Lecture 24: Variable selection in linear models

Consider linear model $X = Z\beta + \varepsilon$, $\beta \in \mathcal{R}^p$ and $Var(\varepsilon) = \sigma^2 I_n$.

Like the LSE, the ridge regression estimator does not give 0 estimate to a component of β even if that component is 0.

Variable (or model) selection refers to eliminating covariates (columns of Z) corresponding to zero components of β .

Example 1. Linear regression models

- $\mathscr{A} = a$ subset of $\{1,...,p\}$, indices of nonzero components of β
- The dimension of \mathscr{A} is $\dim(\mathscr{A}) = q \leq p$
- $\beta_{\mathscr{A}}$: sub-vector of β with indices in \mathscr{A}
- $Z_{\mathcal{A}}$: the corresponding sub-matrix of Z
- The number of models could be as large as 2^p
- Approximation to a response surface
 - The *i*th row of $Z_{\mathscr{A}} = (1, t_i, t_i^2, ..., t_i^h), t_i \in \mathscr{R}$
 - $\mathscr{A} = \{1,...,h\}$: a polynomial of order h
 - $h = 0, 1, ..., p_n$

Example 2. 1-mean vs p-mean

- $n = pr, p = p_n, r = r_n$
- There are *p* groups, each has *r* identically distributed observations
- Select one model from two models
 - ullet 1-mean model: all groups have the same mean μ_1
 - p-mean model: p groups have different means $\mu_1,...,\mu_p$
- $\mathscr{A} = \mathscr{A}_1$ or \mathscr{A}_p

$$Z = \begin{pmatrix} 1_r & 0 & 0 & \cdots & 0 \\ 1_r & 1_r & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1_r & 0 & 0 & \cdots & 1_r \end{pmatrix} \qquad \beta = \begin{pmatrix} \mu_1 \\ \mu_2 - \mu_1 \\ \vdots \\ \mu_p - \mu_1 \end{pmatrix}$$

$$Z_{\mathcal{A}_p} = Z$$
 $\beta_{\mathcal{A}_p} = \beta$ $Z_{\mathcal{A}_1} = 1_n$ $\beta_{\mathcal{A}_1} = \mu_1$

- In traditional studies, p is fixed and n is large, or p/n is small
- In modern applications, both p and n are large, and in some cases p > n, $p/n \to \infty$

Methods for variable selection

Generalized Information Criterion (GIC)
 Put a penalty on the dimension of the parameter: We minimize

$$\|X - Z_{\mathscr{A}}\beta_{\mathscr{A}}\|^2 + \lambda \widehat{\sigma}^2 \dim(\beta_{\mathscr{A}})$$
 over \mathscr{A} ,

to obtain a suitable \mathscr{A} , and then estimate $\beta_{\mathscr{A}}$. $\widehat{\sigma}^2$ is a suitable estimator of the error variance σ^2

- The term $||X Z_{\mathscr{A}}\beta_{\mathscr{A}}||^2$ measures goodness-of-fit of model \mathscr{A} , whereas the term $\lambda \hat{\sigma}^2 \dim(\beta_{\mathscr{A}})$ controls the "size" of \mathscr{A} .
- If $\lambda_D = 2$, this is the C_D method, and close to the AIC
- If $\lambda_n = \log n$, this is close to the BIC
- Regularization or penalized optimization simultaneously select variables and estimate θ by minimizing

$$||X-Z\beta||^2+p_{\lambda}(\beta),$$

where $p_{\lambda}(\cdot)$ is a penalty function indexed by the penalty parameter $\lambda \geq 0$, which may depend on n and data.

Zero components of β are estimated as zeros and automatically eliminated.

- Examples of penalty functions
 - Ridge regression: $p_{\lambda}(\beta) = \lambda \|\beta\|^2$;
 - LASSO (least absolute shrinkage and selection operator): $p_{\lambda}(\beta) = \lambda \|\beta\|_1 = \lambda \sum_{j=1}^{p} |\beta_j|, \beta_j$ is the *j*th component of β ;
 - Adaptive LASSO: $p_{\lambda}(\beta) = \lambda \sum_{j=1}^{p} \tau_{j} |\beta_{j}|$, where τ_{j} 's are non-negative leverage factors chosen adaptively such that large penalties are used for unimportant β_{j} 's and small penalties for important ones;
 - Elastic net: $p_{\lambda}(\beta) = \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|^2$;
 - Minimax concave penalty: $p_{\lambda}(\beta) = \sum_{j=1}^{p} (a\lambda \beta_j)_{+}/a$ for some a > 0;
 - SCAD (smoothly clipped absolute deviation):

$$p_{\lambda}(\beta) = \sum_{j=1}^{p} \lambda \{ I(\beta_{j} \leq \lambda) + \frac{(a\lambda - \beta_{j})_{+}}{(a-1)\lambda} I(\beta_{j} \geq \lambda) \} \text{ for some } a > 2;$$

- There are also many modified versions of the previously listed methods.
- Resampling methods Cross validation, bootstrap
- Thresholding Compare $\widehat{\beta}_j$ with a threshold (may depend on n and data) and eliminate estimates that are smaller than the threshold.

