Lecture 28: UMVUE: a necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very difficult to derive a UMVUE. In some cases, the following result can be applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2

Let \mathcal{U} be the set of all unbiased estimators of ϑ with finite variances and T be an unbiased estimator of ϑ with $E(T^2) < \infty$.

(i) A necessary and sufficient condition for $T(X)$ to be a UMVUE of ϑ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$.

(ii) Suppose that $T = h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathcal{P}$ and h is a Borel function. Let $\mathcal{U}_{\tilde{T}}$ be the subset of \mathcal{U} consisting of Borel functions of \tilde{T}. Then a necessary and sufficient condition for T to be a UMVUE of ϑ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}_{\tilde{T}}$ and any $P \in \mathcal{P}$.
Lecture 28: UMVUE: a necessary and sufficient condition

When a complete and sufficient statistic is not available, it is usually very difficult to derive a UMVUE.
In some cases, the following result can be applied, if we have enough knowledge about unbiased estimators of 0.

Theorem 3.2

Let \mathcal{U} be the set of all unbiased estimators of ϑ with finite variances and T be an unbiased estimator of ϑ with $E(T^2) < \infty$.

(i) A necessary and sufficient condition for $T(X)$ to be a UMVUE of ϑ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}$ and any $P \in \mathcal{P}$.

(ii) Suppose that $T = h(\tilde{T})$, where \tilde{T} is a sufficient statistic for $P \in \mathcal{P}$ and h is a Borel function.
Let $\mathcal{U}_{\tilde{T}}$ be the subset of \mathcal{U} consisting of Borel functions of \tilde{T}. Then a necessary and sufficient condition for T to be a UMVUE of ϑ is that $E[T(X)U(X)] = 0$ for any $U \in \mathcal{U}_{\tilde{T}}$ and any $P \in \mathcal{P}$.
Proof of Theorem 3.2(i)

Suppose that T is a UMVUE of ϑ. Then $T_c = T + cU$, where $U \in \mathcal{U}$ and c is a fixed constant, is also unbiased for ϑ and, thus,

$$\text{Var}(T_c) \geq \text{Var}(T) \quad c \in \mathbb{R}, \ P \in \mathcal{P},$$

which is the same as

$$c^2 \text{Var}(U) + 2c \text{Cov}(T, U) \geq 0 \quad c \in \mathbb{R}, \ P \in \mathcal{P}.$$

This is impossible unless $\text{Cov}(T, U) = E(TU) = 0$ for any $P \in \mathcal{P}$.

Suppose now $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$. Let T_0 be another unbiased estimator of ϑ with $\text{Var}(T_0) < \infty$. Then $T - T_0 \in \mathcal{U}$ and, hence,

$$E[T(T - T_0)] = 0 \quad P \in \mathcal{P},$$

which with the fact that $ET = ET_0$ implies that

$$\text{Var}(T) = \text{Cov}(T, T_0) \quad P \in \mathcal{P}.$$

Note that $[\text{Cov}(T, T_0)]^2 \leq \text{Var}(T) \text{Var}(T_0)$. Hence $\text{Var}(T) \leq \text{Var}(T_0)$ for any $P \in \mathcal{P}$.
Proof of Theorem 3.2(i)

Suppose that T is a UMVUE of ϑ.
Then $T_c = T + cU$, where $U \in \mathcal{U}$ and c is a fixed constant, is also unbiased for ϑ and, thus,

$$\text{Var}(T_c) \geq \text{Var}(T) \quad c \in \mathbb{R}, \ P \in \mathcal{P},$$

which is the same as

$$c^2 \text{Var}(U) + 2c \text{Cov}(T, U) \geq 0 \quad c \in \mathbb{R}, \ P \in \mathcal{P}.$$

This is impossible unless $\text{Cov}(T, U) = E(TU) = 0$ for any $P \in \mathcal{P}$.

Suppose now $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let T_0 be another unbiased estimator of ϑ with $\text{Var}(T_0) < \infty$.

Then $T - T_0 \in \mathcal{U}$ and, hence,

$$E[T(T - T_0)] = 0 \quad P \in \mathcal{P},$$

which with the fact that $ET = ET_0$ implies that

$$\text{Var}(T) = \text{Cov}(T, T_0) \quad P \in \mathcal{P}.$$

Note that $[\text{Cov}(T, T_0)]^2 \leq \text{Var}(T) \text{Var}(T_0)$.

