Motivation

A statistic $V(X)$ is ancillary if its distribution does not depend on the population P.

$V(X)$ is first-order ancillary if $E[V(X)]$ is independent of P.

A trivial ancillary statistic is the constant statistic $V(X) \equiv c \in \mathbb{R}$.

If $V(X)$ is a nontrivial ancillary statistic, then $\sigma(V(X)) \subset \sigma(X)$ is a nontrivial σ-field that does not contain any information about P.

Hence, if $S(X)$ is a statistic and $V(S(X))$ is a nontrivial ancillary statistic, it indicates that $\sigma(S(X))$ contains a nontrivial σ-field that does not contain any information about P and, hence, the “data” $S(X)$ may be further reduced.

A sufficient statistic T appears to be most successful in reducing the data if no nonconstant function of T is ancillary or even first-order ancillary.

This leads to the following definition.
Finding a complete and sufficient statistic

Definition 2.6 (Completeness)

A statistic $T(X)$ is said to be complete for $P \in \mathcal{P}$ iff, for any Borel f, $E[f(T)] = 0$ for all $P \in \mathcal{P}$ implies $f = 0$ a.s. \mathcal{P}.

T is said to be boundedly complete iff the previous statement holds for any bounded Borel f.

Remarks

- A complete statistic is boundedly complete.
- If T is complete (or boundedly complete) and $S = \psi(T)$ for a measurable ψ, then S is complete (or boundedly complete).
- Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).
- A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient statistic $(X_{(1)}, X_{(n)})$ in Example 2.13 is not complete (Exercise 47).
Definition 2.6 (Completeness)

A statistic $T(X)$ is said to be complete for $P \in \mathcal{P}$ iff, for any Borel f, $E[f(T)] = 0$ for all $P \in \mathcal{P}$ implies $f = 0$ a.s. \mathcal{P}.

T is said to be boundedly complete iff the previous statement holds for any bounded Borel f.

Remarks

- A complete statistic is boundedly complete.
- If T is complete (or boundedly complete) and $S = \psi(T)$ for a measurable ψ, then S is complete (or boundedly complete).
- Intuitively, a complete and sufficient statistic should be minimal sufficient (Exercise 48).
- A minimal sufficient statistic is not necessarily complete; for example, the minimal sufficient statistic $(X_{(1)}, X_{(n)})$ in Example 2.13 is not complete (Exercise 47).
Proposition 2.1

If \(P \) is in an exponential family of full rank with p.d.f.’s given by

\[
f_\eta(x) = \exp\{\eta^\tau T(x) - \zeta(\eta)\}h(x),
\]

then \(T(X) \) is complete and sufficient for \(\eta \in \Xi \).

Proof

We have shown that \(T \) is sufficient. We now show that \(T \) is complete.
Suppose that there is a function \(f \) such that \(E[f(T)] = 0 \) for all \(\eta \in \Xi \).
By Theorem 2.1(i),

\[
\int f(t) \exp\{\eta^\tau t - \zeta(\eta)\} d\lambda = 0 \quad \text{for all } \eta \in \Xi,
\]

where \(\lambda \) is a measure on \((\mathbb{R}^p, \mathcal{B}^p)\).
Proposition 2.1

If P is in an exponential family of full rank with p.d.f.'s given by

$$f_{\eta}(x) = \exp\left\{\eta \tau(T(x)) - \zeta(\eta)\right\}h(x),$$

then $T(X)$ is complete and sufficient for $\eta \in \Xi$.

Proof

We have shown that T is sufficient.
We now show that T is complete.
Suppose that there is a function f such that $E[f(T)] = 0$ for all $\eta \in \Xi$.
By Theorem 2.1(i),

$$\int f(t) \exp\{\eta \tau t - \zeta(\eta)\}d\lambda = 0 \text{ for all } \eta \in \Xi,$$

where λ is a measure on $(\mathbb{R}^p, \mathcal{B}^p)$.
Proof (continued)

Let \(\eta_0 \) be an interior point of \(\Xi \). Then

\[
\int f_+(t)e^{\eta^t}d\lambda = \int f_-(t)e^{\eta^t}d\lambda \quad \text{for all } \eta \in N(\eta_0),
\]

where \(N(\eta_0) = \{ \eta \in \mathbb{R}^p : \| \eta - \eta_0 \| < \varepsilon \} \) for some \(\varepsilon > 0 \).

