Lecture 24: Variable selection in linear models

Consider linear model X = ZB + ¢, B € %P and Var(g) = 621,.

Like the LSE, the ridge regression estimator does not give 0 estimate
to a component of B even if that component is 0.

Variable (or model) selection refers to eliminating covariates (columns
of Z) corresponding to zero components of 3.
Example 1. Linear regression models

@ o/ = asubset of {1,...,p}, indices of nonzero components of 3
@ The dimension of &7 isdim(«/) =q<p
@ f.,: sub-vector of B with indices in </
@ Z,: the corresponding sub-matrix of Z
@ The number of models could be as large as 2P
@ Approximation to a response surface
e The ith row of Z, = (1,1, t2,...t1), ti e %

e o/ ={1,...,h}: a polynomial of order h
(] h:O’1,...’pn
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@ nN=pr,P=pn r=rn
@ There are p groups, each has r identically distributed observations
@ Select one model from two models

e 1-mean model: all groups have the same mean p;
e p-mean model: p groups have different means py, ..., tp

® o/ = o) or @)

i 0 0 --- 0 Ly
7 — r 1 0 - 0 B = M2 — 4
i, 0 0 - 1, Mp — U4
Zyy=2Z  Pog,=p
Zgy=1n  Boy =1

@ In traditional studies, p is fixed and nis large, or p/n is small

@ In modern applications, both p and n are large, and in some cases
p>n,p/n— oo
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Methods for variable selection

@ Generalized Information Criterion (GIC)
Put a penalty on the dimension of the parameter: We minimize

|X — ZsBs || + A6%dim(B.,) over o7,

to obtain a suitable <7, and then estimate S, .
62 is a suitable estimator of the error variance 2
e The term || X — Z,,B./||> measures goodness-of-fit of model .«7,
whereas the term 162dim(B,,) controls the “size" of .« .
e If A, =2, this is the Cp method, and close to the AIC
o If A, =logn, this is close to the BIC
@ Regularization or penalized optimization simultaneously select
variables and estimate 6 by minimizing

IX —ZB1?+pa(B).

where p, () is a penalty function indexed by the penalty parameter
A >0, which may depend on n and data.

Zero components of B are estimated as zeros and automatically
eliminated.
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@ Examples of penalty functions

e Ridge regression: p; (B8) = A |B]?;

o LASSO (least absolute shrinkage and selection operator):
pi(B) =A[1Bll+ = A X7 |Bjl, B; is the jth component of j;

o Adaptive LASSO: p, (B) = AZ/‘.; 7j|B;|, where 7;’s are non-negative
leverage factors chosen adaptively such that large penalties are
used for unimportant ;s and small penalties for important ones;

o Elastic net: py(B) = A4(|Bl1 + Aol

e Minimax concave penalty: p, (B) = f1(al B;)+/afor some
a>o0;

o SCAD (smoothly clipped absolute deviation):

Pa(B) =L ALIB < A)+ ?2 f’+l(ﬁ,>l)} for some a > 2;

e There are also many modified versions of the previously listed
methods.
@ Resampling methods
Cross validation, bootstrap
@ Thresholding
Compare [A%, with a threshold (may depend on n and data) and

eliminate estimates that are smaller than the threshold.
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Assessment of variable/model selection procedures

</ = the set containing exactly indices of nonzero components of 8
</ a set of variables/model selected based on a selection procedure
The selection procedure is selection consistent if

lim P (@7 - M) ~ 1

Nn—oo
Sometimes the following weaker version of consistency is desired.
Under model &7, u = E(X|Z) is estimated by i, = Z,B.»
We want to minimize the squared error loss
Ln(«/)=n""lu—Rs|?  over s/
which is equivalent to minimizing the average prediction error
nE X — 1,2 X, Z over o/

X*: a future independent copy of X
The selection procedure is loss consistent if

—

Ln(o)/Ln(o7) —p 1
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Consistency of the GIC
Let .# denote a set of indices (model).

If o C .#,then .# is a correct model; otherwise, .# is a wrong model.
The loss under model ./ is equal to

Hiu=Zu(Z%Z4) ' Z%, An(tl) = |t — Houl?/n (O 4 is correct)
Let Tpa () =n""[||X —Z4B.«|?+26%dim(B 4)] (to be minimized)
IX=ZaBul? =IX—HaX|?=|u—Hyu+e—Hyel?
= nAn(A)+ €| e H 4 +26%(1— H.q )
When ./ is a wrong model,

Jlell? e"H e  AG2dim(.4) An(A)
Cpa( M) = 4 Dn(l) = — 7=+ "=——2"=" + Op (n>
2 im n
”‘C’J +Ln(#)+Op (ld n(//l)) +Op (L (;/l)>
_ lel®

+Ln(A)+0p (Ln(A))
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provided that

. : Ap

liminf  min  Ap(#)>0 and — —0

N—oo 7/ is wrong n
(The first condition impies that wrong is always worse than correct)
Among all wrong .2, minimizing I', 4 (.#') is asymptotically the same
as minimizing Ln(.#)
Hence, the GIC is loss consistent when all models are wrong
The GIC selects the best wrong model, i.e., the best approximation to
a correct model in terms of Ap,(.#), the leading term in the loss L,(.#)

For correct models, however, A,(a) =0 and Ly(.#)=¢€*H 4€/n
Correct models are nested, and .« has the smallest dimension and

eHye= min €'Hy e
M is correct

lel®  e"Hue N Ao2dim(.)
n n n
2 ~9 1. e
HEH —i—Ln(//l)—i—;LG d1m(//l)_2€ H €

n
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If A — o, the dominating term in I, ; (.#) is A62dim(.#)/n.