Hence $\text{Var}(T) \leq \text{Var}(T_0)$ for any $P \in \mathcal{P}$.
Proof of Theorem 3.2(ii)

It suffices to show that $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$ implies that $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$

Let $U \in \mathcal{U}$.
Then $E(U|\tilde{T}) \in \mathcal{U}$, and the result follows from the fact that $T = h(\tilde{T})$ and

$$E(TU) = E[E(TU|\tilde{T})] = E[E(h(\tilde{T})U|\tilde{T})] = E[h(\tilde{T})E(U|\tilde{T})].$$

Theorem 3.2 can be used

- to find a UMVUE,
- to check whether a particular estimator is a UMVUE, and
- to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.
Proof of Theorem 3.2(ii)

It suffices to show that $E(TU) = 0$ for any $U \in \mathcal{U}_\tilde{T}$ and $P \in \mathcal{P}$ implies that $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let $U \in \mathcal{U}$.

Then $E(U|\tilde{T}) \in \mathcal{U}_\tilde{T}$ and the result follows from the fact that $T = h(\tilde{T})$ and

$$E(TU) = E[E(TU|\tilde{T})] = E[E(h(\tilde{T})U|\tilde{T})] = E[h(\tilde{T})E(U|\tilde{T})].$$

Theorem 3.2 can be used
- to find a UMVUE,
- to check whether a particular estimator is a UMVUE, and
- to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.
Proof of Theorem 3.2(ii)

It suffices to show that $E(TU) = 0$ for any $U \in \mathcal{U}_\tilde{T}$ and $P \in \mathcal{P}$ implies that $E(TU) = 0$ for any $U \in \mathcal{U}$ and $P \in \mathcal{P}$.

Let $U \in \mathcal{U}$.

Then $E(U|\tilde{T}) \in \mathcal{U}_\tilde{T}$ and the result follows from the fact that $T = h(\tilde{T})$ and

$$E(TU) = E[E(TU|\tilde{T})] = E[E[h(\tilde{T})U|\tilde{T}]] = E[h(\tilde{T})E(U|\tilde{T})].$$

Theorem 3.2 can be used

- to find a UMVUE,
- to check whether a particular estimator is a UMVUE, and
- to show the nonexistence of any UMVUE.

If there is a sufficient statistic, then by Rao-Blackwell’s theorem, we only need to focus on functions of the sufficient statistic and, hence, Theorem 3.2(ii) is more convenient to use.
As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1

(i) Let T_j be a UMVUE of ϑ_j, $j = 1, \ldots, k$, where k is a fixed positive integer.
Then $\sum_{j=1}^{k} c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^{k} c_j \vartheta_j$ for any constants c_1, \ldots, c_k.

(ii) Let T_1 and T_2 be two UMVUE’s of ϑ.
Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Proof

(i) Obviously, $\sum_{j=1}^{k} c_j T_j$ is a unbiased for $\vartheta = \sum_{j=1}^{k} c_j \vartheta_j$
For each j,

$$E(T_j U) = 0, \quad U \in \mathcal{U}$$

Then

$$E \left[\left(\sum_{j=1}^{k} c_j T_j \right) U \right] = \sum_{j=1}^{k} c_j E(T_j U) = 0, \quad U \in \mathcal{U}$$
As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1

(i) Let T_j be a UMVUE of ϑ_j, $j = 1, \ldots, k$, where k is a fixed positive integer. Then $\sum_{j=1}^k c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^k c_j \vartheta_j$ for any constants c_1, \ldots, c_k.

(ii) Let T_1 and T_2 be two UMVUE’s of ϑ. Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Proof

(i) Obviously, $\sum_{j=1}^k c_j T_j$ is a unbiased for $\vartheta = \sum_{j=1}^k c_j \vartheta_j$

For each j,

$$E(T_j U) = 0, \quad U \in \mathcal{U}$$

Then

$$E \left[\left(\sum_{j=1}^k c_j T_j \right) U \right] = \sum_{j=1}^k c_j E(T_j U) = 0, \quad U \in \mathcal{U}$$
As a consequence of Theorem 3.2, we have the following useful result.

Corollary 3.1

(i) Let T_j be a UMVUE of ϑ_j, $j = 1, \ldots, k$, where k is a fixed positive integer. Then $\sum_{j=1}^{k} c_j T_j$ is a UMVUE of $\vartheta = \sum_{j=1}^{k} c_j \vartheta_j$ for any constants c_1, \ldots, c_k.

