Lecture 30: U- and V-statistics and their variances

U-statistics

Let X_1, \ldots, X_n be i.i.d. from an unknown population P in a nonparametric family \mathcal{P}.

If the vector of order statistic is sufficient and complete for $P \in \mathcal{P}$, then a symmetric unbiased estimator of an estimable ϑ is the UMVUE of ϑ.

In many problems, parameters to be estimated are of the form

$$\vartheta = E[h(X_1, \ldots, X_m)]$$

with a positive integer m and a Borel function h that is symmetric and satisfies

$$E|h(X_1, \ldots, X_m)| < \infty \quad \text{for any } P \in \mathcal{P}.$$

It is easy to see that a symmetric unbiased estimator of ϑ is

$$U_n = \left(\begin{array}{c} n \\ m \end{array}\right)^{-1} \sum_c h(X_{i_1}, \ldots, X_{i_m}),$$

where \sum_c denotes the summation over the $\left(\begin{array}{c} n \\ m \end{array}\right)$ combinations of m distinct elements $\{i_1, \ldots, i_m\}$ from $\{1, \ldots, n\}$.
Definition 3.2

The statistic

\[U_n = \binom{n}{m}^{-1} \sum_c h(X_{i_1}, \ldots, X_{i_m}), \]

is called a **U-statistic** with kernel \(h \) of order \(m \).

Remarks

- The use of U-statistics is an effective way of obtaining unbiased estimators.
- In nonparametric problems, U-statistics are often UMVUE’s, whereas in parametric problems, U-statistics can be used as initial estimators to derive more efficient estimators.
- If \(m = 1 \), a U-statistic is simply a type of sample mean. Examples include the empirical c.d.f. evaluated at a particular \(t \) and the **sample moments** \(n^{-1} \sum_{i=1}^n X_i^k \) for a positive integer \(k \).
Definition 3.2

The statistic

\[U_n = \left(\binom{n}{m} \right)^{-1} \sum c \, h(X_{i_1}, ..., X_{i_m}) , \]

is called a \textit{U-statistic} with kernel \(h \) of order \(m \).

Remarks

- The use of U-statistics is an effective way of obtaining unbiased estimators.
- In nonparametric problems, U-statistics are often UMVUE's, whereas in parametric problems, U-statistics can be used as initial estimators to derive more efficient estimators.
- If \(m = 1 \), a U-statistic is simply a type of sample mean. Examples include the empirical c.d.f. evaluated at a particular \(t \) and the \textit{sample moments} \(n^{-1} \sum_{i=1}^{n} X_i^k \) for a positive integer \(k \).
Examples

Consider the estimation of $\vartheta = \mu^m$, where $\mu = EX_1$ and m is a positive integer. Using $h(x_1, \ldots, x_m) = x_1 \cdots x_m$, we obtain the following U-statistic unbiased for $\vartheta = \mu^m$:

$$U_n = \left(\binom{n}{m} \right)^{-1} \sum_{c} x_{i_1} \cdots x_{i_m}.$$

Consider the estimation of $\vartheta = \sigma^2 = \text{Var}(X_1)$. Since

$$\sigma^2 = \left[\text{Var}(X_1) + \text{Var}(X_2) \right] / 2 = E[(X_1 - X_2)^2 / 2],$$

we obtain the following U-statistic with kernel $h(x_1, x_2) = (x_1 - x_2)^2 / 2$:

$$U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \frac{(X_i - X_j)^2}{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2 \right) = S^2,$$

which is the sample variance.
Consider the estimation of $\vartheta = \mu^m$, where $\mu = EX_1$ and m is a positive integer. Using $h(x_1, \ldots, x_m) = x_1 \cdots x_m$, we obtain the following U-statistic unbiased for $\vartheta = \mu^m$:

$$U_n = \left(\frac{n}{m} \right)^{-1} \sum_{c} X_{i_1} \cdots X_{i_m}.$$

Consider the estimation of $\vartheta = \sigma^2 = \text{Var}(X_1)$. Since

$$\sigma^2 = \frac{[\text{Var}(X_1) + \text{Var}(X_2)]}{2} = E[(X_1 - X_2)^2 / 2],$$

we obtain the following U-statistic with kernel $h(x_1, x_2) = (x_1 - x_2)^2 / 2$:

$$U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \frac{(X_i - X_j)^2}{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right) = S^2,$$

which is the sample variance.
Examples

In some cases, we would like to estimate \(\vartheta = E|X_1 - X_2| \), a measure of concentration.

