Lecture 34: Ridge regression and LASSO

Ridge regression
Consider linear model X = ZB + ¢, B € %P and Var(g) = 621,.
The LSE is obtained from the minimization problem

in |1X—ZB|? 1
gmin, [IX—2ZB| (1)

A type of shrinkage estimator is obtained though (1) by adding a
penalty on |32, i.e.,

(I1X = ZBI* +A11BI%) ()

min
pexP
where A > 0 is a constant controlling the penalization.
d
9B
which gives the solution to (2) as
Br=(Z°Z+Al,) ' Z°X

This estimator is better than the LSE when Z°Z is nearly singular.
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(IX = ZB|I?+A|BII?) = —2Z7(X — ZB) +2ApB




This gives a class of estimators called ridge regression estimators;
in particular, A = 0 gives the LSE.

EBr) = (Z°Z+Alp) 'ZE(X) = (Z°Z+Alp) 'Z°ZB
The bias of B, is then
b(B)=(Z"Z+Alp)'Z°ZB—B=—-A(Z°Z+Alp)"'B
The bias is not 0, but converges to 0 as A — 0.
Var(ﬁl) = (Z°Z 4+ Alp) ' ZVar(X)Z(Z°Z + A1)
=02(Z°Z4+Alp) ' Z°Z2(Z°Z 4 Alp) !
=02(Z°Z 4+ Alp) ' = 6PA(ZTZ + Alp) 2
It can be seen that the variance converges to 0 if A — « and to
c?(Z*Z2)'if A — 0.
Combining the bias and variance, we get
EllBx — BII” = 16(B)I + EllB2 — E(BL)IP
A2(Z°Z +Alp) ' BIP 4 0?u[Z°Z(Z°Z + A ly) 2]
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Theorem (Comparison between ridge regression and LSE)

Let E = Eo be the LSE.

(i) 1f 0 <A <202/||B||2, then E||B, — BII? < EIIB — BII>.

(i) Assume that the smallest eigenvalue of Z°Z = O(n).
If A > 202/||B|12, then E||B, — B2 > E||B — B||? for sufficiently
large n; if A = 202/||B||2, then E||B; — B||? = E||B — B|| + O(n~3).

Let
A=062(Z°2) ' —0?(Z°Z+Alp) ' Z°Z(Z°Z + A1p)

—A2(Z°Z+Alp) 'BBY(ZTZ + Alp) !
Then

(Z"Z+ A)A(Z°Z 4+ Alp) = 62(Z°Z + A p)(Z72) ' (Z°Z 4 Alp)
—0%Z°Z - \?BB°
=2106%l,+A%6%(Z2°2) ' — A2BB"

A=(Z°Z+Al) "[2A6% ], — A2BBT +A26%(Z°2) " (Z°Z + Aly) !

UW-Madison (Statistics) Stat 709 Lecture 23 2018 3/16



Assume A >0 and 8 #0.

Then
A>2A26%(Z°Z+ Alp) (Z°2) N Z°Z + Llp) 7!

if and only if

26°A "I, BB*>0  equivalentto A <20?/||B|
This can be shown as follows. If 26241/, — BB* > 0, then
0<B%(20%A ', — BB")B =2021""|| B> - ||B]|*, which means
A < 202/||B||?. On the other hand, if 1 < 202/||8]|?, then
(20247 o= BB7)/|IBI® = (26*A~|BII 72 = 1)l + I — BB*/IIB|I* > O,
because I, — BB7/||B||? is a projection matrix whose eigenvalues are
either O or 1. R
Since Var(B) = 62(Z*Z)~", using the formula for Var(; ) we obtain

E|lB - BIP - EllBx — BII? = tx(A)
Thus, (i) follows, and (ii) and (iii) follow from
226%(Z°Z+ 1) (Z°2) W Z7Z + 1lp) ' <A203(Z27Z) 78

The ridge regression is better if the noise to signal ratio is large.
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High dimension problems

The dimension of B in a linear model is p (Z is n x p)
In traditional applications: p << n; p is fixed when n — oo.
In modern applications, p is large; p = p, increases as n increases.
@ p = O(nX): polynomial-type divergence rate
@ p=0(e™): ultra-high dimension, where v is a constant < 1.
Non-identifiability of 3
@ r=ry: rank of Z.
@ The dimension of Z(Z) is r < n.
@ If p> n, then B is not identifiable.

This means that there are § and B, B # B but ZB = Z so that the
data generated under the models with g and 8 are the same.