(ii) Let T_1 and T_2 be two UMVUE’s of ϑ. Then $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Proof

(i) Obviously, $\sum_{j=1}^{k} c_j T_j$ is a unbiased for $\vartheta = \sum_{j=1}^{k} c_j \vartheta_j$.

For each j,

$$E(T_j U) = 0, \quad U \in \mathcal{U}$$

Then

$$E \left[\left(\sum_{j=1}^{k} c_j T_j \right) U \right] = \sum_{j=1}^{k} c_j E(T_j U) = 0, \quad U \in \mathcal{U}$$
Proof (continued)

(ii) Let T_1 and T_2 be two UMVUE’s of ϑ. Then $T_1 - T_2 \in \mathcal{U}$ and

$$E[T_j(T_1 - T_2)] = 0 \quad j = 1, 2.$$

Then

$$E(T_1 - T_2)^2 = E[T_1(T_1 - T_2)] - E[T_2(T_1 - T_2)] = 0$$

Hence, $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Example 3.7

Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on the interval $(0, \theta)$. In Example 3.1, $(1 + n^{-1})X_{(n)}$ is shown to be the UMVUE for θ when the parameter space is $\Theta = (0, \infty)$. Suppose now that $\Theta = [1, \infty)$. Then $X_{(n)}$ is not complete, although it is still sufficient for θ. Thus, Theorem 3.1 does not apply to $X_{(n)}$.

Proof (continued)

(ii) Let T_1 and T_2 be two UMVUE’s of ϑ.
Then $T_1 - T_2 \in \mathcal{U}$ and

$$E[T_j(T_1 - T_2)] = 0 \quad j = 1, 2.$$

Then

$$E(T_1 - T_2)^2 = E[T_1(T_1 - T_2)] - E[T_2(T_1 - T_2)] = 0$$

Hence, $T_1 = T_2$ a.s. P for any $P \in \mathcal{P}$.

Example 3.7

Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on the interval $(0, \theta)$.
In Example 3.1, $(1 + n^{-1})X_{(n)}$ is shown to be the UMVUE for θ when
the parameter space is $\Theta = (0, \infty)$.
Suppose now that $\Theta = [1, \infty)$.

Then $X_{(n)}$ is not complete, although it is still sufficient for θ.
Thus, Theorem 3.1 does not apply to $X_{(n)}$.
Example 3.7 (continued)

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ.

Let $U(X(n))$ be an unbiased estimator of 0.

Since $X(n)$ has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0,\theta)}(x)$,

$$0 = \int_0^1 U(x)x^{n-1}dx + \int_1^\theta U(x)x^{n-1}dx \quad \text{for all } \theta \geq 1.$$

This implies that $U(x) = 0$ a.e. Lebesgue measure on $[1, \infty)$ and

$$\int_0^1 U(x)x^{n-1}dx = 0.$$

Consider $T = h(X(n))$.

To have $E(TU) = 0$, we must have

$$\int_0^1 h(x)U(x)x^{n-1}dx = 0.$$

Thus, we may consider the following function:

$$h(x) = \begin{cases}
c & 0 \leq x \leq 1 \\
bx & x > 1, \end{cases}$$

where c and b are some constants.
Example 3.7 (continued)

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of θ. Let $U(X(n))$ be an unbiased estimator of 0. Since $X(n)$ has the Lebesgue p.d.f. $n\theta^{-n}x^{n-1}I_{(0, \theta)}(x)$,

$$0 = \int_0^1 U(x)x^{n-1} \, dx + \int_1^\theta U(x)x^{n-1} \, dx \quad \text{for all } \theta \geq 1.$$

This implies that $U(x) = 0$ a.e. Lebesgue measure on $[1, \infty)$ and $\int_0^1 U(x)x^{n-1} \, dx = 0$.

Consider $T = h(X(n))$. To have $E(TU) = 0$, we must have

$$\int_0^1 h(x)U(x)x^{n-1} \, dx = 0.$$

Thus, we may consider the following function:

$$h(x) = \begin{cases} c & 0 \leq x \leq 1 \\ bx & x > 1 \end{cases},$$

where c and b are some constants.
Example 3.7 (continued)

We now illustrate how to use Theorem 3.2(ii) to find a UMVUE of \(\theta \).

Let \(U(X_{(n)}) \) be an unbiased estimator of 0.