Using kernel \(h(x_1, x_2) = |x_1 - x_2| \), we obtain the following U-statistic unbiased for \(\vartheta = E|X_1 - X_2| \):

\[
U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} |X_i - X_j|,
\]

which is known as Gini's mean difference.

Let \(\vartheta = P(X_1 + X_2 \leq 0) \).

Using kernel \(h(x_1, x_2) = I_{(-\infty, 0]}(x_1 + x_2) \), we obtain the following U-statistic unbiased for \(\vartheta \):

\[
U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} I_{(-\infty, 0]}(X_i + X_j),
\]

which is known as the one-sample Wilcoxon statistic.
Examples

In some cases, we would like to estimate \(\vartheta = E|X_1 - X_2| \), a measure of concentration.

Using kernel \(h(x_1, x_2) = |x_1 - x_2| \), we obtain the following U-statistic unbiased for \(\vartheta = E|X_1 - X_2| \):

\[
U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} |X_i - X_j|,
\]

which is known as Gini’s mean difference.

Let \(\vartheta = P(X_1 + X_2 \leq 0) \).

Using kernel \(h(x_1, x_2) = I_{(-\infty,0]}(x_1 + x_2) \), we obtain the following U-statistic unbiased for \(\vartheta \):

\[
U_n = \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} I_{(-\infty,0]}(X_i + X_j),
\]

which is known as the one-sample Wilcoxon statistic.
Variance of a U-statistic

If \(E[h(X_1, \ldots, X_m)]^2 < \infty \), then the variance of a U-statistic \(U_n \) with kernel \(h \) has an explicit form.

To derive \(\text{Var}(U_n) \), we need some notation.

Notation

For \(k = 1, \ldots, m \), let

\[
h_k(x_1, \ldots, x_k) = E[h(X_1, \ldots, X_m)|X_1 = x_1, \ldots, X_k = x_k]
= E[h(x_1, \ldots, x_k, X_{k+1}, \ldots, X_m)].
\]

Note that \(h_m = h \).

It can be shown that

\[
h_k(x_1, \ldots, x_k) = E[h_{k+1}(x_1, \ldots, x_k, X_{k+1})].
\]

Define

\[
\tilde{h}_k = h_k - E[h(X_1, \ldots, X_m)],
\]

\(k = 1, \ldots, m \), and \(\tilde{h} = \tilde{h}_m \).
If $E[h(X_1, \ldots, X_m)]^2 < \infty$, then the variance of a U-statistic U_n with kernel h has an explicit form.
To derive $\text{Var}(U_n)$, we need some notation.

Notation

For $k = 1, \ldots, m$, let

$$h_k(x_1, \ldots, x_k) = E[h(X_1, \ldots, X_m)|X_1 = x_1, \ldots, X_k = x_k]$$

$$= E[h(x_1, \ldots, x_k, X_{k+1}, \ldots, X_m)].$$

Note that $h_m = h$.

