Lecture 34: Ridge regression and LASSO

Ridge regression

Consider linear model $X = Z\beta + \varepsilon$, $\beta \in \mathcal{R}^p$ and $Var(\varepsilon) = \sigma^2 I_n$.

The LSE is obtained from the minimization problem

$$\min_{\beta \in \mathscr{R}^p} \|X - Z\beta\|^2 \tag{1}$$

A type of shrinkage estimator is obtained though (1) by adding a penalty on $\|\beta\|^2$, i.e.,

$$\min_{\beta \in \mathcal{R}^{p}} (\|X - Z\beta\|^{2} + \lambda \|\beta\|^{2}) \tag{2}$$

where $\lambda \geq 0$ is a constant controlling the penalization.

$$\frac{\partial}{\partial \beta}(\|X - Z\beta\|^2 + \lambda \|\beta\|^2) = -2Z^{\tau}(X - Z\beta) + 2\lambda\beta$$

which gives the solution to (2) as

$$\widehat{\beta}_{\lambda} = (Z^{\tau}Z + \lambda I_{p})^{-1}Z^{\tau}X$$

This estimator is better than the LSE when $Z^{\tau}Z$ is nearly singular.

UW-Madison (Statistics) Stat 709 Lecture 23 2018

This gives a class of estimators called ridge regression estimators; in particular, $\lambda=0$ gives the LSE.

Bias and covariance matrix

$$E(\widehat{\beta_{\lambda}}) = (Z^{\tau}Z + \lambda I_{\rho})^{-1}Z^{\tau}E(X) = (Z^{\tau}Z + \lambda I_{\rho})^{-1}Z^{\tau}Z\beta$$

The bias of β_{λ} is then

$$b(\beta) = (Z^{\tau}Z + \lambda I_{\rho})^{-1}Z^{\tau}Z\beta - \beta = -\lambda(Z^{\tau}Z + \lambda I_{\rho})^{-1}\beta$$

The bias is not 0, but converges to 0 as $\lambda \to 0$.

$$Var(\widehat{\beta}_{\lambda}) = (Z^{\tau}Z + \lambda I_{p})^{-1}Z^{\tau}Var(X)Z(Z^{\tau}Z + \lambda I_{p})^{-1}$$

$$= \sigma^{2}(Z^{\tau}Z + \lambda I_{p})^{-1}Z^{\tau}Z(Z^{\tau}Z + \lambda I_{p})^{-1}$$

$$= \sigma^{2}(Z^{\tau}Z + \lambda I_{p})^{-1} - \sigma^{2}\lambda(Z^{\tau}Z + \lambda I_{p})^{-2}$$

It can be seen that the variance converges to 0 if $\lambda \to \infty$ and to $\sigma^2(Z^{\tau}Z)^{-1}$ if $\lambda \to 0$.

Combining the bias and variance, we get

$$E\|\widehat{\beta}_{\lambda} - \beta\|^2 = \|b(\beta)\|^2 + E\|\widehat{\beta}_{\lambda} - E(\widehat{\beta}_{\lambda})\|^2$$
$$= \lambda^2 \|(Z^{\tau}Z + \lambda I_p)^{-1}\beta\|^2 + \sigma^2 \operatorname{tr}[Z^{\tau}Z(Z^{\tau}Z + \lambda I_p)^{-2}]$$

UW-Madison (Statistics) Stat 709 Lecture 23 2018

Theorem (Comparison between ridge regression and LSE)

Let $\widehat{\beta} = \widehat{\beta}_0$ be the LSE.

- (i) If $0 < \lambda < 2\sigma^2/\|\beta\|^2$, then $E\|\widehat{\beta}_{\lambda} \beta\|^2 < E\|\widehat{\beta} \beta\|^2$.
- (ii) Assume that the smallest eigenvalue of $Z^{\tau}Z = O(n)$. If $\lambda > 2\sigma^2/\|\beta\|^2$, then $E\|\widehat{\beta}_{\lambda} \beta\|^2 > E\|\widehat{\beta} \beta\|^2$ for sufficiently large n; if $\lambda = 2\sigma^2/\|\beta\|^2$, then $E\|\widehat{\beta}_{\lambda} \beta\|^2 = E\|\widehat{\beta} \beta\|^2 + O(n^{-3})$.

Proof.

