The 2nd method of deriving a UMVUE when a sufficient and complete statistic is available

- Find an unbiased estimator of \(\vartheta \), say \(U(X) \).
- Conditioning on a sufficient and complete statistic \(T(X) \): \(E[U(X)|T] \) is the UMVUE of \(\vartheta \).
- We need to derive an explicit form of \(E[U(X)|T] \)
- We do not need the distribution of \(T \).
 But we need to work out the conditional expectation \(E[U(X)|T] \).
- From the uniqueness of the UMVUE, it does not matter which \(U(X) \) is used.
 Thus, we should choose \(U(X) \) so as to make the calculation of \(E[U(X)|T] \) as easy as possible.
Example 3.3

Let $X_1,...,X_n$ be i.i.d. from the exponential distribution $E(0, \theta)$.

$F_\theta(x) = (1 - e^{-x/\theta})I_{(0,\infty)}(x)$.

Consider the estimation of $\vartheta = 1 - F_\theta(t)$.

\bar{X} is sufficient and complete for $\theta > 0$.

$I_{(t,\infty)}(X_1)$ is unbiased for ϑ,

$$E[I_{(t,\infty)}(X_1)] = P(X_1 > t) = \vartheta.$$

Hence

$$T(X) = E[I_{(t,\infty)}(X_1) | \bar{X}] = P(X_1 > t | \bar{X})$$

is the UMVUE of ϑ.

If the conditional distribution of X_1 given \bar{X} is available, then we can calculate $P(X_1 > t | \bar{X})$ directly.

By Basu’s theorem (Theorem 2.4), X_1/\bar{X} and \bar{X} are independent.

By Proposition 1.10(vii),

$$P(X_1 > t | \bar{X} = \bar{x}) = P(X_1/\bar{X} > t/\bar{x} | \bar{X} = \bar{x}) = P(X_1/\bar{X} > t/\bar{x}).$$
To compute this unconditional probability, we need the distribution of \(\frac{X_1}{\sum_{i=1}^{n} X_i} = \frac{X_1}{X_1 + \sum_{i=2}^{n} X_i} \).

Using the transformation technique discussed in §1.3.1 and the fact that \(\sum_{i=2}^{n} X_i \) is independent of \(X_1 \) and has a gamma distribution, we obtain that \(\frac{X_1}{\sum_{i=1}^{n} X_i} \) has the Lebesgue p.d.f.

\[(n-1)(1-x)^{n-2}I_{(0,1)}(x).\]

Hence

\[P(X_1 > t | \bar{X} = \bar{x}) = (n-1) \int_{t/(n\bar{x})}^{1} (1-x)^{n-2} dx = \left(1 - \frac{t}{n\bar{x}}\right)^{n-1}\]

and the UMVUE of \(\vartheta \) is

\[T(X) = \left(1 - \frac{t}{n\bar{x}}\right)^{n-1}.\]
Example 3.4

Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$ with unknown $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. From Example 2.18, $T = (\bar{X}, S^2)$ is sufficient and complete for $\theta = (\mu, \sigma^2)$.

\bar{X} and $(n - 1)S^2/\sigma^2$ are independent

\bar{X} has the $N(\mu, \sigma^2/n)$ distribution

S^2 has the chi-square distribution χ^2_{n-1}.

Using the method of solving for h directly, we find that

- the UMVUE for μ is \bar{X};
- the UMVUE of μ^2 is $\bar{X}^2 - S^2/n$;
- the UMVUE for σ^r with $r > 1 - n$ is $k_{n-1,r}S^r$, where

$$k_{n,r} = \frac{n^{r/2}\Gamma\left(\frac{n}{2}\right)}{2^{r/2}\Gamma\left(\frac{n+r}{2}\right)}$$

- the UMVUE of μ/σ is $k_{n-1,-1}\bar{X}/S$, if $n > 2$.
Example 3.4 (continued)

Suppose that ϑ satisfies $P(X_1 \leq \vartheta) = p$ with a fixed $p \in (0, 1)$. Let Φ be the c.d.f. of the standard normal distribution. Then

$$\vartheta = \mu + \sigma \Phi^{-1}(p)$$

and its UMVUE is

$$\bar{X} + k_{n-1.1} S \Phi^{-1}(p).$$

Let c be a fixed constant and

$$\vartheta = P(X_1 \leq c) = \Phi \left(\frac{c - \mu}{\sigma} \right).$$

We can find the UMVUE of ϑ using the method of conditioning. Since $I_{(-\infty, c)}(X_1)$ is an unbiased estimator of ϑ, the UMVUE of ϑ is

$$E[I_{(-\infty, c)}(X_1) \mid T] = P(X_1 \leq c \mid T).$$

By Basu’s theorem, the ancillary statistic $Z(X) = (X_1 - \bar{X})/S$ is independent of $T = (\bar{X}, S^2)$.