It can be shown that

$$h_k(x_1, \ldots, x_k) = E[h_{k+1}(x_1, \ldots, x_k, X_{k+1})].$$

Define

$$\tilde{h}_k = h_k - E[h(X_1, \ldots, X_m)],$$

$k = 1, \ldots, m$, and $\tilde{h} = \tilde{h}_m$.
Representation

For any U-statistic

\[U_n = \binom{n}{m}^{-1} \sum_c h(X_{i_1}, \ldots, X_{i_m}), \]

we have

\[U_n - E(U_n) = \binom{n}{m}^{-1} \sum_c \tilde{h}(X_{i_1}, \ldots, X_{i_m}). \quad (1) \]

Theorem 3.4 (Hoeffding's theorem)

For a U-statistic \(U_n \) with \(E[h(X_1, \ldots, X_m)]^2 < \infty \),

\[\text{Var}(U_n) = \binom{n}{m}^{-1} \sum_{k=1}^{m} \binom{m}{k} \binom{n-m}{m-k} \zeta_k, \]

where

\[\zeta_k = \text{Var}(h_k(X_1, \ldots, X_k)). \]
For any U-statistic

\[U_n = \left(\binom{n}{m} \right)^{-1} \sum_c h(X_{i_1}, \ldots, X_{i_m}), \]

we have

\[U_n - E(U_n) = \left(\binom{n}{m} \right)^{-1} \sum_c \tilde{h}(X_{i_1}, \ldots, X_{i_m}). \] (1)

Theorem 3.4 (Hoeffding’s theorem)

For a U-statistic \(U_n \) with \(E[h(X_1, \ldots, X_m)]^2 < \infty \),

\[\text{Var}(U_n) = \left(\binom{n}{m} \right)^{-1} \sum_{k=1}^{m} \binom{m}{k} \binom{n-m}{m-k} \zeta_k, \]

where

\[\zeta_k = \text{Var}(h_k(X_1, \ldots, X_k)). \]
Proof

Consider two sets \(\{i_1, \ldots, i_m\} \) and \(\{j_1, \ldots, j_m\} \) of \(m \) distinct integers from \(\{1, \ldots, n\} \) with exactly \(k \) integers in common. The number of distinct choices of two such sets is \(\binom{n}{m} \binom{m}{k} \binom{n-m}{m-k} \).

By the symmetry of \(\tilde{h}_m \) and independence of \(X_1, \ldots, X_n \),

\[
E[\tilde{h}(X_{i_1}, \ldots, X_{i_m})\tilde{h}(X_{j_1}, \ldots, X_{j_m})] = \zeta_k
\]

for \(k = 1, \ldots, m \).

Then, by (1),

\[
\text{Var}(U_n) = \left(\binom{n}{m} \right)^{-2} \sum_c \sum_c E[\tilde{h}(X_{i_1}, \ldots, X_{i_m})\tilde{h}(X_{j_1}, \ldots, X_{j_m})]
\]

\[
= \left(\binom{n}{m} \right)^{-2} \sum_{k=1}^{m} \binom{n}{m} \binom{m}{k} \binom{n-m}{m-k} \zeta_k.
\]

This proves the result.
Corollary 3.2

Under the condition of Theorem 3.4,

(i) \(\frac{m^2}{n} \zeta_1 \leq \text{Var}(U_n) \leq \frac{m}{n} \zeta_m; \)

(ii) \((n + 1) \text{Var}(U_{n+1}) \leq n \text{Var}(U_n) \) for any \(n > m; \)

(iii) For any fixed \(m \) and \(k = 1, \ldots, m \), if \(\zeta_j = 0 \) for \(j < k \) and \(\zeta_k > 0 \), then

\[
\text{Var}(U_n) = \frac{k! \binom{m}{k}^2 \zeta_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right).
\]

Remarks

- It follows from Corollary 3.2 that a U-statistic \(U_n \) as an estimator of its mean is consistent in mse (under the finite second moment assumption on \(h \)).

