Lecture 20: Linear model, the LSE, and UMVUE

Linear Models

One of the most useful statistical models is

$$X_i = \beta^{\tau} Z_i + \varepsilon_i, \qquad i = 1, ..., n,$$

where X_i is the *i*th observation and is often called the *i*th response; β is a p-vector of unknown parameters (main parameters of interest), p < n;

 Z_i is the *i*th value of a *p*-vector of explanatory variables (or covariates); $\varepsilon_1,...,\varepsilon_n$ are random errors (not observed).

Data: $(X_1, Z_1), ..., (X_n, Z_n)$.

 Z_i 's are nonrandom or given values of a random p-vector, in which case our analysis is conditioned on $Z_1,...,Z_n$.

A matrix form of the model is

$$X = Z\beta + \varepsilon, \tag{1}$$

where $X = (X_1, ..., X_n)$, $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$, and Z = the $n \times p$ matrix whose ith row is the vector Z_i , i = 1, ..., n.

Definition 3.4 (LSE).

Suppose that the range of β in model (6) is $B \subset \mathcal{R}^p$.

A *least squares estimator* (LSE) of β is defined to be any $\widehat{\beta} \in B$ such that

$$||X - Z\widehat{\beta}||^2 = \min_{b \in B} ||X - Zb||^2.$$

For any $I \in \mathcal{R}^p$, $I^{\tau}\widehat{\beta}$ is called an LSE of $I^{\tau}\beta$.

Throughout this book, we consider $B = \Re^p$ unless otherwise stated. Differentiating $||X - Zb||^2$ w.r.t. b, we obtain that any solution of

$$Z^{\tau}Zb=Z^{\tau}X$$

is an LSE of β .

Full rank Z

If the rank of the matrix Z is p, in which case $(Z^{\tau}Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\widehat{\beta} = (Z^{\tau}Z)^{-1}Z^{\tau}X.$$

Not full rank Z

If Z is not of full rank, then there are infinitely many LSE's of β . Any LSE of β is of the form

$$\widehat{\beta} = (Z^{\tau}Z)^{-}Z^{\tau}X,$$

where $(Z^{\tau}Z)^-$ is called a *generalized inverse* of $Z^{\tau}Z$ and satisfies

$$Z^{\tau}Z(Z^{\tau}Z)^{-}Z^{\tau}Z=Z^{\tau}Z.$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $(Z^{\tau}Z)^- = (Z^{\tau}Z)^{-1}$

Assumptions

To study properties of LSE's of β , we need some assumptions on the distribution of X or ε (conditional on Z if Z is random and ε and Z are independent).

- A1: ε is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$.
- A2: $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2 I_n$ with an unknown $\sigma^2 > 0$.
- A3: $E(\varepsilon) = 0$ and $Var(\varepsilon)$ is an unknown matrix.

Remarks

- Assumption A1 is the strongest and implies a parametric model.
- We may assume a slightly more general assumption that ε has the N_n(0, σ²D) distribution with unknown σ² but a known positive definite matrix D.
 Let D^{-1/2} be the inverse of the square root matrix of D.
 Then model (6) with assumption A1 holds if we replace X, Z, and

 ε by the transformed variables $\tilde{X} = D^{-1/2}X$, $\tilde{Z} = D^{-1/2}Z$, and $\tilde{\varepsilon} = D^{-1/2}\varepsilon$, respectively.

- A similar conclusion can be made for assumption A2.
- Under assumption A1, the distribution of X is $N_n(Z\beta, \sigma^2 I_n)$, which is in an exponential family $\mathscr P$ with parameter $\theta = (\beta, \sigma^2) \in \mathscr R^p \times (0, \infty)$.
- However, if the matrix Z is not of full rank, then \mathscr{P} is not identifiable (see §2.1.2), since $Z\beta_1 = Z\beta_2$ does not imply $\beta_1 = \beta_2$.

UW-Madison (Statistics) Stat 709 Lecture 20 2018 4 /

Remarks

• Suppose that the rank of Z is $r \le p$. Then there is an $n \times r$ submatrix Z_* of Z such that

$$Z = Z_*Q \tag{2}$$

and Z_* is of rank r, where Q is a fixed $r \times p$ matrix, and

$$Z\beta = Z_*Q\beta$$
.

