Linear Models

One of the most useful statistical models is

\[X_i = \beta^\top Z_i + \varepsilon_i, \quad i = 1, \ldots, n, \]

where \(X_i \) is the \(i \)th observation and is often called the \(i \)th response; \(\beta \) is a \(p \)-vector of unknown parameters (main parameters of interest), \(p < n \); \(Z_i \) is the \(i \)th value of a \(p \)-vector of explanatory variables (or covariates); \(\varepsilon_1, \ldots, \varepsilon_n \) are random errors (not observed).

Data: \((X_1, Z_1), \ldots, (X_n, Z_n)\).

\(Z_i \)'s are nonrandom or given values of a random \(p \)-vector, in which case our analysis is conditioned on \(Z_1, \ldots, Z_n \).

\(X = (X_1, \ldots, X_n), \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \)
\(Z = \) the \(n \times p \) matrix whose \(i \)th row is the vector \(Z_i, i = 1, \ldots, n \)

A matrix form of the model is

\[X = Z\beta + \varepsilon. \]
Definition 3.4
Suppose that the range of β in model (1) is $B \subset \mathbb{R}^p$. A least squares estimator (LSE) of β is defined to be any $\hat{\beta} \in B$ such that
\[
\| X - Z\hat{\beta} \|^2 = \min_{b \in B} \| X - Zb \|^2.
\]
For any $l \in \mathbb{R}^p$, $l^\tau \hat{\beta}$ is called an LSE of $l^\tau \beta$.
Throughout this book, we consider $B = \mathbb{R}^p$ unless otherwise stated. Differentiating $\| X - Zb \|^2$ w.r.t. b, we obtain that any solution of
\[
Z^\tau Zb = Z^\tau X
\]
is an LSE of β.

Full rank Z
If the rank of the matrix Z is p, in which case $(Z^\tau Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is
\[
\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X.
\]
Non full rank Z

If Z is not of full rank, then there are infinitely many LSE's of β. Any LSE of β is of the form

$$\hat{\beta} = (Z^\tau Z)^{-} Z^\tau X,$$

where $(Z^\tau Z)^{-}$ is called a generalized inverse of $Z^\tau Z$ and satisfies

$$Z^\tau Z(Z^\tau Z)^{-} Z^\tau Z = Z^\tau Z.$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $(Z^\tau Z)^{-} = (Z^\tau Z)^{-1}$

Assumptions

To study properties of LSE’s of β, we need some assumptions on the distribution of X or ε (conditional on Z if Z is random).

A1: ε is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$.

A2: $E(\varepsilon) = 0$ and $\text{Var}(\varepsilon) = \sigma^2 I_n$ with an unknown $\sigma^2 > 0$.

A3: $E(\varepsilon) = 0$ and $\text{Var}(\varepsilon)$ is an unknown matrix.
Assumption A1 is the strongest and implies a parametric model.

We may assume a slightly more general assumption that \(\varepsilon \) has the \(N_n(0, \sigma^2 D) \) distribution with unknown \(\sigma^2 \) but a known positive definite matrix \(D \).

Let \(D^{-1/2} \) be the inverse of the square root matrix of \(D \).

Then model (1) with assumption A1 holds if we replace \(X, Z, \) and \(\varepsilon \) by the transformed variables \(\tilde{X} = D^{-1/2} X, \tilde{Z} = D^{-1/2} Z, \) and \(\tilde{\varepsilon} = D^{-1/2} \varepsilon \), respectively.

A similar conclusion can be made for assumption A2.

Under assumption A1, the distribution of \(X \) is \(N_n(Z\beta, \sigma^2 I_n) \), which is in an exponential family \(\mathcal{P} \) with parameter \(\theta = (\beta, \sigma^2) \in \mathbb{R}^p \times (0, \infty) \).