Let

$$A = \sigma^2 (Z^{\tau} Z)^{-1} - \sigma^2 (Z^{\tau} Z + \lambda I_p)^{-1} Z^{\tau} Z (Z^{\tau} Z + \lambda I_p)^{-1}$$
$$- \lambda^2 (Z^{\tau} Z + \lambda I_p)^{-1} \beta \beta^{\tau} (Z^{\tau} Z + \lambda I_p)^{-1}$$

Then

$$(Z^{\tau}Z + \lambda I_{p})A(Z^{\tau}Z + \lambda I_{p}) = \sigma^{2}(Z^{\tau}Z + \lambda I_{p})(Z^{\tau}Z)^{-1}(Z^{\tau}Z + \lambda I_{p})$$
$$-\sigma^{2}Z^{\tau}Z - \lambda^{2}\beta\beta^{\tau}$$
$$= 2\lambda\sigma^{2}I_{p} + \lambda^{2}\sigma^{2}(Z^{\tau}Z)^{-1} - \lambda^{2}\beta\beta^{\tau}$$

Hence

$$A = (Z^{\tau}Z + \lambda I_{p})^{-1} [2\lambda \sigma^{2}I_{p} - \lambda^{2}\beta \beta^{\tau} + \lambda^{2}\sigma^{2}(Z^{\tau}Z)^{-1}](Z^{\tau}Z + \lambda I_{p})^{-1}$$

UW-Madison (Statistics) Stat 709 Lecture 23 2018 3

Assume $\lambda > 0$ and $\beta \neq 0$.

Then

$$A > \lambda^2 \sigma^2 (Z^{\tau}Z + \lambda I_p)^{-1} (Z^{\tau}Z)^{-1} (Z^{\tau}Z + \lambda I_p)^{-1}$$

if and only if

$$2\sigma^2\lambda^{-1}\textit{I}_p - \beta\beta^{\tau} > 0 \qquad \text{equivalent to} \qquad \lambda < 2\sigma^2/\|\beta\|^2$$

This can be shown as follows. If $2\sigma^2\lambda^{-1}I_p - \beta\beta^{\tau} > 0$, then $0 < \beta^{\tau}(2\sigma^2\lambda^{-1}I_p - \beta\beta^{\tau})\beta = 2\sigma^2\lambda^{-1}\|\beta\|^2 - \|\beta\|^4$, which means $\lambda < 2\sigma^2/\|\beta\|^2$. On the other hand, if $\lambda < 2\sigma^2/\|\beta\|^2$, then $(2\sigma^2\lambda^{-1}I_p - \beta\beta^{\tau})/\|\beta\|^2 = (2\sigma^2\lambda^{-1}\|\beta\|^{-2} - 1)I_p + I_p - \beta\beta^{\tau}/\|\beta\|^2 > 0$, because $I_p - \beta\beta^{\tau}/\|\beta\|^2$ is a projection matrix whose eigenvalues are either 0 or 1.

Since $Var(\widehat{\beta}) = \sigma^2(Z^{\tau}Z)^{-1}$, using the formula for $Var(\widehat{\beta}_{\lambda})$ we obtain

$$E\|\widehat{\beta} - \beta\|^2 - E\|\widehat{\beta}_{\lambda} - \beta\|^2 = \operatorname{tr}(A)$$

Thus, (i) follows, and (ii) and (iii) follow from

$$\lambda^2 \sigma^2 (Z^{\tau}Z + \lambda I_p)^{-1} (Z^{\tau}Z)^{-1} (Z^{\tau}Z + \lambda I_p)^{-1} \leq \lambda^2 \sigma^2 (Z^{\tau}Z)^{-3}$$

The ridge regression is better if the noise to signal ratio is large.

High dimension problems

The dimension of β in a linear model is p (Z is $n \times p$) In traditional applications: p << n; p is fixed when $n \to \infty$. In modern applications, p is large; $p = p_n$ increases as n increases.

- $p = O(n^k)$: polynomial-type divergence rate
- $p = O(e^{n^{\nu}})$: ultra-high dimension, where ν is a constant < 1.