- ullet ${\mathscr P}$ is identifiable if we consider the reparameterization $\widetilde{eta}=Qeta.$
- The new parameter $\hat{\beta}$ is in a subspace of \mathcal{R}^p with dimension r.
- In many applications, we are interested in estimating some linear functions of β , i.e., $\vartheta = l^{\tau}\beta$ for some $l \in \mathcal{R}^{p}$.
- From the previous discussion, however, estimation of $I^{\tau}\beta$ is meaningless unless $I = Q^{\tau}c$ for some $c \in \mathcal{R}^r$ so that

$$I^{\tau}\beta = c^{\tau}Q\beta = c^{\tau}\tilde{\beta}.$$

The following result shows that $I^{\tau}\beta$ is estimable if $I = Q^{\tau}c$, which is also necessary for $I^{\tau}\beta$ to be estimable under assumption A1.

Theorem 3.6

Assume model (6) with assumption A3.

- (i) A necessary and sufficient condition for $l \in \mathcal{R}^p$ being $Q^{\tau}c$ for some $c \in \mathcal{R}^r$ is $l \in \mathcal{R}(Z) = \mathcal{R}(Z^{\tau}Z)$, where Q is given by (2) and $\mathcal{R}(A)$ is the smallest linear subspace containing all rows of A.
- (ii) If $l \in \mathcal{R}(Z)$, then the LSE $l^{\tau}\widehat{\beta}$ is unique and unbiased for $l^{\tau}\beta$.
- (iii) If $I \notin \mathcal{R}(Z)$ and assumption A1 holds, then $I^{\tau}\beta$ is not estimable.

Proof

(i) Note that $a \in \mathcal{R}(A)$ iff $a = A^{\tau}b$ for some vector b. If $I = Q^{\tau}c$, then

$$I = Q^{\tau}c = Q^{\tau}Z_{*}^{\tau}Z_{*}(Z_{*}^{\tau}Z_{*})^{-1}c = Z^{\tau}[Z_{*}(Z_{*}^{\tau}Z_{*})^{-1}c].$$

Hence $I \in \mathcal{R}(Z)$.

Proof (continued)

If $I \in \mathcal{R}(Z)$, then $I = Z^{\tau} \zeta$ for some ζ and

$$I = (Z_*Q)^{\tau}\zeta = Q^{\tau}c, \qquad c = Z_*^{\tau}\zeta.$$

(ii) If $I \in \mathcal{R}(Z) = \mathcal{R}(Z^{\tau}Z)$, then $I = Z^{\tau}Z\zeta$ for some ζ and by $\widehat{\beta} = (Z^{\tau}Z)^{-}Z^{\tau}X$,

$$E(I^{\tau}\widehat{\beta}) = E[I^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}X] = \zeta^{\tau}Z^{\tau}Z(Z^{\tau}Z)^{-}Z^{\tau}Z\beta = \zeta^{\tau}Z^{\tau}Z\beta = I^{\tau}\beta.$$

If $\bar{\beta}$ is any other LSE of β , then, by $Z^{\tau}Z\bar{\beta}=Z^{\tau}X$,

$$I^{\tau}\widehat{\beta} - I^{\tau}\overline{\beta} = \zeta^{\tau}(Z^{\tau}Z)(\widehat{\beta} - \overline{\beta}) = \zeta^{\tau}(Z^{\tau}X - Z^{\tau}X) = 0.$$

(iii) Under A1, if there is an estimator h(X,Z) unbiased for $I^{\tau}\beta$, then

$$I^{\tau}\beta = \int_{\mathscr{R}^n} h(x,Z)(2\pi)^{-n/2} \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \|x - Z\beta\|^2\right\} dx.$$

Differentiating w.r.t. β and applying Theorem 2.1 lead to

$$I^{\tau} = Z^{\tau} \int_{\mathcal{R}^n} h(x, Z) (2\pi)^{-n/2} \sigma^{-n-2} (x - Z\beta) \exp\left\{-\frac{1}{2\sigma^2} \|x - Z\beta\|^2\right\} dx,$$

which implies $I \in \mathcal{R}(Z)$.

Example 3.12 (Simple linear regression)

Let $\beta = (\beta_0, \beta_1) \in \mathcal{R}^2$ and $Z_i = (1, t_i), t_i \in \mathcal{R}, i = 1, ..., n$.