Assessment of variable/model selection procedures

 $\mathscr{A}=$ the set containing exactly indices of nonzero components of β $\widehat{\mathscr{A}}:$ a set of variables/model selected based on a selection procedure. The selection procedure is selection consistent if

$$\lim_{n\to\infty} P\left(\widehat{\mathscr{A}}=\mathscr{A}\right)=1$$

Sometimes the following weaker version of consistency is desired. Under model \mathscr{A} , $\mu = E(X|Z)$ is estimated by $\widehat{\mu}_{\mathscr{A}} = Z_{\mathscr{A}}\widehat{\beta}_{\mathscr{A}}$ We want to minimize the squared error loss

$$L_n(\mathscr{A}) = n^{-1} \|\mu - \widehat{\mu}_{\mathscr{A}}\|^2$$
 over \mathscr{A}

which is equivalent to minimizing the average prediction error

$$n^{-1}E\left[\|X^*-\widehat{\mu}_\mathscr{A}\|^2\mid X,Z\right]$$
 over \mathscr{A}

 X^* : a future independent copy of X

The selection procedure is loss consistent if

$$L_n(\widehat{\mathscr{A}})/L_n(\mathscr{A}) \to_p 1$$

Consistency of the GIC

Let \mathcal{M} denote a set of indices (model).

If $\mathscr{A} \subset \mathscr{M}$, then \mathscr{M} is a correct model; otherwise, \mathscr{M} is a wrong model. The loss under model \mathscr{M} is equal to

$$L_n(\mathcal{M}) = \Delta_n(\mathcal{M}) + \varepsilon^{\tau} H_{\mathcal{M}} \varepsilon / n$$

$$H_{\mathscr{M}} = Z_{\mathscr{M}}(Z_{\mathscr{M}}^{\tau}Z_{\mathscr{M}})^{-1}Z_{\mathscr{M}}^{\tau}, \ \Delta_n(\mathscr{M}) = \|\mu - H_{\mathscr{M}}\mu\|^2/n \ (0 \ \text{if} \ \mathscr{M} \ \text{is correct})$$

Let
$$\Gamma_{n,\lambda}(\mathscr{M}) = n^{-1}[\|X - Z_{\mathscr{M}}\beta_{\mathscr{M}}\|^2 + \lambda \widehat{\sigma}^2 \dim(\beta_{\mathscr{M}})]$$
 (to be minimized)

$$||X - Z_{\mathscr{M}}\beta_{\mathscr{M}}||^{2} = ||X - H_{\mathscr{M}}X||^{2} = ||\mu - H_{\mathscr{M}}\mu + \varepsilon - H_{\mathscr{M}}\varepsilon||^{2}$$
$$= n\Delta_{n}(\mathscr{M}) + ||\varepsilon||^{2} - \varepsilon^{\tau}H_{\mathscr{M}}\varepsilon + 2\varepsilon^{\tau}(I - H_{\mathscr{M}})\mu$$

When \mathcal{M} is a wrong model,

$$\Gamma_{n,\lambda}(\mathcal{M}) = \frac{\|\varepsilon\|^2}{n} + \Delta_n(\mathcal{M}) - \frac{\varepsilon^{\tau} H_{\mathcal{M}} \varepsilon}{n} + \frac{\lambda \widehat{\sigma}^2 \dim(\mathcal{M})}{n} + O_P\left(\frac{\Delta_n(\mathcal{M})}{n}\right)$$

$$= \frac{\|\varepsilon\|^2}{n} + L_n(\mathcal{M}) + O_P\left(\frac{\lambda \dim(\mathcal{M})}{n}\right) + O_P\left(\frac{L_n(\mathcal{M})}{n}\right)$$

$$= \frac{\|\varepsilon\|^2}{n} + L_n(\mathcal{M}) + O_P(L_n(\mathcal{M}))$$

provided that

$$\liminf_{n\to\infty} \min_{\mathscr{M} \text{ is wrong}} \Delta_n(\mathscr{M}) > 0 \quad \text{and} \quad \frac{\lambda p}{n} \to 0$$