@ It is not possible to estimate all components of B consistently; we
are not able to estimate something out of the data range.

@ We can estimate consistently some useful functions of .

@ We can estimate the projection of 8 onto Z(2).

@ Estimation of the projection is sufficient for many problems
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@ Singular value decomposition: Z = PDQ*
P: nx r matrix with P*P = I, (identity matrix)
Q: p x r matrix with Q*Q = I,
D: r x r diagonal matrix of full rank
@ Projection of 8 onto Z(Z):
0=2Z2Z%)"ZB =QQ*B € Z(2)
@ Z6 = PDQ*(QQ*B) =PDQ*B =2Zp
@ The model

Y=2B+¢ is the same as Y=20+¢

|

Ridge regression estimator of 6

6=(Z°Z+hnlp) 'Z°X  hp>0
We only need to invert an n x n matrix, because

(Z°Z+ hnlp) ' Z° = Z9(ZZF + hplp) ™"
6 is always in Z(Z)

v
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Derivation of the bias of ridge regression estimator

Letlr=(Q Q. ), Q*Q.=0,TT" =TT = I,
Then
bias(6) = E(6)— 6
(Z°Z+hplp)'Z°Z6 — 6
= —(h,'Z°Z+ 1) "6
= —T(h,'T°Z°ZT + I,) 'T°QQ"6

_ (ha'D2+1)"" 0 Q" T
-—(Q Ql)( 0 b, ) (o )o@

= —(Qh,' D2+ Q )< Q;G )

= —Qh,'D*+1)'Q%
(1 “‘d1n/hn)_1
- _-Q Qe
(14 dn/hn) "

where dj, > 0 is the jth diagonal element of D? (eigenvalue of Z°Z).
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Uines Ibias(8) |2 = 67Q(h-" D2+ I,)"2Q°6

< max (1+djn/hn) 26°QQ"6

1<j<r
< mad; 7116
For the variance,
Var(8) = 62(Z°Z + hnlp) ' Z°Z(Z7Z + hplp) ™
<c?h,lp

Theorem (Consistency of 5)
Assume that
(C1) d;n1 =0O(n™ M), n <1 andn does not depend on n.
C2) ||6||=O(n*), t<n and t does not depend on n.
Then
(i) As n— oo, E(£76 —(70)2 = O(h,; ") + O(h2n~2(n-7))
uniformly over p-dimensional deterministic vector ¢ with ||¢|| = 1.
(i) n~1E||Z6 — 26|12 = O(r,n~1) + O(h2n~(1+1-29)),
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@ (C2) means that 6 is sparse; without any condition, the order of
1612 could be p.

@ ||6]] < ||B]| so that (C2) holds if j is sparse.

@ For any fixed £'6, '8 is consistent if h, — o and h,n~(1-7) — 0.

@ 0 is not sparse even if 6 is sparse.

@ Typically rp,/n+ 0 so 6 is not Lp-consistent.

@ The reason (ii) is interesting is that
n'E|Z6—Z6|?=n""E|X. - Z8]|]? - 62,

where X, is an independent copy of X and n'E| X, — Z6|? is the
average prediction mean squared error.

Problem of the ridge regression estimator
When p < n, 6 = B has many zero components, the ridge regression
estimator does not have any zero components, although it has many
small components.
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LASSO estimator

Consider linear model X = ZB + ¢, B € %P and Var(e) = 62 1.
The ridge regression estimator of 8 is obtained from

(X — ZBI2+A11BII2)

min

BexP
If we change the L, penalty [|3]|® to the Ly penalty ||B]l1 = X Bjl,
where f; is the jth component of 8, then the LASSO estimator is from

: _ 2
gnin (1X=2ZB 1"+ A11Bl+)

Difference between LASSO and ridge regression:

@ LASSO estimator does not have an explicit form.

@ When a component of 8 is 0, its LASSO estimator may be 0, but
its ridge regression estimator is never 0.

@ The minimization for LASSO is still for a convex objective function,
but the objective function is not always differentiable.

@ Although LASSO is still defined when p > n, it is usually used in
the case where p < n.

@ If p < n, Z can be deterministic or random.
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o/ = the set of indices of non-zero coefficients of
B = (B Bere), dim(By) = g, dmM(Bee) = p—q; X = (Xor, Xore)

C11 C12> < XS Xy Xy Xege > 1
o= - —1xTx
Co1 Co X%cxd XQ{cXM

The LASSO estimator [5’ of B is strongly sign consistent if there exists
A = Ap not depending on Y or X such that

lim P (sign(B) = sign(B)) = 1
which implies variable selection consistent (since sign(a) = 0 if a=0),
_ Lalr=e=t
where ¢/ is the index set of nonzero components of 3.