Then model (6) is called a *simple linear regression* model.

It turns out that

$$\begin{pmatrix} n & \sum_{i=1}^n t_i \\ \sum_{i=1}^n t_i & \sum_{i=1}^n t_i^2 \end{pmatrix}.$$

This matrix is invertible iff some t_i 's are different.

Thus, if some t_i 's are different, then the unique unbiased LSE of $I^{\tau}\beta$ for any $I \in \mathcal{R}^2$ is $I^{\tau}(Z^{\tau}Z)^{-1}Z^{\tau}X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of *polynomial regression* of order p in which $\beta = (\beta_0, \beta_1, ..., \beta_{p-1})$ and $Z_i = (1, t_i, ..., t_i^{p-1})$.

Example 3.13 (One-way ANOVA)

Suppose that $n = \sum_{i=1}^{m} n_i$ with m positive integers $n_1, ..., n_m$ and that

$$X_i = \mu_j + \varepsilon_i, \qquad i = k_{j-1} + 1, ..., k_j, \ j = 1, ..., m,$$

where
$$k_0 = 0$$
, $k_j = \sum_{l=1}^{j} n_l$, $j = 1, ..., m$, and $(\mu_1, ..., \mu_m) = \beta$.

8 / 17

Let J_m be the m-vector of ones.

Then the matrix Z in this case is a block diagonal matrix with J_{n_j} as the jth diagonal column.

Consequently, $Z^{\tau}Z$ is an $m \times m$ diagonal matrix whose jth diagonal element is n_j .

Thus, $Z^{\tau}Z$ is invertible and the unique LSE of β is the m-vector whose jth component is

$$\frac{1}{n_j}\sum_{i=k_{j-1}+1}^{k_j}X_i, \qquad j=1,...,m.$$

Sometimes it is more convenient to use the following notation:

$$X_{ij} = X_{k_{i-1}+j}, \ \varepsilon_{ij} = \varepsilon_{k_{i-1}+j}, \qquad j = 1, ..., n_i, i = 1, ..., m,$$

and

$$\mu_i = \mu + \alpha_i, \qquad i = 1, ..., m.$$

Then our model becomes

$$X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \qquad j = 1, ..., n_i, i = 1, ..., m,$$
 (3)

which is called a *one-way analysis of variance* (ANOVA) model.

Under model (3), $\beta = (\mu, \alpha_1, ..., \alpha_m) \in \mathcal{R}^{m+1}$.

The matrix Z under model (3) is not of full rank.

An LSE of β under model (3) is

$$\widehat{\beta} = \left(\bar{X}, \bar{X}_{1.} - \bar{X}, ..., \bar{X}_{m.} - \bar{X}\right),\,$$

where \bar{X} is still the sample mean of X_{ij} 's and \bar{X}_{i} is the sample mean of the *i*th group $\{X_{ij}, j=1,...,n_i\}$.

The notation used in model (3) allows us to generalize the one-way ANOVA model to any *s*-way ANOVA model with a positive integer *s* under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \quad i = 1, ..., a, j = 1, ..., b, k = 1, ..., c,$$
 (4)

where *a*, *b*, and *c* are some positive integers. Model (4) is called a two-way balanced ANOVA model. If we view model (4) as a special case of model (6), then the parameter vector β is

$$\beta = (\mu, \alpha_1, ..., \alpha_a, \beta_1, ..., \beta_b, \gamma_{11}, ..., \gamma_{1b}, ..., \gamma_{a1}, ..., \gamma_{ab}).$$
 (5)

One can obtain the matrix Z and show that it is $n \times p$, where n = abc and p = 1 + a + b + ab, and is of rank ab < p.

It can also be shown that an LSE of β is given by the right-hand side of (5) with μ , α_i , β_j , and γ_{ij} replaced by $\widehat{\mu}$, $\widehat{\alpha}_i$, $\widehat{\beta}_j$, and $\widehat{\gamma}_{ij}$, respectively, where

$$\widehat{\mu} = ar{X}_{...},$$
 $\widehat{lpha}_i = ar{X}_{i..} - ar{X}_{...},$
 $\widehat{eta}_j = ar{X}_{.j.} - ar{X}_{...},$
 $\widehat{\gamma}_{ii} = ar{X}_{ii.} - ar{X}_{.i.} - ar{X}_{.i.} + ar{X}_{...},$

and a dot is used to denote averaging over the indicated subscript, e.g., with a fixed *j*,

$$\bar{X}_{.j.} = \frac{1}{ac} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{ijk}$$

Theorem 3.7 (UMVUE).

