Statistical decision theory: basic elements

- X: a sample from a population $P \in \mathcal{P}$
- Decision: an action we take after observing X
- \mathcal{A}: the set of allowable actions
- $(\mathcal{A}, \mathcal{F}_A)$: the action space
- X: the range of X
- Decision rule: a measurable function (a statistic) T from (X, \mathcal{F}_X) to $(\mathcal{A}, \mathcal{F}_A)$
- If X is observed, then we take the action $T(X) \in \mathcal{A}$

Performance criterion: loss function

Loss function $L(P, a)$: a function from $\mathcal{P} \times \mathcal{A}$ to $[0, \infty)$. $L(P, a)$ is Borel for each P
If $X = x$ is observed and our decision rule is T, then our “loss” is $L(P, T(x))$
Lecture 21: Decision approach

Statistical decision theory: basic elements

- X: a sample from a population $P \in \mathcal{P}$
- Decision: an action we take after observing X
- \mathcal{A}: the set of allowable actions
- $(\mathcal{A}, \mathcal{F}_\mathcal{A})$: the action space
- \mathcal{X}: the range of X
- Decision rule: a measurable function (a statistic) T from $(\mathcal{X}, \mathcal{F}_\mathcal{X})$ to $(\mathcal{A}, \mathcal{F}_\mathcal{A})$
- If X is observed, then we take the action $T(X) \in \mathcal{A}$

Performance criterion: loss function

Loss function $L(P, a)$: a function from $\mathcal{P} \times \mathcal{A}$ to $[0, \infty)$. $L(P, a)$ is Borel for each P
If $X = x$ is observed and our decision rule is T, then our “loss” is $L(P, T(x))$
It is difficult to compare $L(P, T_1(X))$ and $L(P, T_2(X))$ for two decision rules, T_1 and T_2, since both of them are random. The average (expected) loss is defined as

$$R_T(P) = E[L(P, T(X))] = \int_X L(P, T(x))dP_X(x).$$

If \mathcal{P} is a parametric family indexed by \mathcal{Q}, the loss and risk are denoted by $L(\mathcal{Q}, a)$ and $R_T(\mathcal{Q})$.

Comparisons

- For decision rules T_1 and T_2, T_1 is as good as T_2 iff
 $$R_{T_1}(P) \leq R_{T_2}(P) \quad \text{for any } P \in \mathcal{P},$$
 and is better than T_2 if, in addition, $R_{T_1}(P) < R_{T_2}(P)$ for at least one $P \in \mathcal{P}$.

- Two decision rules T_1 and T_2 are equivalent iff $R_{T_1}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$.
Risk

It is difficult to compare $L(P, T_1(X))$ and $L(P, T_2(X))$ for two decision rules, T_1 and T_2, since both of them are random. The average (expected) loss is defined as

$$R_T(P) = E[L(P, T(X))] = \int_X L(P, T(x))dP_X(x).$$

If \mathcal{P} is a parametric family indexed by θ, the loss and risk are denoted by $L(\theta, a)$ and $R_T(\theta)$.

Comparisons

- For decision rules T_1 and T_2, T_1 is *as good as* T_2 iff
 $$R_{T_1}(P) \leq R_{T_2}(P) \quad \text{for any } P \in \mathcal{P},$$
 and is *better* than T_2 if, in addition, $R_{T_1}(P) < R_{T_2}(P)$ for at least one $P \in \mathcal{P}$.

- Two decision rules T_1 and T_2 are *equivalent* iff $R_{T_1}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$.
Optimal rule

If T^* is as good as any other rule in \mathcal{M}, a class of allowable decision rules, then T^* is \textit{-optimal} (or optimal if \mathcal{M} contains all possible rules).

Randomized decision rules

A function d on $\mathcal{X} \times \mathcal{F}_\mathcal{A}$ such that, for every $A \in \mathcal{F}_\mathcal{A}$, $d(\cdot, A)$ is a Borel function and, for every $x \in \mathcal{X}$, $d(x, \cdot)$ is a probability measure on $(\mathcal{A}, \mathcal{F}_\mathcal{A})$.

- If $X = x$ is observed, we have a distribution of actions: $d(x, \cdot)$.
- A nonrandomized decision rule T previously discussed can be viewed as a special randomized decision rule with $d(x, \{a\}) = I_{\{a\}}(T(x))$, $a \in \mathcal{A}$, $x \in \mathcal{X}$.
- To choose an action in \mathcal{A} when a randomized rule d is used, we need to simulate a pseudorandom element of \mathcal{A} according to $d(x, \cdot)$.
- Thus, an alternative way to describe a randomized rule is to specify the method of simulating the action from \mathcal{A} for each $x \in \mathcal{X}$.
Optimal rule

If T_* is as good as any other rule in \square, a class of allowable decision rules, then T_* is $-optimal$ (or optimal if \square contains all possible rules).