(The first condition impies that wrong is always worse than correct)

Among all wrong \mathcal{M} , minimizing $\Gamma_{n,\lambda}(\mathcal{M})$ is asymptotically the same as minimizing $L_n(\mathcal{M})$

Hence, the GIC is loss consistent when all models are wrong

The GIC selects the best wrong model, i.e., the best approximation to a correct model in terms of $\Delta_n(\mathcal{M})$, the leading term in the loss $L_n(\mathcal{M})$

For correct models, however, $\Delta_n(\alpha) = 0$ and $L_n(\mathcal{M}) = \varepsilon^{\tau} H_{\mathcal{M}} \varepsilon / n$ Correct models are nested, and \mathcal{A} has the smallest dimension and

$$\varepsilon^{\tau} H_{\mathscr{A}} \varepsilon = \min_{\mathscr{M} \text{ is correct}} \varepsilon^{\tau} H_{\mathscr{M}} \varepsilon$$

$$\Gamma_{n,\lambda}(\mathscr{M}) = \frac{\|\varepsilon\|^{2}}{n} - \frac{\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n} + \frac{\lambda \widehat{\sigma}^{2} \dim(\mathscr{M})}{n}$$

$$= \frac{\|\varepsilon\|^{2}}{n} + L_{n}(\mathscr{M}) + \frac{\lambda \widehat{\sigma}^{2} \dim(\mathscr{M})}{n} - \frac{2\varepsilon^{\tau} H_{\mathscr{M}} \varepsilon}{n}$$

If $\lambda \to \infty$, the dominating term in $\Gamma_{n,\lambda}(\mathcal{M})$ is $\lambda \widehat{\sigma}^2 \dim(\mathcal{M})/n$.

Among correct models, the GIC selects a model by minimizing $\dim(\mathcal{M})$, i.e., it selects \mathcal{A} .

Combining the results, we showed that the GIC is selection consistent.

On the other hand, if $\lambda = 2$ (the C_p method, AIC), the term

$$\frac{2\widehat{\sigma}^2\dim(\mathscr{M})}{n} - \frac{2\varepsilon^{\tau}H_{\mathscr{M}}\varepsilon}{n}$$

is of the same order as $L_n(\mathcal{M}) = \varepsilon^{\tau} H_{\mathcal{M}} \varepsilon / n$ unless $\dim(\mathcal{M}) \to \infty$ for all but one correct model.

Under some conditions, the GIC with $\lambda=2$ is loss consistent if and only if there does not exist two correct models with fixed dimensions.

Conclusion

- (1) The GIC with a bounded λ (C_p , AIC) is loss consistent when there is at most one fixed-dimension correct model; otherwise it is inconsistent.
- (2) The GIC with $\lambda \to \infty$ and $\lambda p/n \to 0$ (BIC) are selection consistent or loss consistent.

Example 2. 1-mean vs p-mean

 \mathcal{A}_1 vs \mathcal{A}_p (always correct)

 p_n groups, each with r_n observations

$$\Delta_n(\mathscr{A}_1) = \sum_{j=1}^p (\mu_j - \bar{\mu})^2 / p, \ \bar{\mu} = \sum_{j=1}^p \mu_j / p$$

$$n = p_n r_n \to \infty \text{ means that either } p_n \to \infty \text{ or } r_n \to \infty$$

- 1. $p_n = p$ is fixed and $r_n \to \infty$
 - The dimensions of correct models are fixed
 - The GIC with $\lambda \to \infty$ and $\lambda/n \to 0$ is selection consistent
 - The GIC with $\lambda = 2$ is inconsistent
- 2. $p_n \rightarrow \infty$ and $r_n = r$ is fixed
 - Only one correct model has a fixed dimension
 - The GIC with $\lambda_n = 2$ is loss consistent
 - The GIC with $\lambda \to \infty$ is inconsistent, because $\lambda p_n/n = \lambda/r \to \infty$
- 3. $p_n \rightarrow \infty$ and $r_n \rightarrow \infty$
 - Only one correct model has a fixed dimension
 - The GIC is selection consistent, provided that $\lambda/r_n \to 0$

More on the case where $p_n \rightarrow \infty$ and $r_n = r$ is fixed

$$\widehat{\sigma}^2 = S(\mathscr{A}_p)/n, \ S(\mathscr{A}) = \|X - Z_{\mathscr{A}}\beta_{\mathscr{A}}\|^2.$$

