Survey samples from a finite population

Let $P = \{1, \ldots, N\}$ be a finite population of interest.
For each $i \in P$, let y_i be a value of interest associated with unit i.

Let $s = \{i_1, \ldots, i_n\}$ be a subset of distinct elements of P, which is a sample selected with selection probability $p(s)$, where p is known (sampling plan or sampling design).

The value y_i is observed if and only if $i \in s$.

If $p(s)$ is constant, the sampling plan is called the simple random sampling without replacement.

Consider the estimation of $Y = \sum_{i=1}^{N} y_i$, the population total as the parameter of interest.

Issues to study

- How do we find an unbiased estimator of Y? Is Y estimable?
- What is the variance of an unbiased estimator of Y?
- Is there a UMVUE under some conditions?
Theorem 3.15.

Define

$$\pi_i = \text{probability that } i \in s, \quad i = 1, \ldots, N.$$

(i) (Horvitz-Thompson). If $\pi_i > 0$ for $i = 1, \ldots, N$ and π_i is known when $i \in s$, then $\hat{Y}_{ht} = \sum_{i \in s} y_i / \pi_i$ is an unbiased estimator of the population total Y.

(ii) Define

$$\pi_{ij} = \text{probability that } i \in s \text{ and } j \in s, \quad i = 1, \ldots, N, j = 1, \ldots, N.$$

Then

$$\text{Var}(\hat{Y}_{ht}) = \sum_{i=1}^{N} \frac{1 - \pi_i}{\pi_i} y_i^2 + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} y_i y_j$$

\hspace{1cm} (1)

$$= \sum_{i=1}^{N} \sum_{j=i+1}^{N} (\pi_i \pi_j - \pi_{ij}) \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2.$$

\hspace{1cm} (2)

- Horvitz-Thompson’s idea: inverse probability weighting
- Extension: P is a sample of size N and y_i is missing if $i \notin s$
Proof.

(i) Let \(a_i = 1 \) if \(i \in s \) and \(a_i = 0 \) if \(i \notin s \), \(i = 1, \ldots, N \).
Then \(E(a_i) = \pi_i \) and
\[
E(\hat{Y}_{ht}) = E\left(\sum_{i=1}^{N} \frac{a_i y_i}{\pi_i} \right) = \sum_{i=1}^{N} y_i = Y.
\]

(ii) Since \(a_i^2 = a_i \),
\[
\text{Var}(a_i) = E(a_i) - [E(a_i)]^2 = \pi_i (1 - \pi_i).
\]
\[
\text{Cov}(a_i, a_j) = E(a_i a_j) - E(a_i) E(a_j) = \pi_{ij} - \pi_i \pi_j, \quad i \neq j.
\]
Then
\[
\text{Var}(\hat{Y}_{ht}) = \text{Var}\left(\sum_{i=1}^{N} \frac{a_i y_i}{\pi_i} \right)
= \sum_{i=1}^{N} \frac{y_i^2}{\pi_i^2} \text{Var}(a_i) + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{y_i y_j}{\pi_i \pi_j} \text{Cov}(a_i, a_j)
= \sum_{i=1}^{N} \frac{1 - \pi_i}{\pi_i} y_i^2 + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} y_i y_j.
\]
Proof (continued)

Hence (1) follows.
To show (2), note that

\[
\sum_{i=1}^{N} \pi_i = n \quad \text{and} \quad \sum_{j=1, \ldots, N, j \neq i} \pi_{ij} = (n-1)\pi_i,
\]

which implies

\[
\sum_{j=1, \ldots, N, j \neq i} (\pi_{ij} - \pi_i \pi_j) = (n-1)\pi_i - \pi_i(n-\pi_i) = -\pi_i(1-\pi_i).
\]

Hence

\[
\sum_{i=1}^{N} \frac{1 - \pi_i}{\pi_i} y_i^2 = \sum_{i=1}^{N} \sum_{j=1, \ldots, N, j \neq i} (\pi_i \pi_j - \pi_{ij}) \frac{y_i^2}{\pi_i^2}
= \sum_{i=1}^{N} \sum_{j=i+1}^{N} (\pi_i \pi_j - \pi_{ij}) \left(\frac{y_i^2}{\pi_i^2} + \frac{y_j^2}{\pi_j^2} \right)
\]

and, (2) follows from (1).
How do we get an unbiased estimator of $\text{Var}(\hat{Y}_{ht})$?

Using Horvitz-Thompson’s idea, the following estimators are unbiased:

$$
\begin{align*}
\nu_1 &= \sum_{i \in s} \frac{1 - \pi_i}{\pi_i^2} y_i^2 + 2 \sum_{i \in s} \sum_{j \in s, j > i} \frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j \pi_{ij}} y_i y_j \\
\nu_2 &= \sum_{i \in s} \sum_{j \in s, j > i} \frac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}} \left(\frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2.
\end{align*}
$$