Consider model

$$X = Z\beta + \varepsilon \tag{6}$$

with assumption A1 (ε is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$).

Then

- (i) The LSE $I^{\tau}\widehat{\beta}$ is the UMVUE of $I^{\tau}\beta$ for any estimable $I^{\tau}\beta$.
- (ii) The UMVUE of σ^2 is $\widehat{\sigma}^2 = (n-r)^{-1} ||X Z\widehat{\beta}||^2$, where r is the rank of Z.

Proof of (i)

Let $\widehat{\beta}$ be an LSE of β .

By $Z^{\tau}Zb = Z^{\tau}X$,

$$(X - Z\widehat{\beta})^{\tau} Z(\widehat{\beta} - \beta) = (X^{\tau} Z - X^{\tau} Z)(\widehat{\beta} - \beta) = 0$$

and, hence,

2018

$$\begin{split} \|X - Z\beta\|^2 &= \|X - Z\widehat{\beta} + Z\widehat{\beta} - Z\beta\|^2 \\ &= \|X - Z\widehat{\beta}\|^2 + \|Z\widehat{\beta} - Z\beta\|^2 \\ &= \|X - Z\widehat{\beta}\|^2 - 2\beta^{\tau}Z^{\tau}X + \|Z\beta\|^2 + \|Z\widehat{\beta}\|^2. \end{split}$$

Using this result and assumption A1, we obtain the following joint Lebesgue p.d.f. of X:

$$(2\pi\sigma^2)^{-n/2} \exp\left\{\frac{\beta^{\tau}Z^{\tau}x}{\sigma^2} - \frac{\|x - Z\widehat{\beta}\|^2 + \|Z\widehat{\beta}\|^2}{2\sigma^2} - \frac{\|Z\beta\|^2}{2\sigma^2}\right\}.$$

By Proposition 2.1 and the fact that $Z\widehat{\beta} = Z(Z^{\tau}Z)^{-}Z^{\tau}X$ is a function of $Z^{\tau}X$, the statistic $(Z^{\tau}X, \|X - Z\widehat{\beta}\|^{2})$ is complete and sufficient for $\theta = (\beta, \sigma^{2})$.

Note that $\widehat{\beta}$ is a function of $Z^{\tau}X$ and, hence, a function of the complete sufficient statistic.

If $I^{\tau}\beta$ is estimable, then $I^{\tau}\widehat{\beta}$ is unbiased for $I^{\tau}\beta$ (Theorem 3.6) and, hence, $I^{\tau}\widehat{\beta}$ is the UMVUE of $I^{\tau}\beta$.

UW-Madison (Statistics) Stat 709 Lecture 20 2018 13 / 17

Proof of (ii)

From $\|X-Z\beta\|^2=\|X-Z\widehat{\beta}\|^2+\|Z\widehat{\beta}-Z\beta\|^2$ and $E(Z\widehat{\beta})=Z\beta$ (Theorem 3.6),

$$\begin{aligned} E\|X - Z\widehat{\beta}\|^2 &= E(X - Z\beta)^{\tau}(X - Z\beta) - E(\beta - \widehat{\beta})^{\tau}Z^{\tau}Z(\beta - \widehat{\beta}) \\ &= \operatorname{tr}\left(\operatorname{Var}(X) - \operatorname{Var}(Z\widehat{\beta})\right) \\ &= \sigma^2[n - \operatorname{tr}\left(Z(Z^{\tau}Z)^{-}Z^{\tau}Z(Z^{\tau}Z)^{-}Z^{\tau}\right)] \\ &= \sigma^2[n - \operatorname{tr}\left((Z^{\tau}Z)^{-}Z^{\tau}Z\right)]. \end{aligned}$$

Since each row of $Z \in \mathcal{R}(Z)$, $Z\widehat{\beta}$ does not depend on the choice of $(Z^{\tau}Z)^-$ in $\widehat{\beta} = (Z^{\tau}Z)^-Z^{\tau}X$ (Theorem 3.6).

Hence, we can evaluate $\operatorname{tr}((Z^{\tau}Z)^{-}Z^{\tau}Z)$ using a particular $(Z^{\tau}Z)^{-}$.