However, if the matrix \(Z \) is not of full rank, then \(\mathcal{P} \) is not identifiable (see §2.1.2), since \(Z\beta_1 = Z\beta_2 \) does not imply \(\beta_1 = \beta_2 \).
Remarks

- Suppose that the rank of Z is $r \leq p$. Then there is an $n \times r$ submatrix Z_* of Z such that

$$Z = Z_* Q \quad (2)$$

and Z_* is of rank r, where Q is a fixed $r \times p$ matrix, and

$$Z\beta = Z_* Q\beta.$$

- \mathcal{P} is identifiable if we consider the reparameterization $\tilde{\beta} = Q\beta$.
- The new parameter $\tilde{\beta}$ is in a subspace of \mathbb{R}^p with dimension r.
- In many applications, we are interested in estimating some linear functions of β, i.e., $\vartheta = l^\tau \beta$ for some $l \in \mathbb{R}^p$.
- From the previous discussion, however, estimation of $l^\tau \beta$ is meaningless unless $l = Q^\tau c$ for some $c \in \mathbb{R}^r$ so that

$$l^\tau \beta = c^\tau Q\beta = c^\tau \tilde{\beta}.$$
The following result shows that $l^\tau \beta$ is estimable if $l = Q^\tau c$, which is also necessary for $l^\tau \beta$ to be estimable under assumption A1.

Theorem 3.6

Assume model (1) with assumption A3.

(i) A necessary and sufficient condition for $l \in \mathbb{R}^p$ being $Q^\tau c$ for some $c \in \mathbb{R}^r$ is $l \in \mathbb{R}(Z) = \mathbb{R}(Z^\tau Z)$, where Q is given by (2) and $\mathbb{R}(A)$ is the smallest linear subspace containing all rows of A.

(ii) If $l \in \mathbb{R}(Z)$, then the LSE $l^\tau \hat{\beta}$ is unique and unbiased for $l^\tau \beta$.

(iii) If $l \notin \mathbb{R}(Z)$ and assumption A1 holds, then $l^\tau \beta$ is not estimable.

Proof

(i) Note that $a \in \mathbb{R}(A)$ iff $a = A^\tau b$ for some vector b. If $l = Q^\tau c$, then

$$l = Q^\tau c = Q^\tau Z_*^\tau Z_* (Z_*^\tau Z_*)^{-1} c = Z^\tau [Z_* (Z_*^\tau Z_*)^{-1} c].$$

Hence $l \in \mathbb{R}(Z)$.
Proof (continued)

If \(l \in \mathcal{R}(Z) \), then \(l = Z^\tau \zeta \) for some \(\zeta \) and

\[
l = (Z_* Q)^\tau \zeta = Q^\tau c, \quad c = Z_*^\tau \zeta.
\]

(ii) If \(l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \), then \(l = Z^\tau Z \zeta \) for some \(\zeta \) and by \(\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X \),

\[
E(l^\tau \hat{\beta}) = E[l^\tau (Z^\tau Z)^{-1} Z^\tau X] = \zeta^\tau Z^\tau Z(Z^\tau Z)^{-1} Z^\tau Z \beta = \zeta^\tau Z^\tau Z \beta = l^\tau \beta.
\]

If \(\bar{\beta} \) is any other LSE of \(\beta \), then, by \(Z^\tau Z \bar{\beta} = Z^\tau X \),

\[
l^\tau \hat{\beta} - l^\tau \bar{\beta} = \zeta^\tau (Z^\tau Z)(\hat{\beta} - \bar{\beta}) = \zeta^\tau (Z^\tau X - Z^\tau X) = 0.
\]

(iii) Under A1, if there is an estimator \(h(X, Z) \) unbiased for \(l^\tau \beta \), then

\[
l^\tau \beta = \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z \beta\|^2 \right\} \, dx.
\]

Differentiating w.r.t. \(\beta \) and applying Theorem 2.1 lead to

\[
l^\tau = Z^\tau \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n-2}(x - Z \beta) \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z \beta\|^2 \right\} \, dx,
\]

which implies \(l \in \mathcal{R}(Z) \).
Example 3.12 (Simple linear regression)

Let $\beta = (\beta_0, \beta_1) \in \mathbb{R}^2$ and $Z_i = (1, t_i)$, $t_i \in \mathbb{R}$, $i = 1, \ldots, n$. Then model (1) is called a \textit{simple linear regression} model. It turns out that

$$
\begin{pmatrix}
 n & \sum_{i=1}^n t_i \\
 \sum_{i=1}^n t_i & \sum_{i=1}^n t_i^2
\end{pmatrix}.
$$