Non-identifiability of β

- $r = r_n$: rank of Z.
- The dimension of $\mathcal{R}(Z)$ is $r \leq n$.
- If p > n, then β is not identifiable. This means that there are β and $\tilde{\beta}$, $\beta \neq \tilde{\beta}$ but $Z\beta = Z\tilde{\beta}$ so that the data generated under the models with β and $\tilde{\beta}$ are the same.
- It is not possible to estimate all components of β consistently; we are not able to estimate something out of the data range.
- We can estimate consistently some useful functions of β .
- We can estimate the projection of β onto $\mathcal{R}(Z)$.
- Estimation of the projection is sufficient for many problems

Projection

• Singular value decomposition: $Z = PDQ^{\tau}$

P: $n \times r$ matrix with $P^{\tau}P = I_r$ (identity matrix)

Q: $p \times r$ matrix with $Q^{\tau}Q = I_r$

D: $r \times r$ diagonal matrix of full rank

- Projection of β onto $\mathcal{R}(Z)$: $\theta = Z^{\tau}(ZZ^{\tau})^{-}Z\beta = QQ^{\tau}\beta \in \mathcal{R}(Z)$
- $Z\theta = PDQ^{\tau}(QQ^{\tau}\beta) = PDQ^{\tau}\beta = Z\beta$
- The model

$$Y = Z\beta + \varepsilon$$
 is the same as $Y = Z\theta + \varepsilon$

$$Y = Z\theta + \varepsilon$$

Ridge regression estimator of θ

$$\widehat{\theta} = (Z^{\tau}Z + h_n I_p)^{-1} Z^{\tau}X \qquad h_n > 0$$

We only need to invert an $n \times n$ matrix, because

$$(Z^{\tau}Z + h_nI_p)^{-1}Z^{\tau} = Z^{\tau}(ZZ^{\tau} + h_nI_n)^{-1}$$

 $\widehat{\theta}$ is always in $\mathcal{R}(Z)$

Derivation of the bias of ridge regression estimator

Let $\Gamma=(Q\ Q_\perp),\ Q^\tau Q_\perp=0,\ \Gamma \Gamma^\tau=\Gamma^\tau \Gamma=I_p.$ Then

$$\begin{aligned} \operatorname{bias}(\widehat{\theta}) &= E(\widehat{\theta}) - \theta \\ &= (Z^{\tau}Z + h_{n}I_{p})^{-1}Z^{\tau}Z\theta - \theta \\ &= -(h_{n}^{-1}Z^{\tau}Z + I_{p})^{-1}\theta \\ &= -\Gamma(h_{n}^{-1}\Gamma^{\tau}Z^{\tau}Z\Gamma + I_{p})^{-1}\Gamma^{\tau}QQ^{\tau}\theta \\ &= -(QQ_{\perp})\begin{pmatrix} (h_{n}^{-1}D^{2} + I_{r})^{-1} & 0 \\ 0 & I_{p-r} \end{pmatrix}\begin{pmatrix} Q^{\tau}Q_{\perp} \\ Q_{\perp}^{\tau} \end{pmatrix}QQ^{\tau}\theta \\ &= -(Q(h_{n}^{-1}D^{2} + I_{r})^{-1} & Q_{\perp})\begin{pmatrix} Q^{\tau}\theta \\ 0 \end{pmatrix} \\ &= -Q(h_{n}^{-1}D^{2} + I_{r})^{-1}Q^{\tau}\theta \\ &= -Q\begin{pmatrix} (1 + d_{1n}/h_{n})^{-1} \\ &\ddots & \\ & & (1 + d_{rn}/h_{n})^{-1} \end{pmatrix}Q^{\tau}\theta \end{aligned}$$

where $d_{in} > 0$ is the jth diagonal element of D^2 (eigenvalue of $Z^{\tau}Z$).

Thus,

$$\begin{aligned} \|\text{bias}(\widehat{\theta})\|^{2} &= \theta^{\tau} Q (h_{n}^{-1} D^{2} + I_{r})^{-2} Q^{\tau} \theta \\ &\leq \max_{1 \leq j \leq r} (1 + d_{jn}/h_{n})^{-2} \theta^{\tau} Q Q^{\tau} \theta \\ &\leq h_{n}^{2} d_{1n}^{-2} \|\theta\|^{2} \end{aligned}$$

