Lecture 20: Linear model, the LSE, and UMVUE

Linear Models

One of the most useful statistical models is

Xi=B*Z+¢, i=1,..,n,

where X; is the ith observation and is often called the ith response;

B is a p-vector of unknown parameters (main parameters of interest),
p<nm

Z; is the ith value of a p-vector of explanatory variables (or covariates);
&,...,€n are random errors (not observed).

Data: (X1 ,Z ), aaog (Xn,Zn).

Z’s are nonrandom or given values of a random p-vector, in which
case our analysis is conditioned on 2, ..., Z,.

A matrix form of the model is

X=2B+e, (1)

where X = (Xi,... ) ( ), and Z = the n x p matrix whose

ith row is the vector Zi,i=1,.
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Definition 3.4 (LSE).

Suppose that the range of g in model (6) is B ¢ #P.

A least squares estimator (LSE) of B is defined to be any E € B such
that

X —ZBI12 = min|| X — Zb|2.
| BlI* = min]| (o]

For any | € %P, lfﬁ is called an LSE of /7.
Throughout this book, we consider B = %P unless otherwise stated.
Differentiating || X — Zb||? w.r.t. b, we obtain that any solution of

Z"Zb=2"X
is an LSE of B.
Full rank Z

If the rank of the matrix Z is p, in which case (Z7Z)~" exists and Z is
said to be of full rank, then there is a unique LSE, which is

B=(Z'2)'z°X.

v
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Not full rank Z

If Z is not of full rank, then there are infinitely many LSE’s of .
Any LSE of B is of the form

~

B=(Z2"2)"Z"X,
where (Z°Z)~ is called a generalized inverse of Z*Z and satisfies
VAVAVAVA WAV AV AVS

Generalized inverse matrices are not unique unless Z is of full rank, in
which case (Z°2)” = (Z*2)~!

Assumptions

To study properties of LSE’s of 3, we need some assumptions on the
distribution of X or € (conditional on Z if Z is random and € and Z are
independent).

A1: e is distributed as N,(0,5?/,) with an unknown 2 > 0.
A2: E(¢) =0 and Var(e) = 62/, with an unknown &2 > 0.
A3: E(e) =0and Var(¢) is an unknown matrix.

v
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@ Assumption A1 is the strongest and implies a parametric model.

@ We may assume a slightly more general assumption that € has
the N,,(0, 62 D) distribution with unknown &2 but a known positive
definite matrix D.

Let D~'/2 be the inverse of the square root matrix of D.
Then model (6) with assumption A1 holds if we replace X, Z, and
¢ by the transformed variables X = D-1/2X, Z=D~'/2Z, and
& = D~ 1/2¢, respectively.
@ A similar conclusion can be made for assumption A2.

@ Under assumption A1, the distribution of X is N,(ZB,521,), which
is in an exponential family &2 with parameter
0 = (B,0%) € #P x (0,).

@ However, if the matrix Z is not of full rank, then &2 is not
identifiable (see §2.1.2), since ZB; = ZB, does not imply B = Bo. )
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@ Suppose that the rank of Zis r < p.
Then there is an n x r submatrix Z, of Z such that

Z=2Q (2)
and Z, is of rank r, where Q is a fixed r x p matrix, and
ZB =Z.QB.

e Z is identifiable if we consider the reparameterization f = Q.

@ The new parameterﬁ is in a subspace of P with dimension r.

@ In many applications, we are interested in estimating some linear
functions of B, i.e., ® = I*3 for some | € #P.

@ From the previous discussion, however, estimation of /7 is
meaningless unless | = Q*c for some ¢ € #" so that

' =c*Qp =c*p.

v
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The following result shows that /* is estimable if / = Q*c, which is
also necessary for /* to be estimable under assumption A1.

Theorem 3.6
Assume model (6) with assumption AS3.

(i) A necessary and sufficient condition for / € 2P being Q"c for
somece % isle#(Z2)=%(Z"2Z), where Q is given by (2) and
Z(A) is the smallest linear subspace containing all rows of A.

(i) If e #(2), then the LSE ITE is unique and unbiased for /*f3.

(ii) If I ¢ 2(Z) and assumption A1 holds, then /* is not estimable.

