Linear Models

One of the most useful statistical models is

\[X_i = \beta^\tau Z_i + \epsilon_i, \quad i = 1, \ldots, n, \]

where \(X_i \) is the \(i \)th observation and is often called the \(i \)th response; \(\beta \) is a \(p \)-vector of unknown parameters (main parameters of interest), \(p < n \); \(Z_i \) is the \(i \)th value of a \(p \)-vector of explanatory variables (or covariates); \(\epsilon_1, \ldots, \epsilon_n \) are random errors (not observed).

Data: \((X_1, Z_1), \ldots, (X_n, Z_n) \).
\(Z_i \)'s are nonrandom or given values of a random \(p \)-vector, in which case our analysis is conditioned on \(Z_1, \ldots, Z_n \).
\(X = (X_1, \ldots, X_n) \), \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) \(Z \) = the \(n \times p \) matrix whose \(i \)th row is the vector \(Z_i \), \(i = 1, \ldots, n \)

A matrix form of the model is

\[X = Z\beta + \epsilon. \]
Linear Models

One of the most useful statistical models is

\[X_i = \beta^\tau Z_i + \varepsilon_i, \quad i = 1, \ldots, n, \]

where \(X_i \) is the \(i \)th observation and is often called the \(i \)th response; \(\beta \) is a \(p \)-vector of unknown parameters (main parameters of interest), \(p < n \); \(Z_i \) is the \(i \)th value of a \(p \)-vector of explanatory variables (or covariates); \(\varepsilon_1, \ldots, \varepsilon_n \) are random errors (not observed).

Data: \((X_1, Z_1), \ldots, (X_n, Z_n)\).

\(Z \)'s are nonrandom or given values of a random \(p \)-vector, in which case our analysis is conditioned on \(Z_1, \ldots, Z_n \).

\(X = (X_1, \ldots, X_n), \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \) \(Z = \) the \(n \times p \) matrix whose \(i \)th row is the vector \(Z_i, i = 1, \ldots, n \)

A matrix form of the model is

\[X = Z\beta + \varepsilon. \]
Linear Models

One of the most useful statistical models is

\[X_i = \beta^\tau Z_i + \varepsilon_i, \quad i = 1, \ldots, n, \]

where \(X_i \) is the \(i \)th observation and is often called the \(i \)th response; \(\beta \) is a \(p \)-vector of unknown parameters (main parameters of interest), \(p < n \); \(Z_i \) is the \(i \)th value of a \(p \)-vector of explanatory variables (or covariates); \(\varepsilon_1, \ldots, \varepsilon_n \) are random errors (not observed).

Data: \((X_1, Z_1), \ldots, (X_n, Z_n)\).

\(Z_i \)'s are nonrandom or given values of a random \(p \)-vector, in which case our analysis is conditioned on \(Z_1, \ldots, Z_n \).

\(X = (X_1, \ldots, X_n), \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \)

\(Z \) = the \(n \times p \) matrix whose \(i \)th row is the vector \(Z_i, i = 1, \ldots, n \)

A matrix form of the model is

\[X = Z\beta + \varepsilon. \]
Definition 3.4

Suppose that the range of β in model (1) is $B \subset \mathbb{R}^p$. A least squares estimator (LSE) of β is defined to be any $\hat{\beta} \in B$ such that

$$\| X - Z\hat{\beta} \|^2 = \min_{b \in B} \| X - Zb \|^2.$$

For any $l \in \mathbb{R}^p$, $l^\tau \hat{\beta}$ is called an LSE of $l^\tau \beta$.

Throughout this book, we consider $B = \mathbb{R}^p$ unless otherwise stated.

Differentiating $\| X - Zb \|^2$ w.r.t. b, we obtain that any solution of

$$Z^\tau Zb = Z^\tau X$$

is an LSE of β.

Full rank Z

If the rank of the matrix Z is p, in which case $(Z^\tau Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X.$$
Definition 3.4

Suppose that the range of β in model (1) is $B \subset \mathbb{R}^p$.

