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Lecture 20: Linear model, the LSE, and UMVUE
Linear Models
One of the most useful statistical models is

Xi = β
τZi + εi , i = 1, ...,n,

where Xi is the i th observation and is often called the i th response;
β is a p-vector of unknown parameters (main parameters of interest),
p < n;
Zi is the i th value of a p-vector of explanatory variables (or covariates);
ε1, ...,εn are random errors (not observed).

Data: (X1,Z1), ...,(Xn,Zn).
Zi ’s are nonrandom or given values of a random p-vector, in which
case our analysis is conditioned on Z1, ...,Zn.
A matrix form of the model is

X = Zβ + ε, (1)

where X = (X1, ...,Xn), ε = (ε1, ...,εn), and Z = the n×p matrix whose
i th row is the vector Zi , i = 1, ...,n.
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Definition 3.4 (LSE).
Suppose that the range of β in model (6) is B ⊂Rp.
A least squares estimator (LSE) of β is defined to be any β̂ ∈ B such
that

‖X −Z β̂‖2 = min
b∈B
‖X −Zb‖2.

For any l ∈Rp, lτ β̂ is called an LSE of lτβ .
Throughout this book, we consider B = Rp unless otherwise stated.
Differentiating ‖X −Zb‖2 w.r.t. b, we obtain that any solution of

Z τZb = Z τX

is an LSE of β .

Full rank Z
If the rank of the matrix Z is p, in which case (Z τZ )−1 exists and Z is
said to be of full rank, then there is a unique LSE, which is

β̂ = (Z τZ )−1Z τX .

UW-Madison (Statistics) Stat 709 Lecture 20 2018 2 / 17



beamer-tu-logo

Not full rank Z
If Z is not of full rank, then there are infinitely many LSE’s of β .
Any LSE of β is of the form

β̂ = (Z τZ )−Z τX ,

where (Z τZ )− is called a generalized inverse of Z τZ and satisfies

Z τZ (Z τZ )−Z τZ = Z τZ .

Generalized inverse matrices are not unique unless Z is of full rank, in
which case (Z τZ )− = (Z τZ )−1

Assumptions
To study properties of LSE’s of β , we need some assumptions on the
distribution of X or ε (conditional on Z if Z is random and ε and Z are
independent).
A1: ε is distributed as Nn(0,σ2In) with an unknown σ2 > 0.
A2: E(ε) = 0 and Var(ε) = σ2In with an unknown σ2 > 0.
A3: E(ε) = 0 and Var(ε) is an unknown matrix.
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Remarks
Assumption A1 is the strongest and implies a parametric model.
We may assume a slightly more general assumption that ε has
the Nn(0,σ2D) distribution with unknown σ2 but a known positive
definite matrix D.
Let D−1/2 be the inverse of the square root matrix of D.
Then model (6) with assumption A1 holds if we replace X , Z , and
ε by the transformed variables X̃ = D−1/2X , Z̃ = D−1/2Z , and
ε̃ = D−1/2ε, respectively.
A similar conclusion can be made for assumption A2.
Under assumption A1, the distribution of X is Nn(Zβ ,σ2In), which
is in an exponential family P with parameter
θ = (β ,σ2) ∈Rp× (0,∞).
However, if the matrix Z is not of full rank, then P is not
identifiable (see §2.1.2), since Zβ1 = Zβ2 does not imply β1 = β2.
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Remarks
Suppose that the rank of Z is r ≤ p.
Then there is an n× r submatrix Z∗ of Z such that

Z = Z∗Q (2)

and Z∗ is of rank r , where Q is a fixed r ×p matrix, and

Zβ = Z∗Qβ .

P is identifiable if we consider the reparameterization β̃ = Qβ .
The new parameter β̃ is in a subspace of Rp with dimension r .
In many applications, we are interested in estimating some linear
functions of β , i.e., ϑ = lτβ for some l ∈Rp.
From the previous discussion, however, estimation of lτβ is
meaningless unless l = Qτc for some c ∈Rr so that

lτ
β = cτQβ = cτ

β̃ .
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The following result shows that lτβ is estimable if l = Qτc, which is
also necessary for lτβ to be estimable under assumption A1.

Theorem 3.6
Assume model (6) with assumption A3.

(i) A necessary and sufficient condition for l ∈Rp being Qτc for
some c ∈Rr is l ∈R(Z ) = R(Z τZ ), where Q is given by (2) and
R(A) is the smallest linear subspace containing all rows of A.

(ii) If l ∈R(Z ), then the LSE lτ β̂ is unique and unbiased for lτβ .
(iii) If l 6∈R(Z ) and assumption A1 holds, then lτβ is not estimable.

Proof
(i) Note that a ∈R(A) iff a = Aτb for some vector b.
If l = Qτc, then

l = Qτc = QτZ τ
∗ Z∗(Z τ

∗ Z∗)−1c = Z τ [Z∗(Z τ
∗ Z∗)−1c].

Hence l ∈R(Z ).
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Proof (continued)
If l ∈R(Z ), then l = Z τζ for some ζ and

l = (Z∗Q)τ
ζ = Qτc, c = Z τ

∗ ζ .