Proof

(i) Note that a € Z(A) iff a= A™b for some vector b.
If /= Q%c, then

|=Qc=Q°Z'Z(Z'Z) "'c=Z"[Z(ZFZ) " c].
Hence I € Z(2).
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Proof (continued)
If € #(Z), then |=Z*{ for some ¢ and

I=(Z.Q)'¢ = Q°c, c=2¢.
(iyIfle #(Z2)=2%2(Z°2Z), then | = Z*Z{ for some ¢ and by

~

B=(Z°2) Z'X,
E(I'B) = E[I*(Z°Z) Z°X| = {7 Z°Z(Z°Z)"Z°ZB = (' Z°ZB = I'B.
If B is any other LSE of B, then, by Z'ZB = Z* X,
IB—IB=¢*(Z°Z)(B—B)={ (Z°X-Z°X) =0.
(iii) Under A1, if there is an estimator h(X,Z) unbiased for /*f3, then
g = / h(x,2)(27) 26 Mexp { ~ 5Lz x — ZBI|?} .
gn
Differentiating w.r.t. B and applying Theorem 2.1 lead to
F =" /@ h(x,Z)(2r)""26~""2(x — ZB)exp {—217Hx— Zﬁu?} dx,

which implies | € Z(2).
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Example 3.12 (Simple linear regression)

Let B = (Bo,B1) € #?and Z; = (1,t), t € #, i =1,....n.
Then model (6) is called a simple linear regression model.

It turns out that
o6 E28)
Yt XLt

This matrix is invertible iff some t’s are different.

Thus, if some t;’s are different, then the unique unbiased LSE of /* for
any | € #? is I(Z*Z)~' Z* X, which has the normal distribution if
assumption A1 holds.

The result can be easily extended to the case of polynomial regression
of order p in which B = (Bo, B1,....Bp_1) and Z; = (1, t;,...,t° ).

Example 3.13 (One-way ANOVA)
Suppose that n= Z/-”; n; with m positive integers ny, ..., nym and that

)(I:I‘L]+8I7 i:l(j71+1""7l(j7j:17"‘7m’

where kg =0, kj = Zj/‘:1 n,j=1,...m,and (iy,....um) = B.
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Let J,, be the m-vector of ones.
Then the matrix Z in this case is a block diagonal matrix with Jnj as the

jth diagonal column.
Consequently, Z*Z is an m x m diagonal matrix whose jth diagonal

element is n;.
Thus, Z*Z is invertible and the unique LSE of B is the m-vector whose

jth component is

n; i=Kj_1+1

Sometimes it is more convenient to use the following notation:
XU Xk 1+j’ 8’] 8kl 1+/7 j:1,...7ni,i:1,...,m,

and

Hi=u—+ o, i=1,..,m.
Then our model becomes

Xij = u+ o+ gj, j=1,..,n,i=1..m, (3)

which is called a one-way analysis of variance (ANOVA) model.
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Under model (3), B = (i, a4, ..., 0tm) € 2™
The matrix Z under model (3) is not of full rank.

An LSE of B under model (3) is
B=(XX0. = X,.... X — X),

where X is still the sample mean of Xj's and Xi. is the sample mean of
the ith group {Xj,j=1,...,n;}.

The notation used in model (3) allows us to generalize the one-way
ANOVA model to any s-way ANOVA model with a positive integer s
under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

Xk =u+oi+Bi+vi+ex, i=1,..aj=1,..,bk=1,..c¢c (4)

where a, b, and ¢ are some positive integers.
Model (4) is called a two-way balanced ANOVA model.
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If we view model (4) as a special case of model (6), then the
parameter vector f3 is

B = (#7051,--‘705371317-~-7ﬁb7?’11a‘--771b7--w?’a1 9 ”'7Yab)’ (5)

One can obtain the matrix Z and show that it is n x p, where n= abc
and p=1+a+b+ab, and is of rank ab < p.

It can also be shown that an LSE of 8 is given by the right-hand side of
(5) with u, o, B, and v; replaced by i, @;, B;, and 7, respectively,
where

=X,

Xi.—X.,
X —X

I =)

) K

/}7,']' = X,'j. = X,‘.. = )_(/ —l—)_(.‘.,
and a dot is used to denote averaging over the indicated subscript,
e.g., with a fixed j,

Z ZXl/k

/1k
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Theorem 3.7 (UMVUE).
Consider model

X=2ZB+¢ (6)
with assumption A1 (e is distributed as N,,(O,O'Zln) with an unknown
o2 > 0).