In particular,

\[
\int f_+(t)e^{\eta_0^t}d\lambda = \int f_-(t)e^{\eta_0^t}d\lambda = c.
\]

If \(c = 0 \), then \(f = 0 \) a.e. \(\lambda \).

If \(c > 0 \), then \(c^{-1}f_+(t)e^{\eta_0^t} \) and \(c^{-1}f_-(t)e^{\eta_0^t} \) are p.d.f.'s w.r.t. \(\lambda \) and result (1) implies that their m.g.f.'s are the same in a neighborhood of 0. By Theorem 1.6(ii), \(c^{-1}f_+(t)e^{\eta_0^t} = c^{-1}f_-(t)e^{\eta_0^t} \), i.e., \(f = f_+ - f_- = 0 \) a.e. \(\lambda \).

Hence \(T \) is complete.
Example 2.15

Suppose that X_1, \ldots, X_n are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, $\mu \in \mathbb{R}$, $\sigma > 0$.

From Example 2.6, the joint p.d.f. of X_1, \ldots, X_n is

$$(2\pi)^{-n/2} \exp \left\{ \eta_1 T_1 + \eta_2 T_2 - n \zeta(\eta) \right\},$$

where $T_1 = \sum_{i=1}^n X_i$, $T_2 = -\sum_{i=1}^n X_i^2$, and $\eta = (\eta_1, \eta_2) = \left(\frac{\mu}{\sigma^2}, \frac{1}{2\sigma^2} \right)$.

Hence, the family of distributions for $X = (X_1, \ldots, X_n)$ is a natural exponential family of full rank ($\Xi = \mathbb{R} \times (0, \infty)$).

By Proposition 2.1, $T(X) = (T_1, T_2)$ is complete and sufficient for η.

Since there is a one-to-one correspondence between η and $\theta = (\mu, \sigma^2)$, T is also complete and sufficient for θ.

It can be shown that any one-to-one measurable function of a complete and sufficient statistic is also complete and sufficient (exercise).

Thus, (\bar{X}, S^2) is complete and sufficient for θ, where \bar{X} and S^2 are the sample mean and sample variance, respectively.
Example 2.16

Let X_1, \ldots, X_n be i.i.d. random variables from P_θ, the uniform distribution $U(0, \theta)$, $\theta > 0$.

The largest order statistic, $X_{(n)}$, is complete and sufficient for $\theta \in (0, \infty)$. The sufficiency of $X_{(n)}$ follows from the fact that the joint Lebesgue p.d.f. of X_1, \ldots, X_n is $\theta^{-n} I_{(0, \theta)}(x_{(n)})$.

From Example 2.9, $X_{(n)}$ has the Lebesgue p.d.f. $(nx^{n-1}/\theta^n)I_{(0, \theta)}(x)$. Let f be a Borel function on $[0, \infty)$ such that $E[f(X_{(n)})] = 0$ for all $\theta > 0$. Then

\[
\int_0^\theta f(x)x^{n-1} \, dx = 0 \quad \text{for all } \theta > 0.
\]

Let $G(\theta)$ be the left-hand side of the previous equation. Applying the result of differentiation of an integral (see, e.g., Royden (1968, §5.3)), we obtain that $G'(\theta) = f(\theta)\theta^{n-1}$ a.e. m_+, where m_+ is the Lebesgue measure on $([0, \infty), \mathcal{B}_{[0, \infty)})$.

Since $G(\theta) = 0$ for all $\theta > 0$, $f(\theta)\theta^{n-1} = 0$ a.e. m_+ and, hence, $f(x) = 0$ a.e. m_+.

Therefore, $X_{(n)}$ is complete and sufficient for $\theta \in (0, \infty)$.
Example 2.17

In Example 2.12, we showed that the order statistics $T(X) = (X_{(1)}, ..., X_{(n)})$ of i.i.d. random variables $X_1, ..., X_n$ is sufficient for $P \in \mathcal{P}$, where \mathcal{P} is the family of distributions on \mathbb{R} having Lebesgue p.d.f.’s.

We now show that $T(X)$ is also complete for $P \in \mathcal{P}$.

Let \mathcal{P}_0 be the family of Lebesgue p.d.f.’s of the form

$$f(x) = C(\theta_1, ..., \theta_n) \exp\{-x^{2n} + \theta_1 x + \theta_2 x^2 + \cdots + \theta_n x^n\},$$

where $\theta_j \in \mathbb{R}$ and $C(\theta_1, ..., \theta_n)$ is a normalizing constant such that $\int f(x)dx = 1$.