A least squares estimator (LSE) of β is defined to be any $\hat{\beta} \in B$ such that

$$\|X - Z\hat{\beta}\|^2 = \min_{b \in B} \|X - Zb\|^2.$$

For any $l \in \mathbb{R}^p$, $l^\tau \hat{\beta}$ is called an LSE of $l^\tau \beta$.

Throughout this book, we consider $B = \mathbb{R}^p$ unless otherwise stated.

Differentiating $\|X - Zb\|^2$ w.r.t. b, we obtain that any solution of

$$Z^\tau Zb = Z^\tau X$$

is an LSE of β.

Full rank Z

If the rank of the matrix Z is p, in which case $(Z^\tau Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X.$$
Definition 3.4

Suppose that the range of β in model (1) is $B \subset \mathbb{R}^p$.
A least squares estimator (LSE) of β is defined to be any $\hat{\beta} \in B$ such that

$$\| X - Z\hat{\beta} \|^2 = \min_{b \in B} \| X - Zb \|^2.$$

For any $l \in \mathbb{R}^p$, $l^\tau \hat{\beta}$ is called an LSE of $l^\tau \beta$.
Throughout this book, we consider $B = \mathbb{R}^p$ unless otherwise stated.
Differentiating $\| X - Zb \|^2$ w.r.t. b, we obtain that any solution of

$$Z^\tau Zb = Z^\tau X$$

is an LSE of β.

Full rank Z

If the rank of the matrix Z is p, in which case $(Z^\tau Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X.$$
Non full rank Z

If Z is not of full rank, then there are infinitely many LSE’s of β.

Any LSE of β is of the form

$$\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X,$$

where $(Z^\tau Z)^{-1}$ is called a generalized inverse of $Z^\tau Z$ and satisfies

$$Z^\tau Z (Z^\tau Z)^{-1} Z^\tau Z = Z^\tau Z.$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $(Z^\tau Z)^{-1} = (Z^\tau Z)^{-1}\cdot$

Assumptions

To study properties of LSE’s of β, we need some assumptions on the distribution of X or ε (conditional on Z if Z is random).

A1: ε is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$.

A2: $E(\varepsilon) = 0$ and $\text{Var}(\varepsilon) = \sigma^2 I_n$ with an unknown $\sigma^2 > 0$.

A3: $E(\varepsilon) = 0$ and $\text{Var}(\varepsilon)$ is an unknown matrix.
Non full rank Z

If Z is not of full rank, then there are infinitely many LSE’s of β. Any LSE of β is of the form

$$\hat{\beta} = (Z^\tau Z)^{-} Z^\tau X,$$

where $(Z^\tau Z)^{-}$ is called a generalized inverse of $Z^\tau Z$ and satisfies

$$Z^\tau Z (Z^\tau Z)^{-} Z^\tau Z = Z^\tau Z.$$

Generalized inverse matrices are not unique unless Z is of full rank, in which case $(Z^\tau Z)^{-} = (Z^\tau Z)^{-1}$

Assumptions

To study properties of LSE’s of β, we need some assumptions on the distribution of X or ϵ (conditional on Z if Z is random).

A1: ϵ is distributed as $N_n(0, \sigma^2 I_n)$ with an unknown $\sigma^2 > 0$.

A2: $E(\epsilon) = 0$ and $\text{Var}(\epsilon) = \sigma^2 I_n$ with an unknown $\sigma^2 > 0$.

A3: $E(\epsilon) = 0$ and $\text{Var}(\epsilon)$ is an unknown matrix.
Assumption A1 is the strongest and implies a parametric model. We may assume a slightly more general assumption that ε has the $N_n(0, \sigma^2 D)$ distribution with unknown σ^2 but a known positive definite matrix D. Let $D^{-1/2}$ be the inverse of the square root matrix of D. Then model (1) with assumption A1 holds if we replace X, Z, and ε by the transformed variables $\tilde{X} = D^{-1/2} X$, $\tilde{Z} = D^{-1/2} Z$, and $\tilde{\varepsilon} = D^{-1/2} \varepsilon$, respectively.