It can be shown that

$$L_n(\mathscr{A}_1) = \Delta_n(\mathscr{A}_1) + \bar{e}^2 \to_{\rho} \Delta = \lim_{\rho \to \infty} \frac{1}{\rho} \sum_{j=1}^{\rho} \left(\mu_j - \frac{1}{\rho} \sum_{i=1}^{\rho} \mu_i \right)^2$$
$$L_n(\mathscr{A}_{\rho}) = \frac{1}{\rho} \sum_{i=1}^{\rho} \bar{e}_i^2 \to_{\rho} \frac{\sigma^2}{r}$$

where e_{ij} 's are iid, $E(e_{ij}) = 0$, $E(e_{ij}^2) = \sigma^2$, $\bar{e}_i = r^{-1} \sum_{j=1}^r e_{ij}$, and $\bar{e} = p^{-1} \sum_{i=1}^p \bar{e}_i$.

Then

$$\frac{L_n(\mathscr{A}_1)}{L_n(\mathscr{A}_p)} \to_p \frac{r\Delta}{\sigma^2}$$

The one-mean model is better if and only if $r\Delta < \sigma^2$.

The wrong model may be better!

The GIC with $\lambda_n \to \infty$ minimizes

$$\frac{S(\mathscr{A}_1)}{n} + \frac{\lambda_n}{n} \frac{S(\mathscr{A}_p)}{n-p}$$
 and $\frac{S(\mathscr{A}_p)}{n} + \frac{\lambda_n}{r} \frac{S(\mathscr{A}_p)}{n-p}$

$$\frac{S(\mathscr{A}_1)}{n} = \Delta_n(\mathscr{A}_1) + \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^r (e_{ij} - \bar{e}^2) \rightarrow_p \Delta + \sigma^2$$

$$\frac{S(\mathscr{A}_p)}{n} = \frac{1}{n} \sum_{i=1}^p \sum_{j=1}^r (e_{ij} - \bar{e}_i^2) \rightarrow_p \frac{(r-1)\sigma^2}{r}$$

and $\lambda_n/r \to \infty$, $P\{GIC \text{ with } \lambda \to \infty \text{ selects } \mathscr{A}_1\} \to 1$

On the other hand, the C_p (GIC with $\lambda_n = 2$) is loss consistent, because the C_p minimizes

$$\frac{S(\mathscr{A}_{1})}{n} + \frac{2}{n} \frac{S(\mathscr{A}_{p})}{n-p} \quad \text{and} \quad \frac{S(\mathscr{A}_{p})}{n} + \frac{2}{r} \frac{S(\mathscr{A}_{p})}{n-p}$$

$$\frac{S(\mathscr{A}_{1})}{n} + \frac{2}{n} \frac{S(\mathscr{A}_{p})}{n-p} \rightarrow_{p} \Delta + \sigma^{2},$$

$$\frac{S(\mathscr{A}_{p})}{n} + \frac{2}{r} \frac{S(\mathscr{A}_{p})}{n-p} \rightarrow_{p} \sigma^{2} + \frac{\sigma^{2}}{r}$$

Asymptotically, the C_p selects \mathscr{A}_1 iff $\Delta < \sigma^2/r$, which is the same as the one-mean model is better.

Variable selection by thresholding

Can we do variable selection using *p*-values?

Or, can we simply select variables by using the values $\hat{\beta}_j$, j = 1,...,p?

Here $\hat{\beta_j}$ is the *j*th component of $\hat{\beta}$, the least squares estimator of β .

For simplicity, assume that $X|Z \sim N(Z\beta, \sigma^2 I)$. Then

$$\widehat{\beta}_j - \beta_j = \sum_{i=1}^n l_{ij} \varepsilon_i \left| Z \sim N\left(0, \sigma^2 \sum_{i=1}^n l_{ij}^2\right) \right|$$

where ε_i and l_{ij} are the *i*th components of $\varepsilon = X - Z\beta$ and $(Z^{\tau}Z)^{-1}z_i$ z_i is the *j*th row of Z

Because

$$1 - \Phi(t) \le \frac{\sqrt{2\pi}}{t} e^{-t^2/2}, \qquad t > 0$$

where Φ is the standard normal cdf,

$$P\left(|\widehat{\beta}_j - \beta_j| > t\sqrt{\operatorname{var}(\widehat{\beta}|Z)}\Big|Z\right) \leq \frac{2\sqrt{2\pi}}{t}e^{-t^2/2}, \quad t > 0$$