Randomized decision rules

A function d on $\mathcal{X} \times \mathcal{F}_\mathcal{A}$ such that, for every $A \in \mathcal{F}_\mathcal{A}$, $d(\cdot, A)$ is a Borel function and, for every $x \in \mathcal{X}$, $d(x, \cdot)$ is a probability measure on $(\mathcal{A}, \mathcal{F}_\mathcal{A})$.

- If $X = x$ is observed, we have a distribution of actions: $d(x, \cdot)$.
- A nonrandomized decision rule T previously discussed can be viewed as a special randomized decision rule with $d(x, \{a\}) = l_{\{a\}}(T(x)), a \in \mathcal{A}, x \in \mathcal{X}$.
- To choose an action in \mathcal{A} when a randomized rule d is used, we need to simulate a pseudorandom element of \mathcal{A} according to $d(x, \cdot)$.
- Thus, an alternative way to describe a randomized rule is to specify the method of simulating the action from \mathcal{A} for each $x \in \mathcal{X}$.
Randomized decision rules

A randomized rule can be a discrete distribution $d(x, \cdot)$ assigning probability $p_j(x)$ to a nonrandomized decision rule $T_j(x)$, $j = 1, 2, \ldots$, in which case the rule d can be equivalently defined as a rule taking value $T_j(x)$ with probability $p_j(x)$, i.e.,

$$T(X) = \begin{cases}
T_1(X) & \text{with probability } p_1(X) \\
\ldots & \ldots \\
T_k(X) & \text{with probability } p_k(X)
\end{cases}$$

The loss function for a randomized rule d is defined as

$$L(P, d, x) = \int_{\mathcal{A}} L(P, a) d\,d(x, a),$$

which reduces to the same loss function we discussed when d is a nonrandomized rule.

The risk of a randomized rule d is then

$$R_d(P) = E[L(P, d, X)] = \int_{\mathcal{X}} \int_{\mathcal{A}} L(P, a) d\,d(x, a) dP_X(x).$$
Randomized decision rules

A randomized rule can be a discrete distribution \(d(x, \cdot) \) assigning probability \(p_j(x) \) to a nonrandomized decision rule \(T_j(x), j = 1, 2, \ldots \), in which case the rule \(d \) can be equivalently defined as a rule taking value \(T_j(x) \) with probability \(p_j(x) \), i.e.,

\[
T(X) = \begin{cases}
T_1(X) & \text{with probability } p_1(X) \\
\ldots & \ldots \\
T_k(X) & \text{with probability } p_k(X)
\end{cases}
\]

The loss function for a randomized rule \(d \) is defined as

\[
L(P, d, x) = \int_{\mathcal{A}} L(P, a) d\mathcal{d}(x, a),
\]

which reduces to the same loss function we discussed when \(d \) is a nonrandomized rule.

The risk of a randomized rule \(d \) is then

\[
R_d(P) = E[L(P, d, X)] = \int_{\mathcal{X}} \int_{\mathcal{A}} L(P, a) d\mathcal{d}(x, a) dP_X(x).
\]
Randomized decision rules

For

\[T(X) = \begin{cases}
 T_1(X) & \text{with probability } p_1(X) \\
 \ldots & \ldots \\
 T_k(X) & \text{with probability } p_k(X)
\end{cases} \]

\[L(P, T, x) = \sum_{j=1}^{k} L(P, T_j(x))p_j(x) \]

and

\[R_T(P) = \sum_{j=1}^{k} E[L(P, T_j(X))p_j(X)] \]

Example 2.19

Let \(X = (X_1, \ldots, X_n) \) be a vector of iid measurements for a parameter \(q \in \mathbb{R} \).

We want to estimate \(q \).

Action space: \((\mathcal{A}, \mathcal{F}_\mathcal{A}) = (\mathbb{R}, \mathcal{B})\).

A common loss function in this problem is the squared error loss

\[L(P, a) = (q - a)^2, \quad a \in \mathcal{A}. \]
Randomized decision rules

For

\[
T(X) = \begin{cases}
T_1(X) & \text{with probability } p_1(X) \\
\vdots & \vdots \\
T_k(X) & \text{with probability } p_k(X)
\end{cases}
\]

\[
L(P, T, x) = \sum_{j=1}^{k} L(P, T_j(x))p_j(x)
\]

and

\[
R_T(P) = \sum_{j=1}^{k} E[L(P, T_j(X))p_j(X)]
\]

Example 2.19

Let \(X = (X_1, \ldots, X_n) \) be a vector of iid measurements for a parameter \(q \in \mathbb{R} \).

We want to estimate \(q \).