Simple random sampling

For simple random sampling,

$$
\begin{align*}
\pi_i &= E(a_i) = P(a_i = 1) = \frac{\binom{N-1}{n-1}}{\binom{N}{n}} = \frac{n}{N} \\
\pi_{ij} &= E(a_i a_j) = P(a_i = 1, a_j = 1) = \frac{\binom{N-2}{n-2}}{\binom{N}{n}} = \frac{n(n-1)}{N(N-1)} \\
\hat{Y}_{ht} &= \frac{N}{n} \sum_{i \in s} y_i = \frac{N}{n} \sum_{i=1}^{N} a_i y_i = N(\text{the sample mean})
\end{align*}
$$
Simple random sampling

\[
\text{Var}(\hat{Y}_{ht}) = \sum_{i=1}^{N} \frac{1 - \frac{n}{N}}{\frac{n}{N}} y_i^2 + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{n(n-1)}{N(N-1)} - \frac{n^2}{N^2} y_i y_j
\]

\[
= \frac{N-n}{n} \sum_{i=1}^{N} y_i^2 - \frac{2(N-n)}{n(N-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} y_i y_j
\]

\[
= \frac{N-n}{n} \left[\sum_{i=1}^{N} y_i^2 - \frac{1}{N-1} \sum_{i \neq j} y_i y_j \right]
\]

\[
= \frac{N-n}{n} \frac{N}{N-1} \sum_{i=1}^{N} \left(y_i - \frac{Y}{N} \right)^2
\]

\[
= \left(1 - \frac{n}{N} \right) \frac{N^2}{n} \frac{1}{N-1} \sum_{i=1}^{N} \left(y_i - \frac{Y}{N} \right)^2.
\]

Note that \(\frac{n}{N} \) is called the finite sample fraction and \(1 - \frac{n}{N} \) is called the finite sample correction.
UMVUE under simple random sampling

We now show that \hat{Y}_{ht} is in fact the UMVUE of Y under simple random sampling.

Let $X = (X_i, i \in s)$ be the vector such that

$$P(X_1 = y_{i_1}, ..., X_n = y_{i_n}) = \frac{p(s)}{n!}$$

Let \mathcal{Y} be the range of y_i, $\theta = (y_1, ..., y_N)$ and $\Theta = \prod_{i=1}^{N} \mathcal{Y}$.

Under simple random sampling, the population under consideration is a parametric family indexed by $\theta \in \Theta$.

Theorem 3.13 (Watson-Royall theorem)

(i) If $p(s) > 0$ for all s, then the vector of order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ is complete for $\theta \in \Theta$.

(ii) Under simple random sampling, the vector of order statistics is sufficient for $\theta \in \Theta$.

(iii) Under simple random sampling, for any estimable function of θ, its unique UMVUE is the unbiased estimator $g(X_1, ..., X_n)$, where g is symmetric in its n arguments.
Proof.

(i) Let $h(X)$ be a function of the order statistics. Then h is symmetric in its n arguments. We need to show that if

$$E[h(X)] = \sum_{s=\{i_1,...,i_n\} \subset \{1,...,N\}} p(s) h(y_{i_1},...,y_{i_n}) / n! = 0 \quad (3)$$

for all $\theta \in \Theta$, then $h(y_{i_1},...,y_{i_n}) = 0$ for all $y_{i_1},...,y_{i_n}$.

First, suppose that all N elements of θ are equal to $a \in \mathcal{Y}$. Then (3) implies $h(a,...,a) = 0$.

Next, suppose that $N - 1$ elements in θ are equal to a and one is $b > a$. Then (3) reduces to

$$q_1 h(a,...,a) + q_2 h(a,...,a,b),$$

where q_1 and q_2 are some known numbers in $(0,1)$. Since $h(a,...,a) = 0$ and $q_2 \neq 0$, $h(a,...,a,b) = 0$.

Using the same argument, we can show that $h(a,...,a,b,...,b) = 0$ for any k a’s and $n-k$ b’s.
Proof (continued)

Suppose next that elements of \(\theta \) are equal to \(a, b, \) or \(c \), \(a < b < c \).
Then we can show that \(h(a, ..., a, b, ..., b, c, ..., c) = 0 \) for any \(k \) \(a \)'s, \(l \) \(b \)'s, and \(n − k − l \) \(c \)'s.
Continuing inductively, we see that \(h(y_1, ..., y_n) = 0 \) for all possible \(y_1, ..., y_n \).
This completes the proof of (i).

(ii) The result follows from the factorization theorem (Theorem 2.2), the fact that \(p(s) \) is constant under simple random sampling, and

\[
P(X_1 = y_{i_1}, ..., X_n = y_{i_n}) = P(X_{(1)} = y_{(i_1)}, ..., X_{(n)} = y_{(i_n)})/n!,
\]

where \(y_{(i_1)} \leq ... \leq y_{(i_n)} \) are the ordered values of \(y_{i_1}, ..., y_{i_n} \).

(iii) The result follows directly from (i) and (ii).
Remark

It is interesting to note the following two issues.

- Although we have a parametric problem under simple random sampling, the sufficient and complete statistic is the same as that in a nonparametric problem (Example 2.17).
- For the completeness of the order statistics, we do not need the assumption of simple random sampling.

Example 3.19.

Under simple random sampling, \(\hat{Y}_{ht} = N \bar{X} \) is unbiased for \(Y \). Since \(\hat{Y}_{ht} \) is symmetric in its arguments, it is the UMVUE of \(Y \). We now derive the UMVUE for \(\text{Var}(\hat{Y}_{ht}) \).

From the previous discussion,

\[
\text{Var}(\hat{Y}_{ht}) = \frac{N^2}{n} \left(1 - \frac{n}{N} \right) \sigma^2
\]

where
Example 3.19

\[
\sigma^2 = \frac{1}{N - 1} \sum_{i=1}^{N} \left(y_i - \frac{Y}{N} \right)^2 .
\]

It can be shown (exercise) that \(E(S^2) = \sigma^2 \), where \(S^2 \) is the usual sample variance

\[
S^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n - 1} \sum_{i \in s} \left(y_i - \frac{\hat{Y}_{ht}}{N} \right)^2 .
\]

Since \(S^2 \) is symmetric in its arguments,

\[
\frac{N^2}{n} \left(1 - \frac{n}{N} \right) S^2
\]

is the UMVUE of \(\text{Var}(\hat{Y}_{ht}) \).