Let J_j be the *p*-vector whose *j*th component is 1 and other components are 0: $I_{ii}^2 = [J_i^{\tau}(Z^{\tau}Z)^{-1}z_i]^2 \leq J_i^{\tau}(Z^{\tau}Z)^{-1}J_iz_i^{\tau}(Z^{\tau}Z)^{-1}z_i$

UW-Madison (Statistics) Stat 709 Lecture 24 2018 12 / 15

$$\sum_{i=1}^{n} I_{ij}^{2} \leq c_{j} \sum_{i=1}^{n} z_{i}^{\tau} (Z^{\tau} Z)^{-1} z_{i} = p c_{j} \leq p / \eta_{n}$$

where c_j is the jth diagonal element of $(Z^{\tau}Z)^{-1}$ and η_n is the smallest eigenvalue of $Z^{\tau}Z$.

Thus, for any j,

$$P\left(|\widehat{\beta}_j - \beta_j| > t\sigma\sqrt{p/\eta_n} | Z\right) \leq \frac{2\sqrt{2\pi}}{t}e^{-t^2/2}, \quad t > 0$$

and (letting $t = a_n/(\sigma\sqrt{p/\eta_n})$)

$$P\left(|\widehat{\beta_j} - \beta_j| > a_n \mid Z\right) \leq Ce^{-a_n^2\eta_n/(2\sigma^2p)}$$

for some constant C > 0,

$$P\left(\max_{j=1,...,p}|\widehat{\beta_j}-\beta_j|>a_n\mid Z
ight)\leq pCe^{-a_n^2\eta_n/(2\sigma^2p)}$$

Suppose that $p/n \to 0$ and $p/(\eta_n \log n) \to 0$ (typically, $\eta_n = O(n)$). Then, we can choose a_n such that $a_n \to 0$ and $a_n^2(\eta_n \log n/p) \to \infty$ such that

$$P\left(\max_{j=1,\ldots,p}|\widehat{\beta}_j-\beta_j|>ca_n\mid Z\right)=O(n^{-s})$$

for any c > 0 and some $s \ge 1$; e.g.,

$$a_n = M \left(\frac{p}{\eta_n \log n} \right)^{\alpha}$$

for some constants M > 0 and $\alpha \in (0, \frac{1}{2})$.

What can we conclude from this?

Let

$$\mathscr{A} = \{j : \beta_j \neq 0\}$$
 and $\widehat{\mathscr{A}} = \{j : |\widehat{\beta}_j| > a_n\}$

That is, $\widehat{\mathscr{A}}$ contains the indices of variables we select by thresholding $|\widehat{\beta}_i|$ at a_n .

Selection consistency:

$$P\left(\widehat{\mathscr{A}} \neq \mathscr{A} \mid Z\right) \leq P\left(|\widehat{\beta_{j}}| > a_{n}, j \notin \mathscr{A} \mid Z\right) + P\left(|\widehat{\beta_{j}}| \leq a_{n}, j \in \mathscr{A} \mid Z\right)$$

The first term on the right hand side is bounded by

$$P\left(\max_{j=1,\ldots,p}|\widehat{\beta}_j-\beta_j|>a_n\mid Z\right)=O(n^{-s})$$

On the other hand, if we assume that

$$\min_{j\in\mathscr{A}}|\beta_j|\geq c_0a_n$$

for some $c_0 > 1$, then

$$\begin{split} P\left(|\widehat{\beta_j}| \leq a_n, j \in \mathscr{A} \mid Z\right) \leq P\left(|\beta_j| - |\widehat{\beta_j} - \beta_j| \leq a_n, j \in \mathscr{A} \mid Z\right) \\ \leq P\left(c_0 a_n - |\widehat{\beta_j} - \beta_j| \leq a_n, j \in \mathscr{A} \mid Z\right) \\ \leq P\left(\max_{j=1,\dots,p} |\widehat{\beta_j} - \beta_j| \geq (c_0 - 1)a_n \mid Z\right) \\ = O(n^{-s}) \end{split}$$

Hence, we have consistency; in fact, the convergence rate is $O(n^{-s})$. We can also obtain similar results by thresholding $|\widehat{\beta}_j|/\sqrt{\sum_{i=1}^n I_{ij}^2}$. This approach may not work if $p/n \not\to 0$. If p > n, then $Z^\tau Z$ is not of full rank. There exist several other approaches for the case where p > n:

There exist several other approaches for the case where p > n; e.g., we replace $(Z^{\tau}Z)^{-1}$ by some matrix, or use ridge regression instead of LSE.