Then $\mathcal{P}_0 \subset \mathcal{P}$ and \mathcal{P}_0 is an exponential family of full rank.

Note that the joint distribution of $X = (X_1, ..., X_n)$ is also in an exponential family of full rank.

Thus, by Proposition 2.1, $U = (U_1, ..., U_n)$ is a complete statistic for $P \in \mathcal{P}_0$, where $U_j = \sum_{i=1}^{n} X_i^j$.

Since a.s. \mathcal{P}_0 implies a.s. \mathcal{P}, $U(X)$ is also complete for $P \in \mathcal{P}$.
Example 2.17 (continued)

The result follows if we can show that there is a one-to-one correspondence between $T(X)$ and $U(X)$.

Let $V_1 = \sum_{i=1}^{n} X_i$, $V_2 = \sum_{i<j} X_i X_j$, $V_3 = \sum_{i<j<k} X_i X_j X_k$, ..., $V_n = X_1 \cdots X_n$.

From the identities

$$U_k - V_1 U_{k-1} + V_2 U_{k-2} - \cdots + (-1)^{k-1} V_{k-1} U_1 + (-1)^k k V_k = 0,$$

$k = 1, ..., n$, there is a one-to-one correspondence between $U(X)$ and $V(X) = (V_1, ..., V_n)$.

From the identity

$$(t - X_1) \cdots (t - X_n) = t^n - V_1 t^{n-1} + V_2 t^{n-2} - \cdots + (-1)^n V_n,$$

there is a one-to-one correspondence between $V(X)$ and $T(X)$.

This completes the proof and, hence, $T(X)$ is sufficient and complete for $P \in \mathcal{P}$.

In fact, both $U(X)$ and $V(X)$ are sufficient and complete for $P \in \mathcal{P}$.
The relationship between an ancillary statistic and a complete and sufficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem)

Let V and T be two statistics of X from a population $P \in \mathcal{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathcal{P}$, then V and T are independent w.r.t. any $P \in \mathcal{P}$.

Proof

Let B be an event on the range of V. Since V is ancillary, $P(V^{-1}(B))$ is a constant. As T is sufficient, $E[I_B(V)|T]$ is a function of T (not dependent on P). Because

$$E\{E[I_B(V)|T] - P(V^{-1}(B))\} = 0 \quad \text{for all } P \in \mathcal{P},$$

by the bounded completeness of T,

$$P(V^{-1}(B)|T) = E[I_B(V)|T] = P(V^{-1}(B)) \quad \text{a.s. } \mathcal{P}$$
The relationship between an ancillary statistic and a complete and sufficient statistic is characterized in the following result.

Theorem 2.4 (Basu’s theorem)

Let V and T be two statistics of X from a population $P \in \mathcal{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathcal{P}$, then V and T are independent w.r.t. any $P \in \mathcal{P}$.

Proof

Let B be an event on the range of V. Since V is ancillary, $P(V^{-1}(B))$ is a constant. As T is sufficient, $E[I_B(V) \mid T]$ is a function of T (not dependent on P). Because

$$E\{E[I_B(V) \mid T] - P(V^{-1}(B))\} = 0 \quad \text{for all } P \in \mathcal{P},$$

by the bounded completeness of T,

$$P(V^{-1}(B) \mid T) = E[I_B(V) \mid T] = P(V^{-1}(B)) \quad \text{a.s. } \mathcal{P}$$
Proof (continued)

Let A be an event on the range of T. Then

$$P(T^{-1}(A) \cap V^{-1}(B)) = E\{E[I_A(T)I_B(V)|T]\} = E\{I_A(T)E[I_B(V)|T]\}$$

$$= E\{I_A(T)P(V^{-1}(B))\} = P(T^{-1}(A))P(V^{-1}(B)).$$

Hence T and V are independent w.r.t. any $P \in \mathcal{P}$.

Remark

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18

Suppose that $X_1, ..., X_n$ are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, with $\mu \in \mathbb{R}$ and a known $\sigma > 0$. It can be easily shown that the family $\{N(\mu, \sigma^2) : \mu \in \mathbb{R}\}$ is an exponential family of full rank with natural parameter $\eta = \mu/\sigma^2$. By Proposition 2.1, the sample mean \bar{X} is complete and sufficient for η (and μ).
Proof (continued)

Let A be an event on the range of T. Then

$$P(T^{-1}(A) \cap V^{-1}(B)) = E\{E[I_A(T)I_B(V)|T]\} = E\{I_A(T)E[I_B(V)|T]\} = E\{I_A(T)P(V^{-1}(B))\} = P(T^{-1}(A))P(V^{-1}(B)).$$

Hence T and V are independent w.r.t. any $P \in \mathcal{P}$.