From the theory of linear algebra, there exists a $p \times p$ matrix C such that $CC^{\tau} = I_p$ and

$$C^{\tau}(Z^{\tau}Z)C = \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix},$$

Then, a particular choice of $(Z^{\tau}Z)^{-}$ is

$$(Z^{\tau}Z)^{-} = C \begin{pmatrix} \Lambda^{-1} & 0 \\ 0 & 0 \end{pmatrix} C^{\tau} \tag{7}$$

and

$$(Z^{\tau}Z)^{-}Z^{\tau}Z = C\begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix}C^{\tau}$$

whose trace is r.

Hence $\hat{\sigma}^2$ is the UMVUE of σ^2 , since it is a function of the complete sufficient statistic and

$$E\widehat{\sigma}^2 = (n-r)^{-1}E\|X - Z\widehat{\beta}\|^2 = \sigma^2.$$

Residual vector

- The vector $X Z\widehat{\beta}$ is called the *residual vector* and $||X Z\widehat{\beta}||^2$ is called the *sum of squared residuals* and is denoted by *SSR*.
- The estimator $\hat{\sigma}^2$ is then equal to SSR/(n-r).

The Fisher information matrix is

$$\frac{1}{\sigma^2} \left(\begin{array}{cc} Z^{\tau} Z & 0 \\ 0 & \frac{n}{2\sigma^2} \end{array} \right)$$

- The UMVUE $I^{\tau}\hat{\beta}$ attains the information lower bound, but not $\hat{\sigma}^2$.
- Since

$$X - Z\widehat{\beta} = [I_n - Z(Z^{\tau}Z)^{-}Z^{\tau}]X$$

and

$$I^{\tau}\widehat{\beta} = I^{\tau}(Z^{\tau}Z)^{-}Z^{\tau}X$$

are linear in X, they are normally distributed under assumption A1.

Also, using the generalized inverse matrix in (7), we obtain that

$$[I_n - Z(Z^{\tau}Z)^- Z^{\tau}]Z(Z^{\tau}Z)^- = Z(Z^{\tau}Z)^- - Z(Z^{\tau}Z)^- Z^{\tau}Z(Z^{\tau}Z)^- = 0$$
, which implies that $\widehat{\sigma}^2$ and $I^{\tau}\widehat{\beta}$ are independent (Exercise 58 in §1.6) for any estimable $I^{\tau}\beta$.

• $Z(Z^{\tau}Z)^{-}Z^{\tau}$ is a projection matrix, $[Z(Z^{\tau}Z)^{-}Z^{\tau}]^{2} = Z(Z^{\tau}Z)^{-}Z^{\tau}$, hence

$$SSR = X^{\tau}[I_n - Z(Z^{\tau}Z)^{-}Z^{\tau}]X.$$

- The rank of $Z(Z^{\tau}Z)^{-}Z^{\tau}$ is $tr(Z(Z^{\tau}Z)^{-}Z^{\tau})=r$.
- Similarly, the rank of the projection matrix $I_n Z(Z^{\tau}Z)^{-}Z^{\tau}$ is n r.
- From

$$X^{\tau}X = X^{\tau}[Z(Z^{\tau}Z)^{-}Z^{\tau}]X + X^{\tau}[I_{n} - Z(Z^{\tau}Z)^{-}Z^{\tau}]X$$

and Theorem 1.5 (Cochran's theorem), SSR/σ^2 has the chi-square distribution $\chi^2_{n-r}(\delta)$ with

$$\delta = \sigma^{-2}\beta^{\tau}Z^{\tau}[I_n - Z(Z^{\tau}Z)^{-}Z^{\tau}]Z\beta = 0.$$

Thus, we have proved the following result.

Theorem 3.8.

Consider model (6) with assumption A1. For any estimable parameter $I^{\tau}\beta$, the UMVUE's $I^{\tau}\widehat{\beta}$ and $\widehat{\sigma}^2$ are independent; the distribution of $I^{\tau}\widehat{\beta}$ is $N(I^{\tau}\beta,\sigma^2I^{\tau}(Z^{\tau}Z)^{-}I)$; and $(n-r)\widehat{\sigma}^2/\sigma^2$ has the chi-square distribution χ^2_{n-r} .