on the left-hand side of (3) by the sample moments
µ̂j , we obtain a moment estimator θ̂ , i.e., θ̂ satisfies

µ̂j = hj(θ̂), j = 1, ...,k ,

which is a sample analogue of (3).
This method of deriving estimators is called the method of moments.
An important statistical principle, the substitution principle, is applied in
this method.
Let µ̂ = (µ̂1, ..., µ̂k ) and h = (h1, ...,hk ).
Then µ̂ = h(θ̂).
If the inverse function h−1 exists, then the unique moment estimator of
θ is θ̂ = h−1(µ̂).
When h−1 does not exist (i.e., h is not one-to-one), any solution of
µ̂ = h(θ̂) is a moment estimator of θ .
If possible, we always choose a solution θ̂ in the parameter space Θ.
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In some cases, however, a moment estimator does not exist (see
Exercise 111).
Moment estimators may not be unique.
We usually use moments with the lowest possible order.
Assume that θ̂ = g(µ̂) for a function g.
If h−1 exists, then g = h−1.
If g is continuous at µ = (µ1, ...,µk ), then θ̂ is strongly consistent for θ ,
since µ̂j →a.s. µj by the SLLN.

If g is differentiable at µ and E |X1|2k < ∞, then θ̂ is asymptotically
normal, by the CLT and Theorem 1.12, and

amse
θ̂

(θ) = n−1[∇g(µ)]τVµ∇g(µ),

where Vµ is a k ×k matrix whose (i , j)th element is µi+j −µi µj .

Furthermore, the n−1 order asymptotic bias of θ̂ is

(2n)−1tr
(

∇
2g(µ)Vµ

)
.
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Example 3.24
Let X1, ...,Xn be i.i.d. from a population Pθ indexed by the parameter
θ = (µ,σ2), where µ = EX1 ∈R and σ2 = Var(X1) ∈ (0,∞).
This includes cases such as the family of normal distributions, double
exponential distributions, or logistic distributions (Table 1.2, page 20).
Since EX1 = µ and EX 2

1 = Var(X1) + (EX1)2 = σ2 + µ2, setting µ̂1 = µ

and µ̂2 = σ2 + µ2 we obtain the moment estimator

θ̂ =

(
X̄ ,

1
n

n

∑
i=1

(Xi − X̄ )2

)
=

(
X̄ ,

n−1
n

S2
)
.

Note that X̄ is unbiased, but n−1
n S2 is not.

If Xi is normal, then θ̂ is sufficient and is nearly the same as an optimal
estimator such as the UMVUE.
On the other hand, if Xi is from a double exponential or logistic
distribution, then θ̂ is not sufficient and can often be improved.
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Example 3.25
Let X1, ...,Xn be i.i.d. from the uniform distribution on (θ1,θ2),
−∞ < θ1 < θ2 < ∞.
Note that

EX1 = (θ1 + θ2)/2 and EX 2
1 = (θ

2
1 + θ

2
2 + θ1θ2)/3.

Setting µ̂1 = EX1 and µ̂2 = EX 2
1 and substituting θ1 in the second

equation by 2µ̂1−θ2 (the first equation), we obtain that
(2µ̂1−θ2)2 + θ

2
2 + (2µ̂1−θ2)θ2 = 3µ̂2,

which is the same as
(θ2− µ̂1)2 = 3(µ̂2− µ̂

2
1 ).

Since θ2 > EX1, we obtain that

θ̂2 = µ̂1 +
√

3(µ̂2− µ̂2
1 ) = X̄ +

√
3(n−1)

n S2

θ̂1 = µ̂1−
√

3(µ̂2− µ̂2
1 ) = X̄ −

√
3(n−1)

n S2.

These estimators are not functions of the sufficient and complete
statistic (X(1),X(n)).
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Example 3.26
Let X1, ...,Xn be i.i.d. from the binomial distribution Bi(p,k) with
unknown parameters k ∈ {1,2, ...} and p ∈ (0,1).
Since

EX1 = kp

and
EX 2

1 = kp(1−p) + k2p2,

we obtain the moment estimators

p̂ = (µ̂1 + µ̂
2
1 − µ̂2)/µ̂1 = 1− n−1

n S2/X̄

and
k̂ = µ̂

2
1/(µ̂1 + µ̂

2
1 − µ̂2) = X̄/(1− n−1

n S2/X̄ ).

The estimator p̂ is in the range of (0,1).
But k̂ may not be an integer.
It can be improved by an estimator that is k̂ rounded to the nearest
positive integer.
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Nonparametric problems
Consider the estimation of the central moments

cj = E(X1−µ1)j =
j

∑
t=0

(
j
t

)
(−µ1)t

µj−t , j = 2, ...,k .

the moment estimator of cj is

ĉj =
j

∑
t=0

(
j
t

)
(−X̄ )t

µ̂j−t =
1
n

n

∑
i=1

(Xi − X̄ )j , j = 2, ...,k ,

which are sample central moments, (µ̂0 = 1).
From the SLLN, ĉj ’s are strongly consistent.
If E |X1|2k < ∞, then

√
n
(
ĉ2−c2, ..., ĉk −ck

)
→d Nk−1(0,D)

where the (i , j)th element of the (k −1)× (k −1) matrix D is

ci+j+2−ci+1cj+1− (i + 1)cicj+2− (j + 1)ci+2cj + (i + 1)(j + 1)cicjc2.
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