Action space: \((\mathcal{A}, \mathcal{F}_\mathcal{A}) = (\mathbb{R}, \mathcal{B})\).

A common loss function in this problem is the squared error loss

\[
L(P, a) = (q - a)^2, \ a \in \mathcal{A}.
\]
Example 2.19 (continued)

Let \(T(X) = \bar{X} \), the sample mean. The loss for \(\bar{X} \) is \((\bar{X} - q)^2\).

If the population has mean \(m \) and variance \(s^2 < \), then

\[
R_{\bar{X}}(P) = E(q - \bar{X})^2
= (q - E\bar{X})^2 + E(E\bar{X} - \bar{X})^2
= (q - E\bar{X})^2 + \text{Var}(\bar{X})
= (m - q)^2 + \frac{s^2}{n}.
\]

If \(q \) is in fact the mean of the population, then

\[
R_{\bar{X}}(P) = \frac{s^2}{n},
\]

is an increasing function of the population variance \(s^2 \) and a decreasing function of the sample size \(n \).
Example 2.19 (continued)

Consider another decision rule $T_1(X) = (X_{(1)} + X_{(n)})/2$. $R_{T_1}(P)$ does not have a simple explicit form if there is no further assumption on the family \mathcal{P} containing P.

For some \mathcal{P}, \bar{X} (or T_1) is better than T_1 (or \bar{X}) (exercise), whereas for some \mathcal{P}, neither \bar{X} nor T_1 is better than the other.

Consider a randomized rule:

$$T_2(X) = \begin{cases}
\bar{X} & \text{with probability } p(X) \\
T_1(X) & \text{with probability } 1 - p(X)
\end{cases}$$

The loss for $T_2(X)$ is

$$(\bar{X} - q)^2 p(X) + [T_1(X) - q]^2 [1 - p(X)]$$

and the risk of T_2 is

$$R_{T_2}(P) = E\{(\bar{X} - q)^2 p(X) + [T_1(X) - q]^2 [1 - p(X)]\}$$

In particular, if $p(X) = 0.5$, then

$$R_{T_2}(P) = \frac{R_{\bar{X}}(P) + R_{T_1}(P)}{2}.$$
Consider another decision rule \(T_1(X) = (X_{(1)} + X_{(n)})/2 \).

\(R_{T_1}(P) \) does not have a simple explicit form if there is no further assumption on the family \(\mathcal{P} \) containing \(P \).

For some \(\mathcal{P} \), \(\tilde{X} \) (or \(T_1 \)) is better than \(T_1 \) (or \(\tilde{X} \)) (exercise), whereas for some \(\mathcal{P} \), neither \(\tilde{X} \) nor \(T_1 \) is better than the other.

Consider a randomized rule:

\[
T_2(X) = \begin{cases}
\tilde{X} & \text{with probability } p(X) \\
T_1(X) & \text{with probability } 1 - p(X)
\end{cases}
\]

The loss for \(T_2(X) \) is

\[
(\tilde{X} - q)^2 p(X) + [T_1(X) - q]^2 [1 - p(X)]
\]

and the risk of \(T_2 \) is

\[
R_{T_2}(P) = E\{(\tilde{X} - q)^2 p(X) + [T_1(X) - q]^2 [1 - p(X)]\}
\]

In particular, if \(p(X) = 0.5 \), then

\[
R_{T_2}(P) = \frac{R_{\tilde{X}}(P) + R_{T_1}(P)}{2}.
\]
The problem in Example 2.19 is a special case of a general problem called *estimation*. In an estimation problem, a decision rule T is called an *estimator*. The following example describes another type of important problem called *hypothesis testing*.

Example 2.20

Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}$, and $\mathcal{P}_1 = \{ P \in \mathcal{P} : P \notin \mathcal{P}_0 \}$. A hypothesis testing problem can be formulated as that of deciding which of the following two statements is true:

\[H_0 : P \in \mathcal{P}_0 \quad \text{versus} \quad H_1 : P \in \mathcal{P}_1. \]

Here, H_0 is called the *null hypothesis* and H_1 is called the *alternative hypothesis*. The action space for this problem contains only two elements, i.e., $\mathcal{A} = \{0, 1\}$, where 0 is the action of accepting H_0 and 1 is the action of rejecting H_0.
The problem in Example 2.19 is a special case of a general problem called *estimation*. In an estimation problem, a decision rule T is called an *estimator*. The following example describes another type of important problem called *hypothesis testing*.

Example 2.20

Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}$, and $\mathcal{P}_1 = \{P \in \mathcal{P} : P \notin \mathcal{P}_0\}$. A hypothesis testing problem can be formulated as that of deciding which of the following two statements is true:

$$H_0 : P \in \mathcal{P}_0 \quad \text{versus} \quad H_1 : P \in \mathcal{P}_1.$$

Here, H_0 is called the *null hypothesis* and H_1 is called the *alternative hypothesis*. The action space for this problem contains only two elements, i.e., $\mathcal{A} = \{0, 1\}$, where 0 is the action of accepting H_0 and 1 is the action of rejecting H_0.