A similar conclusion can be made for assumption A2.

Under assumption A1, the distribution of X is $N_n(Z\beta, \sigma^2 I_n)$, which is in an exponential family \mathcal{P} with parameter $\theta = (\beta, \sigma^2) \in \mathbb{R}^p \times (0, \infty)$.

However, if the matrix Z is not of full rank, then \mathcal{P} is not identifiable (see §2.1.2), since $Z\beta_1 = Z\beta_2$ does not imply $\beta_1 = \beta_2$.
Remarks

- Suppose that the rank of Z is $r \leq p$.
 Then there is an $n \times r$ submatrix Z_* of Z such that

 $$Z = Z_* Q$$

 (2)

 and Z_* is of rank r, where Q is a fixed $r \times p$ matrix, and

 $$Z \beta = Z_* Q \beta.$$

- \mathcal{P} is identifiable if we consider the reparameterization $\tilde{\beta} = Q \beta$.
- The new parameter $\tilde{\beta}$ is in a subspace of \mathbb{R}^p with dimension r.
- In many applications, we are interested in estimating some linear functions of β, i.e., $\vartheta = l^\tau \beta$ for some $l \in \mathbb{R}^p$.
- From the previous discussion, however, estimation of $l^\tau \beta$ is meaningless unless $l = Q^\tau c$ for some $c \in \mathbb{R}^r$ so that

 $$l^\tau \beta = c^\tau Q \beta = c^\tau \tilde{\beta}.$$
The following result shows that $l^\tau \beta$ is estimable if $l = Q^\tau c$, which is also necessary for $l^\tau \beta$ to be estimable under assumption A1.

Theorem 3.6

Assume model (1) with assumption A3.

(i) A necessary and sufficient condition for $l \in \mathbb{R}^p$ being $Q^\tau c$ for some $c \in \mathbb{R}^r$ is $l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z)$, where Q is given by (2) and $\mathcal{R}(A)$ is the smallest linear subspace containing all rows of A.

(ii) If $l \in \mathcal{R}(Z)$, then the LSE $l^\tau \hat{\beta}$ is unique and unbiased for $l^\tau \beta$.

(iii) If $l \notin \mathcal{R}(Z)$ and assumption A1 holds, then $l^\tau \beta$ is not estimable.

Proof

(i) Note that $a \in \mathcal{R}(A)$ iff $a = A^\tau b$ for some vector b.

If $l = Q^\tau c$, then

$$l = Q^\tau c = Q^\tau Z_*^\tau Z_* (Z_*^\tau Z_*)^{-1} c = Z^\tau [Z_* (Z_*^\tau Z_*)^{-1} c].$$

Hence $l \in \mathcal{R}(Z)$.

The following result shows that \(l^\tau \beta \) is estimable if \(l = Q^\tau c \), which is also necessary for \(l^\tau \beta \) to be estimable under assumption A1.

Theorem 3.6

Assume model (1) with assumption A3.

(i) A necessary and sufficient condition for \(l \in \mathbb{R}^p \) being \(Q^\tau c \) for some \(c \in \mathbb{R}^r \) is \(l \in \mathbb{R}(Z) = \mathbb{R}(Z^\tau Z) \), where \(Q \) is given by (2) and \(\mathbb{R}(A) \) is the smallest linear subspace containing all rows of \(A \).

(ii) If \(l \in \mathbb{R}(Z) \), then the LSE \(l^\tau \hat{\beta} \) is unique and unbiased for \(l^\tau \beta \).

(iii) If \(l \notin \mathbb{R}(Z) \) and assumption A1 holds, then \(l^\tau \beta \) is not estimable.

Proof

(i) Note that \(a \in \mathbb{R}(A) \) iff \(a = A^\tau b \) for some vector \(b \).