Example 3.4 (continued)

Suppose that θ satisfies $P(X_1 \leq \theta) = p$ with a fixed $p \in (0, 1)$. Let Φ be the c.d.f. of the standard normal distribution. Then

$$\theta = \mu + \sigma \Phi^{-1}(p)$$

and its UMVUE is

$$\bar{X} + k_{n-1.1} S \Phi^{-1}(p).$$

Let c be a fixed constant and

$$\theta = P(X_1 \leq c) = \Phi \left(\frac{c - \mu}{\sigma} \right).$$

We can find the UMVUE of θ using the method of conditioning. Since $I_{(-\infty,c)}(X_1)$ is an unbiased estimator of θ, the UMVUE of θ is

$$E[I_{(-\infty,c)}(X_1) \mid T] = P(X_1 \leq c \mid T).$$

By Basu’s theorem, the ancillary statistic $Z(X) = (X_1 - \bar{X})/S$ is independent of $T = (\bar{X}, S^2)$.
Example 3.4 (continued)

Then, by Proposition 1.10(vii),

\[
P \left(X_1 \leq c \mid T = (\bar{x}, s^2) \right) = P \left(Z \leq \frac{c - \bar{X}}{S} \mid T = (\bar{x}, s^2) \right)
= P \left(Z \leq \frac{c - \bar{X}}{S} \right).
\]

It can be shown that \(Z \) has the Lebesgue p.d.f.

\[
f(z) = \frac{\sqrt{n} \Gamma \left(\frac{n-1}{2} \right)}{\sqrt{\pi (n-1) \Gamma \left(\frac{n-2}{2} \right)}} \left[1 - \frac{nz^2}{(n-1)^2} \right]^{(n/2)-2} I_{\left(0, (n-1)/\sqrt{n}\right)}(|z|)
\]

Hence the UMVUE of \(\vartheta \) is

\[
P(X_1 \leq c \mid T) = \int_{-(n-1)/\sqrt{n}}^{(c-\bar{X})/S} f(z) \, dz
\]
Example 3.4 (continued)

Suppose that we would like to estimate

$$\vartheta = \frac{1}{\sigma} \Phi' \left(\frac{c - \mu}{\sigma} \right),$$

the Lebesgue p.d.f. of X_1 evaluated at a fixed c, where Φ' is the first-order derivative of Φ.

By the previous result, the conditional p.d.f. of X_1 given $\bar{X} = \bar{x}$ and $S^2 = s^2$ is $s^{-1} f \left(\frac{x - \bar{x}}{s} \right)$.

Let f_T be the joint p.d.f. of $T = (\bar{X}, S^2)$.

Then

$$\vartheta = \int \int \frac{1}{S} f \left(\frac{c - \bar{X}}{s} \right) f_T(t) dt = E \left[\frac{1}{S} f \left(\frac{c - \bar{X}}{S} \right) \right].$$

Hence the UMVUE of ϑ is

$$\frac{1}{S} f \left(\frac{c - \bar{X}}{S} \right).$$
Let X_1, \ldots, X_n be i.i.d. with Lebesgue p.d.f. $f_{\theta}(x) = \theta x^{-2} I_{(\theta, \infty)}(x)$, where $\theta > 0$ is unknown.

Suppose that $\vartheta = P(X_1 > t)$ for a constant $t > 0$. The smallest order statistic $X_{(1)}$ is sufficient and complete for θ. Hence, the UMVUE of ϑ is

$$P(X_1 > t | X_{(1)}) = \frac{P(X_1 > t | X_{(1)} = x_{(1)})}{P(X_{(1)} = x_{(1)})}$$

$$= P \left(\frac{X_1}{X_{(1)}} > \frac{t}{x_{(1)}} \middle| X_{(1)} = x_{(1)} \right)$$

$$= P \left(\frac{X_1}{X_{(1)}} > \frac{t}{x_{(1)}} \middle| X_{(1)} = x_{(1)} \right)$$

$$= P \left(\frac{X_1}{X_{(1)}} > s \right)$$

(Basu’s theorem), where $s = t / x_{(1)}$.