Among correct models, the GIC selects a model by minimizing
dim(.#), i.e., it selects .«

Combining the results, we showed that the GIC is selection consistent.
On the other hand, if A = 2 (the C, method, AIC), the term

26%dim(.#) 2e"Hye
n n
is of the same order as L,(.#) = €*H 4&/n unless dim(.#) — oo for all

but one correct model.

Under some conditions, the GIC with A = 2 is loss consistent if and
only if there does not exist two correct models with fixed dimensions.

(1) The GIC with a bounded A (Cp, AIC) is loss consistent when there
is at most one fixed-dimension correct model; otherwise it is
inconsistent.

(2) The GIC with A — «~ and Ap/n — 0 (BIC) are selection consistent

or loss consistent.
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Example 2. 1-mean vs p-mean
a/y Vs 4, (always correct)
Pn groups, each with r, observations
Ap(ay) = Zf:1 (/Jj - [._L)2/p, p= 27:1 .uj/p
n = ppry, — e means that either p, — o or r, — oo
1. ph=pisfixed and r, — o
@ The dimensions of correct models are fixed
@ The GIC with A — « and A/n — 0 is selection consistent
@ The GIC with A =2 is inconsistent
2. pn — e and r, = r is fixed
@ Only one correct model has a fixed dimension
@ The GIC with A, =2 is loss consistent
@ The GIC with A — = is inconsistent, because Ap,/n=A/r — o
3. ph—ooand r, — o
@ Only one correct model has a fixed dimension

@ The GIC is selection consistent, provided that A /r, — 0
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More on the case where p, — o and r, = r is fixed

62 = S(p)/n, S() = | X = ZyBus 2.
It can be shown that

Lo(eh) = DAp(eh) + & —p A = lim 12,0:( —Zu,>

P
Lo(ep) =} & —p—

where ej’s are iid, E(ej;) =0, E(ez) o% & =r"Y/_,ej and
e= p*1 Zf:1 6;.
Then Lo() . ra
Ln(ep) P o2
The one-mean model is better if and only if rA < 2.
The wrong model may be better!
The GIC with A, — « minimizes

S(c4)  InS(ah) .y S() , AnS(h)

n n n—p n r n—p
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Because

8(4271) 18 <
Anmwnzz ej— &%) =p A+0?

i=1j=1

S(#, 1)0?

Z Z(eu (r—r

/ 1j=
and Ap/r — oo, P{GIC with A — oo selects o7} — 1

On the other hand, the Cp (GIC with 1, = 2) is loss consistent,
because the Cp minimizes
S(eh) , 28(e%) 1 S(h) , 25(h)
n nn-p n rn—p
S(<#) , 2 S(<)
n nn—p

2
Seh) , 28(eh) | o o
n rn—p r

—>pA+62,

Asymptotically, the C, selects < iff A < 62/r, which is the same as

the one-mean model is better.
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Variable selection by thresholding

Can we do variable selection using p-values?
Or, can we simply select variables by using the values f;, j=1,...,p?

Here Bj is the jth component of B the least squares estimator of 3.
For simplicity, assume that X|Z ~ N(ZB, 621).

Then n n
ﬁj—ﬁj: Z/jj&‘,‘ Z~N <O,GZZ/5>
i=1 i=1

where ¢ and J; are the ith components of e = X — Zf and (Z72) "z
z; is the jth row of Z

Because
v ?75 o t2/2

1—d(t) <
where ¢ is the standard normal cdf,

P <|E/—B,-| > t\/\M’Z) < 2\/?6"2/2, t>0

Let J; be the p-vector whose jth component is 1 and other components

0:
= B=Wf(Z°2) "2l < J(Z°2) "z (Z°2) 'z
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n
Z <CjZZ (Zz°z Z,—,OCJ<,D/T[,,
i=1 i=
where ¢; is the jth diagonal element of (ZTZ)‘1 and n, is the smallest
eigenvalue of Z°Z.

Thus, for any j,

B 2v2en
P <|B\/ _Bj| > dan ’ Z) < Ce—a%nn/(%zp)

for some constant C > 0,

.....

Suppose that p/n — O and p/(nnplogn) — 0 (typically, n, = O(n)).
Then, we can choose a, such that a, — 0 and a&3(n,logn/p) — = such
that
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.....

for any ¢ > 0 and some s 2 1;e.g.,

(04
TNnlogn

for some constants M >0 and « € (0, }).
What can we conclude from this?

Let ) —~
A o ={j:Bj#0} and & ={j:[Bj| > an}
That is, &7 contains the indices of variables we select by thresholding

|B;| at an.
Selection consistency:

P(o#|2) <P (1Bl >ani¢ | Z)+P(IBl<anjc|2)
The first term on the right hand side is bounded by

P<j_rr11axp]ﬁj ﬁ,]>an\2> o(n°)

geeey,
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On the other hand, if we assume that

m|n|B/| > Copan
jest

for some ¢y > 1, then
(|ﬁ,|<an,/e¢\2)s (18118~ B < amje | 2)
Coan—fﬁj—ﬁﬂ <anje|Z)

/'\

= O( )
Hence, we have consistency; in fact, the convergence rate is O(n—*).
We can also obtain similar results by thresholding |B;|/ /¥ /5

This approach may not work if p/n /4 0.

If p> n, then Z*Z is not of full rank.

There exist several other approaches for the case where p > n;
e.g., we replace (Z*Z)~! by some matrix, or use ridge regression
instead of LSE.

UW-Madison (Statistics) Stat 709 Lecture 24 2018 15/15