If \(l = Q^\tau c \), then

\[
 l = Q^\tau c = Q^\tau Z_\ast^\tau Z_\ast (Z_\ast^\tau Z_\ast)^{-1} c = Z^\tau [Z_\ast (Z_\ast^\tau Z_\ast)^{-1} c].
\]

Hence \(l \in \mathbb{R}(Z) \).
The following result shows that $l^\tau \beta$ is estimable if $l = Q^\tau c$, which is also necessary for $l^\tau \beta$ to be estimable under assumption A1.

Theorem 3.6

Assume model (1) with assumption A3.

(i) A necessary and sufficient condition for $l \in \mathbb{R}^p$ being $Q^\tau c$ for some $c \in \mathbb{R}^r$ is $l \in \mathbb{R}(Z) = \mathbb{R}(Z^\tau Z)$, where Q is given by (2) and $\mathbb{R}(A)$ is the smallest linear subspace containing all rows of A.

(ii) If $l \in \mathbb{R}(Z)$, then the LSE $l^\tau \hat{\beta}$ is unique and unbiased for $l^\tau \beta$.

(iii) If $l \not\in \mathbb{R}(Z)$ and assumption A1 holds, then $l^\tau \beta$ is not estimable.

Proof

(i) Note that $a \in \mathbb{R}(A)$ iff $a = A^\tau b$ for some vector b.

If $l = Q^\tau c$, then

$$l = Q^\tau c = Q^\tau Z^\tau Z^* (Z^\tau Z^*)^{-1} c = Z^\tau [Z^* (Z^\tau Z^*)^{-1} c].$$

Hence $l \in \mathbb{R}(Z)$.
Proof (continued)

If \(l \in \mathcal{R}(Z) \), then \(l = Z^\tau \zeta \) for some \(\zeta \) and

\[
l = (Z^* Q)^\tau \zeta = Q^\tau c, \quad c = Z^* \zeta.
\]

(ii) If \(l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \), then \(l = Z^\tau Z \zeta \) for some \(\zeta \) and by

\[
\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X,
\]

\[
E(l^\tau \hat{\beta}) = E[l^\tau (Z^\tau Z)^{-1} Z^\tau X] = \zeta^\tau Z^\tau Z (Z^\tau Z)^{-1} Z^\tau Z \beta = \zeta^\tau Z^\tau \beta = l^\tau \beta.
\]

If \(\bar{\beta} \) is any other LSE of \(\beta \), then, by \(Z^\tau Z \bar{\beta} = Z^\tau X \),

\[
l^\tau \hat{\beta} - l^\tau \bar{\beta} = \zeta^\tau (Z^\tau Z)(\hat{\beta} - \bar{\beta}) = \zeta^\tau (Z^\tau X - Z^\tau X) = 0.
\]

(iii) Under A1, if there is an estimator \(h(X, Z) \) unbiased for \(l^\tau \beta \), then

\[
l^\tau \beta = \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z\beta\|^2 \right\} \, dx.
\]

Differentiating w.r.t. \(\beta \) and applying Theorem 2.1 lead to

\[
l^\tau = Z^\tau \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n-2}(x - Z\beta) \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z\beta\|^2 \right\} \, dx,
\]

which implies \(l \in \mathcal{R}(Z) \).
Proof (continued)

If \(l \in \mathcal{R}(Z) \), then \(l = Z^\tau \zeta \) for some \(\zeta \) and

\[
 l = (Z \ast Q)^\tau \zeta = Q^\tau c, \quad c = Z^\tau \zeta.
\]

(ii) If \(l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \), then \(l = Z^\tau Z \zeta \) for some \(\zeta \) and by

\[
\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X,
\]

\[
E(l^\tau \hat{\beta}) = E[l^\tau (Z^\tau Z)^{-1} Z^\tau X] = \zeta^\tau Z^\tau Z(Z^\tau Z)^{-1} Z^\tau Z \beta = \zeta^\tau Z^\tau Z \beta = l^\tau \beta.
\]