Remark

Basu's theorem is useful in proving the independence of two statistics.

Example 2.18

Suppose that X_1, \ldots, X_n are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, with $\mu \in \mathbb{R}$ and a known $\sigma > 0$.

It can be easily shown that the family $\{N(\mu, \sigma^2) : \mu \in \mathbb{R}\}$ is an exponential family of full rank with natural parameter $\eta = \mu / \sigma^2$.

By Proposition 2.1, the sample mean \bar{X} is complete and sufficient for η (and μ).
Proof (continued)

Let A be an event on the range of T. Then

\[
P(T^{-1}(A) \cap V^{-1}(B)) = E\{E[I_A(T)I_B(V) | T]\} = E\{I_A(T)E[I_B(V) | T]\}
\]

\[
= E\{I_A(T)P(V^{-1}(B))\} = P(T^{-1}(A))P(V^{-1}(B)).
\]

Hence T and V are independent w.r.t. any $P \in \mathcal{P}$.

Remark

Basu’s theorem is useful in proving the independence of two statistics.

Example 2.18

Suppose that X_1, \ldots, X_n are i.i.d. random variables having the $N(\mu, \sigma^2)$ distribution, with $\mu \in \mathbb{R}$ and a known $\sigma > 0$. It can be easily shown that the family $\{N(\mu, \sigma^2) : \mu \in \mathbb{R}\}$ is an exponential family of full rank with natural parameter $\eta = \mu / \sigma^2$. By Proposition 2.1, the sample mean \bar{X} is complete and sufficient for η (and μ).
Example 2.18 (continued)

Let S^2 be the sample variance.
Since $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2$, where $Z_i = X_i - \mu$ is $N(0, \sigma^2)$ and $\bar{Z} = n^{-1} \sum_{i=1}^{n} Z_i$, S^2 is an ancillary statistic (σ^2 is known).

By Basu’s theorem, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$.

Since σ^2 is arbitrary, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ for any $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.

Using the independence of \bar{X} and S^2, we now show that $(n-1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1}.

Note that

$$n \left(\frac{\bar{X} - \mu}{\sigma} \right)^2 + \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2.$$

From the properties of the normal distributions, $n(\bar{X} - \mu)^2/\sigma^2$ has the chi-square distribution χ^2_1 with the m.g.f. $(1 - 2t)^{-1/2}$ and

$$\sum_{i=1}^{n} (X_i - \mu)^2/\sigma^2$$

has the chi-square distribution χ^2_n with the m.g.f. $(1 - 2t)^{-n/2}$, $t < 1/2$.
Example 2.18 (continued)

Let S^2 be the sample variance. Since $S^2 = (n - 1)^{-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2$, where $Z_i = X_i - \mu$ is $N(0, \sigma^2)$ and $\bar{Z} = n^{-1} \sum_{i=1}^{n} Z_i$, S^2 is an ancillary statistic (σ^2 is known).

By Basu’s theorem, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$.

Since σ^2 is arbitrary, \bar{X} and S^2 are independent w.r.t. $N(\mu, \sigma^2)$ for any $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.

Using the independence of \bar{X} and S^2, we now show that $(n - 1)S^2/\sigma^2$ has the chi-square distribution χ^2_{n-1}.

Note that

$$n \left(\frac{\bar{X} - \mu}{\sigma} \right)^2 + \frac{(n - 1)S^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2.$$

From the properties of the normal distributions, $n(\bar{X} - \mu)^2/\sigma^2$ has the chi-square distribution χ^2_{1} with the m.g.f. $(1 - 2t)^{-1/2}$ and $\sum_{i=1}^{n}(X_i - \mu)^2/\sigma^2$ has the chi-square distribution χ^2_{n} with the m.g.f. $(1 - 2t)^{-n/2}$, $t < 1/2$.
Example 2.18 (continued)

By the independence of \bar{X} and S^2, the m.g.f. of $(n - 1)S^2/\sigma^2$ is

$$(1 - 2t)^{-n/2}/(1 - 2t)^{-1/2} = (1 - 2t)^{-(n-1)/2}$$

for $t < 1/2$.

This is the m.g.f. of the chi-square distribution χ^2_{n-1} and, therefore, the result follows.