(ii) If l ∈R(Z ) = R(Z τZ ), then l = Z τZζ for some ζ and by
β̂ = (Z τZ )−Z τX ,

E(lτ
β̂ ) = E [lτ (Z τZ )−Z τX ] = ζ

τZ τZ (Z τZ )−Z τZβ = ζ
τZ τZβ = lτ

β .

If β̄ is any other LSE of β , then, by Z τZ β̄ = Z τX ,

lτ
β̂ − lτ

β̄ = ζ
τ (Z τZ )(β̂ − β̄ ) = ζ

τ (Z τX −Z τX ) = 0.

(iii) Under A1, if there is an estimator h(X ,Z ) unbiased for lτβ , then

lτ
β =

∫
Rn

h(x ,Z )(2π)−n/2
σ
−n exp

{
− 1

2σ2 ‖x−Zβ‖2
}

dx .

Differentiating w.r.t. β and applying Theorem 2.1 lead to

lτ = Z τ

∫
Rn

h(x ,Z )(2π)−n/2
σ
−n−2(x −Zβ )exp

{
− 1

2σ2 ‖x −Zβ‖2
}

dx ,

which implies l ∈R(Z ).
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Example 3.12 (Simple linear regression)

Let β = (β0,β1) ∈R2 and Zi = (1, ti), ti ∈R, i = 1, ...,n.
Then model (6) is called a simple linear regression model.
It turns out that (

n ∑
n
i=1 ti

∑
n
i=1 ti ∑

n
i=1 t2

i

)
.

This matrix is invertible iff some ti ’s are different.
Thus, if some ti ’s are different, then the unique unbiased LSE of lτβ for
any l ∈R2 is lτ (Z τZ )−1Z τX , which has the normal distribution if
assumption A1 holds.

The result can be easily extended to the case of polynomial regression
of order p in which β = (β0,β1, ...,βp−1) and Zi = (1, ti , ..., t

p−1
i ).

Example 3.13 (One-way ANOVA)
Suppose that n = ∑

m
j=1 nj with m positive integers n1, ...,nm and that

Xi = µj + εi , i = kj−1 + 1, ...,kj , j = 1, ...,m,

where k0 = 0, kj = ∑
j
l=1 nl , j = 1, ...,m, and (µ1, ...,µm) = β .
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Let Jm be the m-vector of ones.
Then the matrix Z in this case is a block diagonal matrix with Jnj as the
j th diagonal column.
Consequently, Z τZ is an m×m diagonal matrix whose j th diagonal
element is nj .
Thus, Z τZ is invertible and the unique LSE of β is the m-vector whose
j th component is

1
nj

kj

∑
i=kj−1+1

Xi , j = 1, ...,m.

Sometimes it is more convenient to use the following notation:

Xij = Xki−1+j , εij = εki−1+j , j = 1, ...,ni , i = 1, ...,m,

and
µi = µ + αi , i = 1, ...,m.

Then our model becomes

Xij = µ + αi + εij , j = 1, ...,ni , i = 1, ...,m, (3)

which is called a one-way analysis of variance (ANOVA) model.
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Under model (3), β = (µ,α1, ...,αm) ∈Rm+1.
The matrix Z under model (3) is not of full rank.

An LSE of β under model (3) is

β̂ =
(
X̄ , X̄1·− X̄ , ..., X̄m·− X̄

)
,

where X̄ is still the sample mean of Xij ’s and X̄i · is the sample mean of
the i th group {Xij , j = 1, ...,ni}.

The notation used in model (3) allows us to generalize the one-way
ANOVA model to any s-way ANOVA model with a positive integer s
under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)
Suppose that

Xijk = µ + αi + βj + γij + εijk , i = 1, ...,a, j = 1, ...,b,k = 1, ...,c, (4)

where a, b, and c are some positive integers.
Model (4) is called a two-way balanced ANOVA model.
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If we view model (4) as a special case of model (6), then the
parameter vector β is

β = (µ,α1, ...,αa,β1, ...,βb,γ11, ...,γ1b, ...,γa1, ...,γab). (5)

One can obtain the matrix Z and show that it is n×p, where n = abc
and p = 1 + a + b + ab, and is of rank ab < p.
It can also be shown that an LSE of β is given by the right-hand side of
(5) with µ, αi , βj , and γij replaced by µ̂, α̂i , β̂j , and γ̂ij , respectively,
where

µ̂ = X̄···,

α̂i = X̄i ··− X̄···,

β̂j = X̄·j ·− X̄···,

γ̂ij = X̄ij ·− X̄i ··− X̄·j ·+ X̄···,
and a dot is used to denote averaging over the indicated subscript,
e.g., with a fixed j ,

X̄·j · =
1
ac

a

∑
i=1

c

∑
k=1

Xijk
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Theorem 3.7 (UMVUE).
Consider model

X = Zβ + ε (6)

with assumption A1 (ε is distributed as Nn(0,σ2In) with an unknown
σ2 > 0).
Then

(i) The LSE lτ β̂ is the UMVUE of lτβ for any estimable lτβ .