If \(\bar{\beta} \) is any other LSE of \(\beta \), then, by \(Z^\tau Z \bar{\beta} = Z^\tau X \),

\[
l^\tau \hat{\beta} - l^\tau \bar{\beta} = \zeta^\tau (Z^\tau Z)(\hat{\beta} - \bar{\beta}) = \zeta^\tau (Z^\tau X - Z^\tau X) = 0.
\]

(iii) Under A1, if there is an estimator \(h(X, Z) \) unbiased for \(l^\tau \beta \), then

\[
l^\tau \beta = \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \| x - Z \beta \|^2 \right\} dx.
\]

Differentiating w.r.t. \(\beta \) and applying Theorem 2.1 lead to

\[
l^\tau = Z^\tau \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n-2}(x - Z \beta) \exp \left\{ -\frac{1}{2\sigma^2} \| x - Z \beta \|^2 \right\} dx,
\]

which implies \(l \in \mathcal{R}(Z) \).
Proof (continued)

If \(l \in \mathcal{R}(Z) \), then \(l = Z^\tau \zeta \) for some \(\zeta \) and

\[
l = (Z^*Q)^\tau \zeta = Q^\tau c, \quad c = Z^\tau \zeta.
\]

(ii) If \(l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \), then \(l = Z^\tau Z \zeta \) for some \(\zeta \) and by

\[
\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X,
\]

\[
E(l^\tau \hat{\beta}) = E[l^\tau (Z^\tau Z)^{-1} Z^\tau X] = \zeta^\tau Z^\tau Z(Z^\tau Z)^{-1} Z^\tau Z \beta = \zeta^\tau Z^\tau Z \beta = l^\tau \beta.
\]

If \(\bar{\beta} \) is any other LSE of \(\beta \), then, by \(Z^\tau Z \bar{\beta} = Z^\tau X \),

\[
l^\tau \hat{\beta} - l^\tau \bar{\beta} = \zeta^\tau (Z^\tau Z)(\hat{\beta} - \bar{\beta}) = \zeta^\tau (Z^\tau X - Z^\tau X) = 0.
\]

(iii) Under A1, if there is an estimator \(h(X, Z) \) unbiased for \(l^\tau \beta \), then

\[
l^\tau \beta = \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n} \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z\beta\|^2 \right\} \, dx.
\]

Differentiating w.r.t. \(\beta \) and applying Theorem 2.1 lead to

\[
l^\tau = Z^\tau \int_{\mathbb{R}^n} h(x, Z)(2\pi)^{-n/2} \sigma^{-n-2}(x - Z\beta) \exp \left\{ -\frac{1}{2\sigma^2} \|x - Z\beta\|^2 \right\} \, dx,
\]

which implies \(l \in \mathcal{R}(Z) \).
Let $\beta = (\beta_0, \beta_1) \in \mathbb{R}^2$ and $Z_i = (1, t_i)$, $t_i \in \mathbb{R}$, $i = 1, \ldots, n$. Then model (1) is called a *simple linear regression* model.

It turns out that

$$
\begin{pmatrix}
 n & \sum_{i=1}^n t_i \\
 \sum_{i=1}^n t_i & \sum_{i=1}^n t_i^2
\end{pmatrix}.
$$

This matrix is invertible iff some t_i’s are different. Thus, if some t_i’s are different, then the unique unbiased LSE of $l^T \beta$ for any $l \in \mathbb{R}^2$ is $l^T (Z^T Z)^{-1} Z^T X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of *polynomial regression* of order p in which

$$
\beta = (\beta_0, \beta_1, \ldots, \beta_{p-1})
$$

and

$$
Z_i = (1, t_i, \ldots, t_i^{p-1}).$$
Example 3.12 (Simple linear regression)

Let $\beta = (\beta_0, \beta_1) \in \mathbb{R}^2$ and $Z_i = (1, t_i)$, $t_i \in \mathbb{R}$, $i = 1, \ldots, n$. Then model (1) is called a simple linear regression model. It turns out that

$$
\begin{pmatrix}
n & \sum_{i=1}^{n} t_i \\
\sum_{i=1}^{n} t_i & \sum_{i=1}^{n} t_i^2
\end{pmatrix}
$$

This matrix is invertible iff some t_i’s are different. Thus, if some t_i’s are different, then the unique unbiased LSE of $l^\tau \beta$ for any $l \in \mathbb{R}^2$ is $l^\tau (Z^\tau Z)^{-1} Z^\tau X$, which has the normal distribution if assumption A1 holds.