If $s \leq 1$, this probability is 1.
Example (continued)

Consider $s > 1$ and assume $\theta = 1$ in the calculation:

\[
P \left(\frac{X_1}{X_{(1)}} > s \right) = \sum_{i=1}^{n} P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i \right)
\]

\[
= \sum_{i=2}^{n} P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_i \right)
\]

\[
= (n - 1) P \left(\frac{X_1}{X_{(1)}} > s, X_{(1)} = X_n \right)
\]

\[
= (n - 1) P (X_1 > sX_n, X_2 > X_n, \ldots, X_{n-1} > X_n)
\]

\[
= (n - 1) \int_{x_1 > s x_n, x_2 > x_n, \ldots, x_{n-1} > x_n} \prod_{i=1}^{n} \frac{1}{x_i^2} dx_1 \cdots dx_n
\]

\[
= (n - 1) \int_{1}^{\infty} \left[\int_{s x_n}^{\infty} \prod_{i=2}^{n-1} \left(\int_{x_n}^{\infty} \frac{1}{x_i^2} dx_i \right) \frac{1}{x_1^2} dx_1 \right] \frac{1}{x_n^2} dx_n
\]

\[
= (n - 1) \int_{1}^{\infty} \frac{1}{s x_n^{n+1}} dx_n = \frac{(n - 1) x_{(1)}}{nt}
\]
Example (continued)

This shows that the UMVUE of $P(X_1 > t)$ is

$$h(X_{(1)}) = \begin{cases} \frac{(n-1)X_{(1)}}{nt} & X_{(1)} < t \\ 1 & X_{(1)} \geq t \end{cases}$$

Another solution

The UMVUE must be $h(X_{(1)})$
The Lebesgue p.d.f. of $X_{(1)}$ is

$$\frac{n\theta^n}{x^{n+1}} \mathbf{1}_{(\theta, \infty)}(x).$$

Use the method of finding h

If $\theta \geq t$, then $P(X_1 > t) = 1$ and $P(t > X_{(1)}) = 0$.

Hence, if $X_{(1)} \geq t$, $h(X_{(1)})$ must be 1 a.s. P_θ
The value of $h(X_{(1)})$ for $X_{(1)} < t$ is not specified.
Example (continued)

This shows that the UMVUE of $P(X_1 > t)$ is

$$h(X_{(1)}) = \begin{cases} \frac{(n-1)X_{(1)}}{nt} & X_{(1)} < t \\ 1 & X_{(1)} \geq t \end{cases}$$

Another solution

The UMVUE must be $h(X_{(1)})$

The Lebesgue p.d.f. of $X_{(1)}$ is

$$\frac{n\theta^n}{x^{n+1}} I_{(\theta, \infty)}(x).$$

Use the method of finding h

If $\theta \geq t$, then $P(X_1 > t) = 1$ and $P(t > X_{(1)}) = 0$.

Hence, if $X_{(1)} \geq t$, $h(X_{(1)})$ must be 1 a.s. P_{θ}

The value of $h(X_{(1)})$ for $X_{(1)} < t$ is not specified.
If $\theta < t$,

$$E[h(X_{(1)})] = \int_{\theta}^{\infty} h(x) \frac{n\theta^n}{x^{n+1}} dx$$

$$= \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} dx + \int_{t}^{\infty} \frac{n\theta^n}{x^{n+1}} dx = \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} dx + \frac{\theta^n}{t^n}$$

Since $P(X_1 > t) = \theta / t$, we have

$$\frac{\theta}{t} = \int_{\theta}^{t} h(x) \frac{n\theta^n}{x^{n+1}} dx + \frac{\theta^n}{t^n}$$

i.e.,

$$\frac{1}{t\theta^{n-1}} = \int_{\theta}^{t} h(x) \frac{n}{x^{n+1}} dx + \frac{1}{t^n}$$

Differentiating both sizes w.r.t. θ leads to

$$- \frac{n-1}{t\theta^n} = - h(\theta) \frac{n}{\theta^{n+1}}$$

Hence, for any $X_{(1)} < t$,

$$h(X_{(1)}) = \frac{(n-1)X_{(1)}}{nt}.$$