(ii) The UMVUE of σ2 is σ̂2 = (n− r)−1‖X −Z β̂‖2, where r is the rank
of Z .

Proof of (i)

Let β̂ be an LSE of β .
By Z τZb = Z τX ,

(X −Z β̂ )τZ (β̂ −β ) = (X τZ −X τZ )(β̂ −β ) = 0

and, hence,
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‖X −Zβ‖2 = ‖X −Z β̂ + Z β̂ −Zβ‖2

= ‖X −Z β̂‖2 +‖Z β̂ −Zβ‖2

= ‖X −Z β̂‖2−2β
τZ τX +‖Zβ‖2 +‖Z β̂‖2.

Using this result and assumption A1, we obtain the following joint
Lebesgue p.d.f. of X :

(2πσ
2)−n/2exp

{
β τ Z τ x

σ2 −
‖x−Z β̂‖2+‖Z β̂‖2

2σ2 − ‖Zβ‖2
2σ2

}
.

By Proposition 2.1 and the fact that Z β̂ = Z (Z τZ )−Z τX is a function of
Z τX , the statistic (Z τX ,‖X −Z β̂‖2) is complete and sufficient for
θ = (β ,σ2).

Note that β̂ is a function of Z τX and, hence, a function of the complete
sufficient statistic.
If lτβ is estimable, then lτ β̂ is unbiased for lτβ (Theorem 3.6) and,
hence, lτ β̂ is the UMVUE of lτβ .
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Proof of (ii)

From ‖X −Zβ‖2 = ‖X −Z β̂‖2 +‖Z β̂ −Zβ‖2 and E(Z β̂ ) = Zβ

(Theorem 3.6),

E‖X −Z β̂‖2 = E(X −Zβ )τ (X −Zβ )−E(β − β̂ )τZ τZ (β − β̂ )

= tr
(

Var(X )− Var(Z β̂ )
)

= σ
2[n− tr

(
Z (Z τZ )−Z τZ (Z τZ )−Z τ

)
]

= σ
2[n− tr

(
(Z τZ )−Z τZ

)
].

Since each row of Z ∈R(Z ), Z β̂ does not depend on the choice of
(Z τZ )− in β̂ = (Z τZ )−Z τX (Theorem 3.6).
Hence, we can evaluate tr((Z τZ )−Z τZ ) using a particular (Z τZ )−.
From the theory of linear algebra, there exists a p×p matrix C such
that CCτ = Ip and

Cτ (Z τZ )C =

(
Λ 0
0 0

)
,

where Λ is an r × r diagonal matrix whose diagonal elements are
positive.
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Then, a particular choice of (Z τZ )− is

(Z τZ )− = C
(

Λ−1 0
0 0

)
Cτ (7)

and

(Z τZ )−Z τZ = C
(

Ir 0
0 0

)
Cτ

whose trace is r .
Hence σ̂2 is the UMVUE of σ2, since it is a function of the complete
sufficient statistic and

E σ̂
2 = (n− r)−1E‖X −Z β̂‖2 = σ

2.

Residual vector

The vector X −Z β̂ is called the residual vector and ‖X −Z β̂‖2 is
called the sum of squared residuals and is denoted by SSR.
The estimator σ̂2 is then equal to SSR/(n− r).
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The Fisher information matrix is

1
σ2

(
Z τZ 0

0 n
2σ2

)
The UMVUE lτ β̂ attains the information lower bound, but not σ̂2.
Since

X −Z β̂ = [In−Z (Z τZ )−Z τ ]X

and
lτ

β̂ = lτ (Z τZ )−Z τX
are linear in X , they are normally distributed under assumption A1.
Also, using the generalized inverse matrix in (7), we obtain that

[In−Z (Z τZ )−Z τ ]Z (Z τZ )− = Z (Z τZ )−−Z (Z τZ )−Z τZ (Z τZ )− = 0,

which implies that σ̂2 and lτ β̂ are independent (Exercise 58 in
§1.6) for any estimable lτβ .
Z (Z τZ )−Z τ is a projection matrix, [Z (Z τZ )−Z τ ]2 = Z (Z τZ )−Z τ ,
hence

SSR = X τ [In−Z (Z τZ )−Z τ ]X .
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The rank of Z (Z τZ )−Z τ is tr(Z (Z τZ )−Z τ ) = r .
Similarly, the rank of the projection matrix In−Z (Z τZ )−Z τ is n− r .
From

X τX = X τ [Z (Z τZ )−Z τ ]X + X τ [In−Z (Z τZ )−Z τ ]X

and Theorem 1.5 (Cochran’s theorem), SSR/σ2 has the
chi-square distribution χ2

n−r (δ ) with

δ = σ
−2

β
τZ τ [In−Z (Z τZ )−Z τ ]Zβ = 0.

Thus, we have proved the following result.

Theorem 3.8.
Consider model (6) with assumption A1. For any estimable parameter
lτβ , the UMVUE’s lτ β̂ and σ̂2 are independent; the distribution of lτ β̂ is
N(lτβ ,σ2lτ (Z τZ )−l); and (n− r)σ̂2/σ2 has the chi-square distribution
χ2

n−r .
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