For the variance,

$$Var(\widehat{\theta}) = \sigma^2 (Z^{\tau}Z + h_n I_p)^{-1} Z^{\tau} Z (Z^{\tau}Z + h_n I_p)^{-1}$$

$$\leq \sigma^2 h_n^{-1} I_p$$

Theorem (Consistency of $\widehat{\theta}$)

Assume that

- (C1) $d_{1n}^{-1} = O(n^{-\eta}), \quad \eta \le 1$ and η does not depend on n.
- (C2) $\|\theta\| = O(n^{\tau}), \quad \tau < \eta \text{ and } \tau \text{ does not depend on } n.$

Then

- (i) As $n \to \infty$, $E(\ell^{\tau} \widehat{\theta} \ell^{\tau} \theta)^2 = O(h_n^{-1}) + O(h_n^2 n^{-2(\eta \tau)})$ uniformly over p-dimensional deterministic vector ℓ with $\|\ell\| = 1$.
- (ii) $n^{-1}E\|Z\widehat{\theta}-Z\theta\|^2=O(r_nn^{-1})+O(h_n^2n^{-(1+\eta-2\tau)}).$

8/16

Remarks

- (C2) means that θ is sparse; without any condition, the order of $\|\theta\|^2$ could be p.
- $\|\theta\| \le \|\beta\|$ so that (C2) holds if β is sparse.
- For any fixed $\ell'\theta$, $\ell'\widehat{\theta}$ is consistent if $h_n \to \infty$ and $h_n n^{-(\eta-\tau)} \to 0$.
- $\widehat{\theta}$ is not sparse even if θ is sparse.
- Typically $r_n/n \not\to 0$ so $\widehat{\theta}$ is not L_2 -consistent.
- The reason (ii) is interesting is that

$$n^{-1}E\|Z\widehat{\theta}-Z\theta\|^2=n^{-1}E\|X_*-Z\widehat{\theta}\|^2-\sigma^2,$$

where X_* is an independent copy of X and $n^{-1}E\|X_*-Z\widehat{\theta}\|^2$ is the average prediction mean squared error.

Problem of the ridge regression estimator

When p < n, $\theta = \beta$ has many zero components, the ridge regression estimator does not have any zero components, although it has many small components.

UW-Madison (Statistics) Stat 709 Lecture 23 2018 9 / 16

LASSO estimator

Consider linear model $X = Z\beta + \varepsilon$, $\beta \in \mathcal{R}^p$ and $Var(\varepsilon) = \sigma^2 I_n$.

The ridge regression estimator of β is obtained from

$$\min_{\beta \in \mathscr{R}^p} (\|X - Z\beta\|^2 + \lambda \|\beta\|^2)$$

If we change the L_2 penalty $\|\beta\|^2$ to the L_1 penalty $\|\beta\|_1 = \sum_{j=1}^{\rho} |\beta_j|$, where β_j is the jth component of β , then the LASSO estimator is from

$$\min_{\beta \in \mathscr{R}^p} (\|X - Z\beta\|^2 + \lambda \|\beta\|_1)$$

Difference between LASSO and ridge regression:

- LASSO estimator does not have an explicit form.
- When a component of β is 0, its LASSO estimator may be 0, but its ridge regression estimator is never 0.
- The minimization for LASSO is still for a convex objective function, but the objective function is not always differentiable.
- Although LASSO is still defined when p > n, it is usually used in the case where p < n.
- If p < n, Z can be deterministic or random.

Notation

 \mathscr{A} = the set of indices of non-zero coefficients of β

$$\beta = (\beta_{\mathscr{A}}, \beta_{\mathscr{A}^c}), \dim(\beta_{\mathscr{A}}) = q, \dim(\beta_{\mathscr{A}^c}) = p - q; X = (X_{\mathscr{A}}, X_{\mathscr{A}^c})$$

$$C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \frac{1}{n} \begin{pmatrix} X_{\mathscr{A}}^{\tau} X_{\mathscr{A}} & X_{\mathscr{A}}^{\tau} X_{\mathscr{A}^c} \\ X_{\mathscr{A}^c}^{\tau} X_{\mathscr{A}} & X_{\mathscr{A}^c}^{\tau} X_{\mathscr{A}^c} \end{pmatrix} = \frac{1}{n} X^{\tau} X$$

Consistency

The LASSO estimator $\widehat{\beta}$ of β is strongly sign consistent if there exists $\lambda = \lambda_n$ not depending on Y or X such that

$$\lim_{n\to\infty} P\left(\operatorname{sign}(\widehat{\beta}) = \operatorname{sign}(\beta)\right) = 1$$

which implies variable selection consistent (since sign(a) = 0 if a = 0),

$$\lim_{n\to\infty} P\left(\widehat{\mathscr{A}}=\mathscr{A}\right)=1$$

where $\widehat{\mathscr{A}}$ is the index set of nonzero components of $\widehat{\beta}$.