UW-Madison (Statistics)
Stat 709 Lecture 21
September 2, 2011
8 / 10
Example 2.20 (continued)

A decision rule is called a test. Since a test $T(X)$ is a function from \mathcal{X} to $\{0, 1\}$, $T(X)$ must have the form $I_C(X)$, where $C \in \mathcal{F}_X$ is called the rejection region or critical region for testing H_0 versus H_1.

0-1 loss

$L(P, a) = 0$ if a correct decision is made and 1 if an incorrect decision is made, i.e., $L(P, j) = 0$ for $P \in \mathcal{P}_j$ and $L(P, j) = 1$ otherwise, $j = 0, 1$. Under this loss, the risk is

$$R_T(P) = \begin{cases} P(T(X) = 1) = P(X \in C) & P \in \mathcal{P}_0 \\ P(T(X) = 0) = P(X \notin C) & P \in \mathcal{P}_1. \end{cases}$$

An example of a graph of $R_T(P)$ is Figure 2.2 of the textbook (p127). The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H_0 when $P \in \mathcal{P}_1$ and rejecting H_0 when $P \in \mathcal{P}_0$) are the same.

In some cases, one might assume unequal losses: $L(P, j) = 0$ for $P \in \mathcal{P}_j$, $L(P, 0) = c_0$ when $P \in \mathcal{P}_1$, and $L(P, 1) = c_1$ when $P \in \mathcal{P}_0$.
A decision rule is called a *test*. Since a test $T(X)$ is a function from \mathcal{X} to $\{0, 1\}$, $T(X)$ must have the form $I_C(X)$, where $C \in \mathcal{F}_X$ is called the rejection region or critical region for testing H_0 versus H_1.

0-1 loss

$L(P, a) = 0$ if a correct decision is made and 1 if an incorrect decision is made, i.e., $L(P, j) = 0$ for $P \in \mathcal{P}_j$ and $L(P, j) = 1$ otherwise, $j = 0, 1$. Under this loss, the risk is

$$R_T(P) = \begin{cases} P(T(X) = 1) = P(X \in C) & P \in \mathcal{P}_0 \\ P(T(X) = 0) = P(X \notin C) & P \in \mathcal{P}_1. \end{cases}$$

An example of a graph of $R_T(P)$ is Figure 2.2 of the textbook (p127). The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H_0 when $P \in \mathcal{P}_1$ and rejecting H_0 when $P \in \mathcal{P}_0$) are the same.

In some cases, one might assume unequal losses: $L(P, j) = 0$ for $P \in \mathcal{P}_j$, $L(P, 0) = c_0$ when $P \in \mathcal{P}_1$, and $L(P, 1) = c_1$ when $P \in \mathcal{P}_0$.

Definition 2.7 (Admissibility)

Let be a class of decision rules (randomized or nonrandomized). A decision rule $T \in \square$ is called -admissible (or admissible when contains all possible rules) iff there does not exist any $S \in \square$ that is better than T (in terms of the risk).

Remarks

- If a decision rule T is inadmissible, then there exists a rule better than T and T should not be used in principle.
- However, an admissible decision rule is not necessarily good. For example, in an estimation problem a silly estimator $T(X) \equiv a$ constant may be admissible.
- If T_* is -optimal, then it is -admissible.
- If T_* is -optimal and T_0 is -admissible, then T_0 is also -optimal and is equivalent to T_*.
- If there are two -admissible rules that are not equivalent, then there does not exist any -optimal rule.
- How to check admissibility will be discussed in Chapter 4.
Definition 2.7 (Admissibility)

Let \(\square \) be a class of decision rules (randomized or nonrandomized). A decision rule \(T \in \square \) is called \(-\)admissible (or admissible when \(\square \) contains all possible rules) iff there does not exist any \(S \in \square \) that is better than \(T \) (in terms of the risk).

Remarks

- If a decision rule \(T \) is inadmissible, then there exists a rule better than \(T \) and \(T \) should not be used in principle.
- However, an admissible decision rule is not necessarily good. For example, in an estimation problem a silly estimator \(T(X) \equiv a \) constant may be admissible.
- If \(T_* \) is \(-\)optimal, then it is \(-\)admissible.
- If \(T_* \) is \(-\)optimal and \(T_0 \) is \(-\)admissible, then \(T_0 \) is also \(-\)optimal and is equivalent to \(T_* \).
- If there are two \(-\)admissible rules that are not equivalent, then there does not exist any \(-\)optimal rule.
- How to check admissibility will be discussed in Chapter 4.