This matrix is invertible iff some t_i's are different. Thus, if some t_i's are different, then the unique unbiased LSE of $l^\tau \beta$ for any $l \in \mathbb{R}^2$ is $l^\tau (Z^\tau Z)^{-1} Z^\tau X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of \textit{polynomial regression} of order p in which

$\beta = (\beta_0, \beta_1, \ldots, \beta_{p-1})$

and

$Z_i = (1, t_i, \ldots, t_i^{p-1})$.
Example 3.13 (One-way ANOVA)

Suppose that $n = \sum_{j=1}^{m} n_j$ with m positive integers n_1, \ldots, n_m and that

$$X_i = \mu_j + \varepsilon_i, \quad i = k_{j-1} + 1, \ldots, k_j, \ j = 1, \ldots, m,$$

where $k_0 = 0$, $k_j = \sum_{l=1}^{j} n_l$, $j = 1, \ldots, m$, and $(\mu_1, \ldots, \mu_m) = \beta$.

Let J_m be the m-vector of ones.

Then the matrix Z in this case is a block diagonal matrix with J_{n_j} as the jth diagonal column.

Consequently, $Z^\tau Z$ is an $m \times m$ diagonal matrix whose jth diagonal element is n_j.

Thus, $Z^\tau Z$ is invertible and the unique LSE of β is the m-vector whose jth component is

$$\frac{1}{n_j} \sum_{i=k_{j-1}+1}^{k_j} X_i, \quad j = 1, \ldots, m.$$
Example 3.13 (continued)

Sometimes it is more convenient to use the following notation:

\[X_{ij} = X_{k_{i-1}+j}, \quad \epsilon_{ij} = \epsilon_{k_{i-1}+j}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \]

and

\[\mu_i = \mu + \alpha_i, \quad i = 1, \ldots, m. \]

Then our model becomes

\[X_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \tag{3} \]

which is called a one-way analysis of variance (ANOVA) model.

Under model (3), \(\beta = (\mu, \alpha_1, \ldots, \alpha_m) \in \mathbb{R}^{m+1} \).

The matrix \(Z \) under model (3) is not of full rank.

An LSE of \(\beta \) under model (3) is

\[\hat{\beta} = (\bar{X}, \bar{X}_1 - \bar{X}, \ldots, \bar{X}_m - \bar{X}), \]

where \(\bar{X} \) is still the sample mean of \(X_{ij} \)'s and \(\bar{X}_i \) is the sample mean of the \(i \)th group \(\{X_{ij}, j = 1, \ldots, n_i\} \).
The notation used in model (3) allows us to generalize the one-way ANOVA model to any s-way ANOVA model with a positive integer s under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, j = 1, \ldots, b, k = 1, \ldots, c, \quad (4)$$

where a, b, and c are some positive integers.
Model (4) is called a two-way balanced ANOVA model.
If we view model (4) as a special case of model (1), then the parameter vector β is

$$\beta = (\mu, \alpha_1, \ldots, \alpha_a, \beta_1, \ldots, \beta_b, \gamma_{11}, \ldots, \gamma_{1b}, \ldots, \gamma_{a1}, \ldots, \gamma_{ab}). \quad (5)$$

One can obtain the matrix Z and show that it is $n \times p$, where $n = abc$ and $p = 1 + a + b + ab$, and is of rank $ab < p$.
Two-way balanced ANOVA

It can also be shown that an LSE of β is given by the right-hand side of (5) with μ, α_i, β_j, and γ_{ij} replaced by $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, and $\hat{\gamma}_{ij}$, respectively, where

$$\hat{\mu} = \bar{X}...,$$
$$\hat{\alpha}_i = \bar{X}_{i.} - \bar{X}...,$$
$$\hat{\beta}_j = \bar{X}_{.j} - \bar{X}...,$$
$$\hat{\gamma}_{ij} = \bar{X}_{ij} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}...,$$

and a dot is used to denote averaging over the indicated subscript, e.g.,

$$\bar{X}_{.j} = \frac{1}{ac} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{ijk}$$

with a fixed j.