Strong Irrepresentable Condition (SIC)

There exists a vector η whose components are positive such that $|C_{21}C_{11}^{-1}\operatorname{sign}(\beta_{\mathscr{A}})| \leq 1 - \eta$ component-wise, where $|a| = (|a_1|, |a_2|, ...)$ for $a = (a_1, a_2, ...)$ and 1 is the vector of ones.

Critical Lemma

Under the SIC,

$$P\left(\operatorname{sign}(\widehat{\beta}) = \operatorname{sign}(\beta)\right) \ge P(A_n \cap B_n),$$

where

$$A_{n} = \left\{ |C_{11}^{-1}W_{\mathscr{A}}| < \sqrt{n}|\beta_{\mathscr{A}}| - \frac{\lambda_{n}}{2\sqrt{n}}|C_{11}^{-1}\operatorname{sign}(\beta_{\mathscr{A}})| \right\}$$

$$B_{n} = \left\{ |C_{21}C_{11}^{-1}W_{\mathscr{A}} - W_{\mathscr{A}^{c}}| \le \frac{\lambda_{n}}{2\sqrt{n}}\eta \right\}$$

$$W_{\mathscr{A}} = \frac{1}{\sqrt{n}}X_{\mathscr{A}}^{\tau}\varepsilon \qquad W_{\mathscr{A}^{c}} = \frac{1}{\sqrt{n}}X_{\mathscr{A}^{c}}^{\tau}\varepsilon$$

Karush-Kuhn-Tuker (KKT) condition

 $\widehat{eta}=(\widehat{eta}_1,...,\widehat{eta}_p)$ is the LASSO estimator if and only if

$$\frac{\partial \|Y - X\beta\|^2}{\partial \beta_j}\bigg|_{\beta_j = \widehat{\beta}_j} = \left\{ \begin{array}{ll} \lambda \operatorname{sign}(\widehat{\beta}_j) & \widehat{\beta}_j \neq 0 \\ \text{bounded by } \lambda \text{ in absolute value} & \widehat{\beta}_j = 0 \end{array} \right.$$

Proof of the Lamma

Let
$$\widehat{u} = \widehat{\beta} - \beta$$
 and $V_n(u) = \sum_{i=1}^n [(\varepsilon_i - X_i u)^2 - \varepsilon_i]^2 + \lambda_n \|u + \beta\|_1$

Then $\hat{u} = \operatorname{argmin} V_n(u)$

It can be verified that the KKT condition is equivalent to

$$C_{11}(\sqrt{n}\widehat{u}_{\mathscr{A}}) - W_{\mathscr{A}} = \frac{\lambda_n}{2\sqrt{n}}\operatorname{sign}(\beta_{\mathscr{A}}),$$
 (3)

$$-\frac{\lambda_n}{2\sqrt{n}}1 \leq C_{21}(\sqrt{n}\widehat{u}_{\mathscr{A}}) - W_{\mathscr{A}^c} \leq \frac{\lambda_n}{2\sqrt{n}}1, \tag{4}$$

$$|\widehat{u}_{\mathscr{A}}| < |\beta_{\mathscr{A}}| \tag{5}$$

We now show that on $A_n \cap B_n$, a solution \widehat{u} satisfying (3) and $\widehat{u}_{\mathscr{A}^c} = 0$ must satisfy (4) and (5), and hence $\widehat{\beta} = \widehat{u} + \beta$ is a LASSO estimator. In fact, LASSO estimator is unique.

First, (3) and A_n holds imply (5).

Second, (3) and B_n holds and the SIC imply (4).

Finally, a sufficient condition for $sign(\beta) = sign(\beta)$ is $|\widehat{u}_{\mathscr{A}}| < |\beta_{\mathscr{A}}|$ and $\widehat{u}_{\mathscr{A}^c} = 0$.