- In fact, for any fixed \(m \), if \(\zeta_j = 0 \) for \(j < k \) and \(\zeta_k > 0 \), then the mse of \(U_n \) is of the order \(n^{-k} \) and, therefore, \(U_n \) is \(n^{k/2} \)-consistent.
Corollary 3.2

Under the condition of Theorem 3.4,

(i) \(\frac{m^2}{n} \zeta_1 \leq \text{Var}(U_n) \leq \frac{m}{n} \zeta_m; \)

(ii) \((n + 1) \text{Var}(U_{n+1}) \leq n \text{Var}(U_n)\) for any \(n > m;\)

(iii) For any fixed \(m\) and \(k = 1,...,m\), if \(\zeta_j = 0, j < k\) and \(\zeta_k > 0\), then

\[
\text{Var}(U_n) = \frac{k! (m)_k^2 \zeta_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right).
\]

Remarks

- It follows from Corollary 3.2 that a U-statistic \(U_n\) as an estimator of its mean is consistent in mse (under the finite second moment assumption on \(h\)).

- In fact, for any fixed \(m\), if \(\zeta_j = 0, j < k\) and \(\zeta_k > 0\), then the mse of \(U_n\) is of the order \(n^{-k}\) and, therefore, \(U_n\) is \(n^{k/2}\)-consistent.
Example 3.11

Consider first \(h(x_1, x_2) = x_1 x_2 \), which leads to a U-statistic unbiased for \(\mu^2 \), where \(\mu = EX_1 \).

Note that \(h_1(x_1) = \mu x_1 \), \(\tilde{h}_1(x_1) = \mu (x_1 - \mu) \),
\[\zeta_1 = E[\tilde{h}_1(X_1)]^2 = \mu^2 \text{Var}(X_1) = \mu^2 \sigma^2 \]
\[\tilde{h}(x_1, x_2) = x_1 x_2 - \mu^2 \]
and
\[\zeta_2 = \text{Var}(X_1 X_2) = E(X_1 X_2)^2 - \mu^4 = (\mu^2 + \sigma^2)^2 - \mu^4. \]

By Theorem 3.4, for

\[U_n = \left(\begin{array}{c} n \\ 2 \end{array} \right)^{-1} \sum_{1 \leq i < j \leq n} X_i X_j, \]

\[\text{Var}(U_n) = \left(\begin{array}{c} n \\ 2 \end{array} \right)^{-1} \left[\begin{array}{c} \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \left(\begin{array}{c} n - 2 \\ 1 \end{array} \right) \zeta_1 + \left(\begin{array}{c} 2 \\ 2 \end{array} \right) \left(\begin{array}{c} n - 2 \\ 0 \end{array} \right) \zeta_2 \end{array} \right] \]

\[= \frac{2}{n(n-1)} \left[2(n-2)\mu^2 \sigma^2 + (\mu^2 + \sigma^2)^2 - \mu^4 \right] \]

\[= \frac{4\mu^2 \sigma^2}{n} + \frac{2\sigma^4}{n(n-1)}. \]
Example 3.11 (continued)

Comparing U_n with $\bar{X}^2 - \sigma^2/n$ in Example 3.10, which is the UMVUE under the normality and known σ^2 assumption, we find that

$$\text{Var}(U_n) - \text{Var}(\bar{X}^2 - \sigma^2/n) = \frac{2\sigma^4}{n^2(n-1)}.$$

Next, consider $h(x_1, x_2) = I_{(-\infty, 0]}(x_1 + x_2)$, which leads to the one-sample Wilcoxon statistic.

Note that $h_1(x_1) = P(x_1 + X_2 \leq 0) = F(-x_1)$, where F is the c.d.f. of P. Then $\zeta_1 = \text{Var}(F(-X_1))$.

Let $\varphi = E[h(X_1, X_2)]$.

Then $\zeta_2 = \text{Var}(h(X_1, X_2)) = \varphi(1 - \varphi)$.