Strong Irrepresentable Condition (SIC)

There exists a vector n whose components are positive such that
|C21Cy'sign(By)| < 1—n component-wise, where |a| = (|ai],|az], ..)
fora=(ay,a»,...) and 1 is the vector of ones.
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Critical Lemma

Under the SIC,
P (sign(B) = sign(B)) = P(An By),
where

_ A _a .
A= {|c111 W] < VAlBu| - 2\%|c1ﬂslgn(ﬁd)\}

A
B,={|CoiC{ W, — W, | < 2
n {‘ 2114 o ﬂ’_z\/ﬁn}

W, — 1 x7e Wi — X6

Vn Vn

Karush-Kuhn-Tuker (KKT) condition

B= (51 , ...,Bp) is the LASSO estimator if and only if
| asign(B)) Bi#0

Bi=h; B

Y - XB|?
aB;

bounded by A in absolute value Bi=0

V.
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Proof of the Lamma

Let U= B — B and Va(u) = X4 [(& — Xiu)? — &1+ Anl|u+ Bl
Then U = argmin Vj,(u)

It can be verified that the KKT condition is equivalent to

Cr(ViTlly) — Wiy = z%sign(ﬁw), @)
_ 2%1 < Cor(ViTiy) = Wiye < 2’\‘%1, (@)
ey | < |Bor] (5)

We now show that on A, B, a solution u satisfying (3) and U< =0
must satisfy (4) and (5), and hence E = u+ B is a LASSO estimator.

In fact, LASSO estimator is unique.

First, (3) and A, holds imply (5).

Second, (3) and B, holds and the SIC imply (4).

Finally, a sufficient condition for sign(B) = sign(B) is |Uy| < |B| and

Ugye =0.

This proves that if A, B, holds, sign(B) = sign(B).
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Theorem (strong sign consistency of LASSO)

(i) Assume that &;’s are iid with E(e2) < o for an integer k > 0, and
there are positive constants ¢y < ¢, <1, My, Mo, M3, such that

C1:n7||Z|? < M, forany j=1,...,p, Z; is the jth column of Z;

C2: The smallest eignvalue of Cy1 > Mo;

C3: g= O(n*);

C4: n(1=%)/2 minjc ., |Bi| > Ms;

C5: p = o(nl®—¢ck),

Under SIC, if A is chosen with A = o(n'+%~%)/2) and pn/A%k = o(1),

then ~
P (sign(B) = sign(p)) = 1~ O(pr/1%)

(if) Assume that ¢’s are iid normal and C1-C4 hold, and
C5a: p= O(e™) with a constant ¢z, 0 < ¢3 < C» — C1.

Under SIC, if A is chosen with A « n(1+%)/2 ¢, is a constant,
C3 < C4 < C» — Cy, then

<s1gn(//3\) = Sign(ﬁ)) >1— O(e”c3)
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Proof.

z; = the jth component of C;]' W/, j=1,...,.q

¢j = the jth component of Cp1 Cy' Wy — Woye, j=1,....p—q

b; = the jth component of C;'sign(B.,), j=1,....q

The condition E(e7*) < o implies that E(z7¥) < e and E({?) < eo
By the lemma,

P (sign(ﬁ) == sign(ﬁ)) <1-P(ANBp)
< ¥ P(lz] 2 Vil - Ab;/2v7)

jedd
+ ) P> An;/2v/n)
jew®
- E|z* y E| gl
= nkﬁj?k S (Q;Lnj)zk/nk

= qO(n~*) +(p— q)O(n* /2%)
= o(pn*/2%) + O(pn* /%) = O(pn* /%)

This proves (i).
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For (ii), the normality of &; implies that z; and ; are normal.
Instead of using Markov inequality, using 1— ®(t) < t~'e /2 leads to
the result (ii).
Advantage and disadvantage of using LASSO
@ Variable selection and parameter estimation at the same time

@ ltis very good in estimation and prediction, but it is often too
conservative in variable selection.

@ Need SIC.

@ Population version of SIC.
T21X (' sign(B)| < 1—n, Xy are submatrices of ¥ = Var(z)), if
zj's are iid, z; is the jth row of Z.

Improvements
@ Adaptive LASSO
@ Group LASSO
@ Elastic net (other penalties)
@ LASSO plus thresholding (ridge regression plus threshodling)
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