Then

(i) The LSE lfﬁ is the UMVUE of /7B for any estimable /3.

(i) The UMVUE of 62 is 62 = (n—r)~"| X — ZB||?, where r is the rank
of Z.

Proof of (i)

Let ﬁ be an LSE of .
By Z°Z2b=27"X,

v

(X—ZB)°Z(B—B)=(XZ-X°Z)(B—B)=0

and, hence,

v
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IX —ZB|? =X -ZB+ZB - ZB|?
=|IX - ZB|2+1ZB - ZB|?
— |IX—ZB|2—2B°Z" X +||ZB][? + | ZB]I?.

Using this result and assumption A1, we obtain the following joint
Lebesgue p.d.f. of X:

(276%) " 2exp { BZx _ 1x-ZBIEHIZBIE _ |1ZB)? }

c? 20 20

By Proposition 2.1 and the fact that ZE =Z(Z*Z)" Z* X is a function of
Z' X, the statistic (Z°X, || X — ZEHZ) is complete and sufficient for

6 = (B,c?).

Note that ﬁ is a function of Z*X and, hence, a function of the complete
sufficient statistic.

If I*B is estimable, then ITE is unbiased for /" (Theorem 3.6) and,
hence, I°B is the UMVUE of /*B.
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Proof of (ii)

From || X — ZB||2 = ||X — ZB|[2 +||ZB — ZB|? and E(ZB) = Z
(Theorem 3.6),

E||IX - ZB|[® = E(X — ZB)*(X — ZB) — E(B— B)"Z°Z(p — B)

—tr ( Var(X) — Var(zii)>
=o?[n-tr(2(Z°2) Z°Z2(Z°Z) Z%)]
=o?n-tr((Z°2) Z°2)).

Since each row of Z € Z(Z), Zﬁ does not depend on the choice of

(Z°Z)" in B =(Z7Z)"Z°X (Theorem 3.6).

Hence, we can evaluate tr((Z°Z)~Z*Z) using a particular (Z°Z)".

From the theory of linear algebra, there exists a p x p matrix C such

that CC® = |, and
e/ (N O
C(ZZ)C_<O o)’
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Then, a particular choice of (Z7Z) is

e A (N0 A
(Z°2) :C(O O)c (7)

(Z°Z)y Z°Z=C (g 8) c*

whose trace is r.

Hence 62 is the UMVUE of 6?2, since it is a function of the complete
sufficient statistic and

EG2=(n—r)"E||IX - ZB|? = o2

Residual vector

@ The vector X — ZE is called the residual vector and ||X—Z/§||2 is
called the sum of squared residuals and is denoted by SSR.

@ The estimator 62 is then equal to SSR/(n—r).
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@ The Fisher information matrix is

1<2fz o)
o2 0 %

@ The UMVUE /TE attains the information lower bound, but not 62.

@ Since ~
X-2ZB=[lh-2(Z2°2)"Z°1X

and
/Tﬁ 1"(Z*2)~"Z"X
are linear in X, they are normally distributed under assumption A1.
@ Also, using the generalized inverse matrix in (7), we obtain that
[Ih—2(Z2°2)"Z2YZ(Z2°2) =Z2(Z2°2)" - Z(Z*Z2)"Z*Z2(Z*Z)” =0,
which implies that 62 and /TE are independent (Exercise 58 in
§1.6) for any estimable /*.

@ Z(Z*Z) Z" is a projection matrix, [Z(ZTZ)—ZT]2 =2(Z"2) Z°,
hence

SSR=X"[l,~ Z(Z°Z)" Z"X.
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@ Therankof Z(Z7Z) Z%istr(Z(Z°Z2) " Z%) =rr.
@ Similarly, the rank of the projection matrix I,— Z(Z*2Z)~Z%is n—r.
@ From

XX = XY[Z(Z2°2) Z\X + X[l — Z(Z°2)~ ZF) X

and Theorem 1.5 (Cochran’s theorem), SSR/c? has the
chi-square distribution x2_,(8) with

§=02B"Zl,—2(Z°2)"Z°|ZB = 0.

Thus, we have proved the following result.

Theorem 3.8.

Consider model (6) with assumption A1. For any estimable parameter
I*B, the UMVUE’s I*B and 62 are independent; the distribution of /*B is
N(I*B,c?I*(Z*Z)~1); and (n—r)62 /o2 has the chi-square distribution

2
i
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