Hence, for U_n being the one-sample Wilcoxon statistic,

$$\text{Var}(U_n) = \frac{2}{n(n-1)} \left[2(n-2)\zeta_1 + \varphi(1 - \varphi) \right].$$

If F is continuous and symmetric about 0, then ζ_1 can be simplified as

$$\zeta_1 = \text{Var}(F(-X_1)) = \text{Var}(1 - F(X_1)) = \text{Var}(F(X_1)) = \frac{1}{12}.$$
Example 3.11 (continued)

Comparing U_n with $\bar{X}^2 - \sigma^2/n$ in Example 3.10, which is the UMVUE under the normality and known σ^2 assumption, we find that

$$\text{Var}(U_n) - \text{Var}(\bar{X}^2 - \sigma^2/n) = \frac{2\sigma^4}{n^2(n-1)}.$$

Next, consider $h(x_1, x_2) = I_{(-\infty,0]}(x_1 + x_2)$, which leads to the one-sample Wilcoxon statistic.

Note that $h_1(x_1) = P(x_1 + X_2 \leq 0) = F(-x_1)$, where F is the c.d.f. of P. Then $\zeta_1 = \text{Var}(F(-X_1))$.

Let $\vartheta = E[h(X_1, X_2)]$.

Then $\zeta_2 = \text{Var}(h(X_1, X_2)) = \vartheta(1 - \vartheta)$.

Hence, for U_n being the one-sample Wilcoxon statistic,

$$\text{Var}(U_n) = \frac{2}{n(n-1)} [2(n-2)\zeta_1 + \vartheta(1 - \vartheta)].$$

If F is continuous and symmetric about 0, then ζ_1 can be simplified as

$$\zeta_1 = \text{Var}(F(-X_1)) = \text{Var}(1 - F(X_1)) = \text{Var}(F(X_1)) = \frac{1}{12}.$$
Let X_1, \ldots, X_n be i.i.d. from P. For every U-statistic U_n as an estimator of $\vartheta = E[h(X_1, \ldots, X_m)]$, there is a closely related \textit{V-statistic} defined by

$$V_n = \frac{1}{n^m} \sum_{i_1=1}^{n} \cdots \sum_{i_m=1}^{n} h(X_{i_1}, \ldots, X_{i_m}).$$

(2)

As an estimator of ϑ, V_n is biased; but the bias is small asymptotically as the following results show. For a fixed sample size n, V_n may be better than U_n in terms of their mse's.

corresponding to $U_n = \frac{2}{n(n-1)} \sum_{i<j} X_i X_j$, the V-statistic is

$$V_n = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j = (\bar{X})^2$$
V-statistics

Let \(X_1, ..., X_n \) be i.i.d. from \(P \).
For every U-statistic \(U_n \) as an estimator of \(\vartheta = E[h(X_1, ..., X_m)] \), there is a closely related V-statistic defined by

\[
V_n = \frac{1}{n^m} \sum_{i_1=1}^{n} \cdots \sum_{i_m=1}^{n} h(X_{i_1}, ..., X_{i_m}).
\]

(2)

As an estimator of \(\vartheta \), \(V_n \) is biased; but the bias is small asymptotically as the following results show.
For a fixed sample size \(n \), \(V_n \) may be better than \(U_n \) in terms of their mse’s.

Corresponding to \(U_n = \frac{2}{n(n-1)} \sum_{i<j} X_i X_j \), the V-statistic is

\[
V_n = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j = (\bar{X})^2
\]
Proposition 3.5

Let \(V_n \) be defined by (2).

(i) Assume that \(E|h(X_{i_1}, \ldots, X_{i_m})| < \infty \) for all \(1 \leq i_1 \leq \cdots \leq i_m \leq m \).
Then the bias of \(V_n \) satisfies

\[
b_{V_n}(P) = O(n^{-1}).
\]

(ii) Assume that \(E[h(X_{i_1}, \ldots, X_{i_m})]^2 < \infty \) for all \(1 \leq i_1 \leq \cdots \leq i_m \leq m \).
Then the variance of \(V_n \) satisfies

\[
\text{Var}(V_n) = \text{Var}(U_n) + O(n^{-2}),
\]
where \(U_n \) is the U-statistic corresponding to \(V_n \).