Since \(X_{(n)} \) has the Lebesgue p.d.f. \(n\theta^{-n}x^{n-1}I_{(0,\theta)}(x), \)

\[
0 = \int_0^1 U(x)x^{n-1}dx + \int_1^\theta U(x)x^{n-1}dx \quad \text{for all } \theta \geq 1.
\]

This implies that \(U(x) = 0 \) a.e. Lebesgue measure on \([1, \infty)\) and

\[
\int_0^1 U(x)x^{n-1}dx = 0.
\]

Consider \(T = h(X_{(n)}) \).

To have \(E(TU) = 0 \), we must have

\[
\int_0^1 h(x)U(x)x^{n-1}dx = 0.
\]

Thus, we may consider the following function:

\[
h(x) = \begin{cases}
c & 0 \leq x \leq 1 \\
bx & x > 1,
\end{cases}
\]

where \(c \) and \(b \) are some constants.
Example 3.7 (continued)

From the previous discussion,

$$E[h(X_n)U(X_n)] = 0, \quad \theta \geq 1.$$

Since $E[h(X_n)] = \theta$, we obtain that

$$\theta = cP(X_n \leq 1) + bE[X_n I_{(1,\infty)}(X_n)]$$
$$= c\theta^{-n} + [bn/(n+1)](\theta - \theta^{-n}).$$

Thus, $c = 1$ and $b = (n+1)/n$.

The UMVUE of θ is then

$$h(X_n) = \begin{cases}
1 & 0 \leq X_n \leq 1 \\
(1 + n^{-1})X_n & X_n > 1.
\end{cases}$$

This estimator is better than $(1 + n^{-1})X_n$, which is the UMVUE when $\Theta = (0, \infty)$ and does not make use of the information about $\theta \geq 1$.

When $\Theta = (0, \infty)$, this estimator is not unbiased.

In fact, $h(X_n)$ is complete and sufficient for $\theta \in [1, \infty)$.
Example 3.7 (continued)

From the previous discussion,

\[E[h(X(n))U(X(n))] = 0, \quad \theta \geq 1. \]

Since \(E[h(X(n))] = \theta \), we obtain that

\[
\theta = cP(X(n) \leq 1) + bE[X(n)I_{(1,\infty)}(X(n))] \\
= c\theta^{-n} + [bn/(n+1)](\theta - \theta^{-n}).
\]

Thus, \(c = 1 \) and \(b = (n+1)/n. \)

The UMVUE of \(\theta \) is then

\[
h(X(n)) = \begin{cases}
1 & 0 \leq X(n) \leq 1 \\
(1 + n^{-1})X(n) & X(n) > 1.
\end{cases}
\]

This estimator is better than \((1 + n^{-1})X(n)\), which is the UMVUE when \(\Theta = (0,\infty) \) and does not make use of the information about \(\theta \geq 1 \). When \(\Theta = (0,\infty) \), this estimator is not unbiased.

In fact, \(h(X(n)) \) is complete and sufficient for \(\theta \in [1,\infty) \).
Example 3.7 (continued)

From the previous discussion,

\[E[h(X_{(n)})U(X_{(n)})] = 0, \quad \theta \geq 1. \]

Since \(E[h(X_{(n)})] = \theta \), we obtain that

\[
\theta = cP(X_{(n)} \leq 1) + bE[X_{(n)}I_{(1,\infty)}(X_{(n)})] \\
= c\theta^{-n} + \left[\frac{bn}{n+1}\right](\theta - \theta^{-n}).
\]

Thus, \(c = 1 \) and \(b = (n+1)/n \).

The UMVUE of \(\theta \) is then

\[
h(X_{(n)}) = \begin{cases}
1 & 0 \leq X_{(n)} \leq 1 \\
(1 + n^{-1})X_{(n)} & X_{(n)} > 1.
\end{cases}
\]

This estimator is better than \((1 + n^{-1})X_{(n)}\), which is the UMVUE when \(\Theta = (0, \infty) \) and does not make use of the information about \(\theta \geq 1 \).

When \(\Theta = (0, \infty) \), this estimator is not unbiased.

In fact, \(h(X_{(n)}) \) is complete and sufficient for \(\theta \in [1, \infty) \).
Example 3.7 (continued)

From the previous discussion,

\[E[h(X(n))U(X(n))] = 0, \quad \theta \geq 1. \]

Since \(E[h(X(n))] = \theta \), we obtain that

\[
\theta = cP(X(n) \leq 1) + bE[X(n)I_{(1,\infty)}(X(n))] \\
= c\theta^{-n} + [bn/(n+1)](\theta - \theta^{-n}).
\]

Thus, \(c = 1 \) and \(b = (n+1)/n \).