This proves that if $A_n \cap B_n$ holds, $sign(\widehat{\beta}) = sign(\beta)$.

Theorem (strong sign consistency of LASSO)

(i) Assume that ε_i 's are iid with $E(\varepsilon_i^{2k}) < \infty$ for an integer k > 0, and there are positive constants $c_1 < c_2 \le 1$, M_1 , M_2 , M_3 , such that

C1: $n^{-1}||Z_j||^2 \le M_1$ for any j = 1,...,p, Z_j is the jth column of Z;

C2: The smallest eignvalue of $C_{11} \ge M_2$;

C3: $q = O(n^{c_1});$

C4: $n^{(1-c_2)/2} \min_{j \in \mathscr{A}} |\beta_j| \ge M_3$;

C5: $p = o(n^{(c_2 - c_1')k})$.

Under SIC, if λ is chosen with $\lambda = o(n^{1+c_2-c_1)/2})$ and $pn^k/\lambda^{2k} = o(1)$, then

$$P\left(\operatorname{sign}(\widehat{\beta}) = \operatorname{sign}(\beta)\right) \ge 1 - O(pn^k/\lambda^{2k})$$

(ii) Assume that ε_i 's are iid normal and C1-C4 hold, and

C5a: $p = O(e^{n^{c_3}})$ with a constant c_3 , $0 \le c_3 < c_2 - c_1$.

Under SIC, if λ is chosen with $\lambda \propto n^{(1+c_4)/2}$, c_4 is a constant, $c_3 < c_4 < c_2 - c_1$, then

$$P\left(\operatorname{sign}(\widehat{\beta}) = \operatorname{sign}(\beta)\right) \ge 1 - O(e^{n^{c_3}})$$

Proof.

 $z_j=$ the jth component of $C_{11}^{-1}W_{\mathscr{A}}$, j=1,...,q $\zeta_j=$ the jth component of $C_{21}C_{11}^{-1}W_{\mathscr{A}}-W_{\mathscr{A}^c}$, j=1,...,p-q $b_j=$ the jth component of $C_{11}^{-1}\mathrm{sign}(\beta_{\mathscr{A}})$, j=1,...,q The condition $E(\varepsilon_i^{2k})<\infty$ implies that $E(z_j^{2k})<\infty$ and $E(\zeta_j^{2k})<\infty$ By the lemma,

$$\begin{split} P\left(\operatorname{sign}(\widehat{\beta}) \neq \operatorname{sign}(\beta)\right) &\leq 1 - P(A_n \cap B_n) \\ &\leq \sum_{j \in \mathscr{A}} P\left(|z_j| \geq \sqrt{n}|\beta_j| - \lambda b_j/2\sqrt{n}\right) \\ &+ \sum_{j \in \mathscr{A}^c} P\left(|\zeta_j| \geq \lambda \eta_j/2\sqrt{n}\right) \\ &\leq \sum_{j \in \mathscr{A}} \frac{E|z_j|^{2k}}{n^k \beta_j^{2k}} + \sum_{j \in \mathscr{A}^c} \frac{E|\zeta_j|^{2k}}{(2\lambda \eta_j)^{2k}/n^k} \\ &= qO(n^{-kc_2}) + (p-q)O(n^k/\lambda^{2k}) \\ &= o(pn^k/\lambda^{2k}) + O(pn^k/\lambda^{2k}) = O(pn^k/\lambda^{2k}) \end{split}$$

This proves (i).

For (ii), the normality of ε_j implies that z_j and ζ_j are normal. Instead of using Markov inequality, using $1 - \Phi(t) \le t^{-1} e^{-t^2/2}$ leads to the result (ii).

Advantage and disadvantage of using LASSO

- Variable selection and parameter estimation at the same time
- It is very good in estimation and prediction, but it is often too conservative in variable selection.
- Need SIC.
- Population version of SIC. $|\Sigma_{21}\Sigma_{11}^{-1}\operatorname{sign}(\beta_{\mathscr{A}})| \leq 1-\eta$, Σ_{kj} are submatrices of $\Sigma = \operatorname{Var}(z_j)$, if z_j 's are iid, z_j is the jth row of Z.

Improvements

- Adaptive LASSO
- Group LASSO
- Elastic net (other penalties)
- LASSO plus thresholding (ridge regression plus threshodling)