The UMVUE of \(\theta \) is then

\[
h(X(n)) = \begin{cases}
1 & 0 \leq X(n) \leq 1 \\
(1 + n^{-1})X(n) & X(n) > 1.
\end{cases}
\]

This estimator is better than \((1 + n^{-1})X(n) \), which is the UMVUE when \(\Theta = (0, \infty) \) and does not make use of the information about \(\theta \geq 1 \).

When \(\Theta = (0, \infty) \), this estimator is not unbiased.

In fact, \(h(X(n)) \) is complete and sufficient for \(\theta \in [1, \infty) \).
Example 3.7 (continued)

It suffices to show that

\[g(X_{(n)}) = \begin{cases}
1 & 0 \leq X_{(n)} \leq 1 \\
X_{(n)} & X_{(n)} > 1.
\end{cases} \]

is complete and sufficient for \(\theta \in [1, \infty) \).

The sufficiency follows from the fact that the joint p.d.f. of \(X_1, \ldots, X_n \) is

\[\frac{1}{\theta^n} l_{(0,\theta)}(X_{(n)}) = \frac{1}{\theta^n} l_{(0,\theta)}(g(X_{(n)})). \]

If \(E[f(g(X_{(n)}))] = 0 \) for all \(\theta > 1 \), then

\[0 = \int_0^\theta f(g(x))x^{n-1} \, dx = \int_0^1 f(1)x^{n-1} \, dx + \int_1^\theta f(x)x^{n-1} \, dx \]

for all \(\theta > 1 \).

Letting \(\theta \to 1 \) we obtain that \(f(1) = 0 \).

Then

\[0 = \int_1^\theta f(x)x^{n-1} \, dx \]

for all \(\theta > 1 \), which implies \(f(x) = 0 \) a.e. for \(x > 1 \).

Hence, \(g(X_{(n)}) \) is complete.
Example 3.8

Let X be a sample (of size 1) from the uniform distribution $U(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, $\theta \in \mathbb{R}$.

We now apply Theorem 3.2 to show that there is no UMVUE of $\vartheta = g(\theta)$ for any nonconstant function g.

Note that an unbiased estimator $U(X)$ of 0 must satisfy

$$\int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} U(x) \, dx = 0 \quad \text{for all } \theta \in \mathbb{R}.$$

Differentiating both sides of the previous equation and applying the result of differentiation of an integral lead to

$$U(x) = U(x + 1) \quad \text{a.e. } m,$$

where m is the Lebesgue measure on \mathbb{R}.

If T is a UMVUE of $g(\theta)$, then $T(X)U(X)$ is unbiased for 0 and, hence,

$$T(x)U(x) = T(x + 1)U(x + 1) \quad \text{a.e. } m,$$

where $U(X)$ is any unbiased estimator of 0.
Example 3.8

Let X be a sample (of size 1) from the uniform distribution $U(\theta - \frac{1}{2}, \theta + \frac{1}{2}), \theta \in \mathbb{R}$.

We now apply Theorem 3.2 to show that there is no UMVUE of $\vartheta = g(\theta)$ for any nonconstant function g.

Note that an unbiased estimator $U(X)$ of 0 must satisfy

$$\int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} U(x) \, dx = 0 \quad \text{for all } \theta \in \mathbb{R}.$$

Differentiating both sides of the previous equation and applying the result of differentiation of an integral lead to

$$U(x) = U(x + 1) \quad \text{a.e. } m,$$

where m is the Lebesgue measure on \mathbb{R}.

If T is a UMVUE of $g(\theta)$, then $T(X)U(X)$ is unbiased for 0 and, hence,

$$T(x)U(x) = T(x + 1)U(x + 1) \quad \text{a.e. } m,$$

where $U(X)$ is any unbiased estimator of 0.
Example 3.8 (continued)

Since this is true for all U,

\[
T(x) = T(x + 1) \quad \text{a.e. } m.
\]

Since T is unbiased for $g(\theta)$,

\[
g(\theta) = \int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} T(x) \, dx \quad \text{for all } \theta \in \mathbb{R}.
\]

Differentiating both sides of the previous equation and applying the result of differentiation of an integral, we obtain that

\[
g'(\theta) = T \left(\theta + \frac{1}{2} \right) - T \left(\theta - \frac{1}{2} \right) = 0 \quad \text{a.e. } m.
\]