The result can be easily extended to the case of polynomial regression of order p in which

$\beta = (\beta_0, \beta_1, \ldots, \beta_{p-1})$

and

$Z_i = (1, t_i, \ldots, t_i^{p-1})$.
Example 3.13 (One-way ANOVA)

Suppose that $n = \sum_{j=1}^{m} n_j$ with m positive integers n_1, \ldots, n_m and that

$$X_i = \mu_j + \epsilon_i, \quad i = k_{j-1} + 1, \ldots, k_j, \; j = 1, \ldots, m,$$

where $k_0 = 0$, $k_j = \sum_{l=1}^{j} n_l$, $j = 1, \ldots, m$, and $(\mu_1, \ldots, \mu_m) = \beta$.

Let J_m be the m-vector of ones.

Then the matrix Z in this case is a block diagonal matrix with J_{n_j} as the jth diagonal column.

Consequently, $Z^T Z$ is an $m \times m$ diagonal matrix whose jth diagonal element is n_j.

Thus, $Z^T Z$ is invertible and the unique LSE of β is the m-vector whose jth component is

$$\frac{1}{n_j} \sum_{i=k_{j-1}+1}^{k_j} X_i, \quad j = 1, \ldots, m.$$
Example 3.13 (continued)

Sometimes it is more convenient to use the following notation:

\[X_{ij} = X_{k_{i-1}+j}, \quad \varepsilon_{ij} = \varepsilon_{k_{i-1}+j}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \]

and

\[\mu_j = \mu + \alpha_i, \quad i = 1, \ldots, m. \]

Then our model becomes

\[X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \tag{3} \]

which is called a one-way analysis of variance (ANOVA) model.

Under model (3), \(\beta = (\mu, \alpha_1, \ldots, \alpha_m) \in \mathbb{R}^{m+1} \).

The matrix \(Z \) under model (3) is not of full rank.

An LSE of \(\beta \) under model (3) is

\[\hat{\beta} = (\bar{X}, \bar{X}_1 - \bar{X}, \ldots, \bar{X}_m - \bar{X}), \]

where \(\bar{X} \) is still the sample mean of \(X_{ij} \)'s and \(\bar{X}_i \) is the sample mean of the \(i \)th group \(\{X_{ij}, j = 1, \ldots, n_i\} \).
Example 3.13 (continued)

Sometimes it is more convenient to use the following notation:

\[X_{ij} = X_{k_{i-1}+j}, \quad \varepsilon_{ij} = \varepsilon_{k_{i-1}+j}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \]

and

\[\mu_i = \mu + \alpha_i, \quad i = 1, \ldots, m. \]

Then our model becomes

\[X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \tag{3} \]

which is called a one-way analysis of variance (ANOVA) model.

Under model (3), \(\beta = (\mu, \alpha_1, \ldots, \alpha_m) \in \mathbb{R}^{m+1}. \)

The matrix \(Z \) under model (3) is not of full rank.

An LSE of \(\beta \) under model (3) is

\[\hat{\beta} = (\bar{X}, \bar{X}_1 - \bar{X}, \ldots, \bar{X}_m - \bar{X}), \]

where \(\bar{X} \) is still the sample mean of \(X_{ij} \)'s and \(\bar{X}_i \) is the sample mean of the \(i \)th group \(\{X_{ij}, j = 1, \ldots, n_i\} \).
Example 3.13 (continued)

Sometimes it is more convenient to use the following notation:

\[X_{ij} = X_{k_i-1+j}, \quad \varepsilon_{ij} = \varepsilon_{k_i-1+j}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \]

and

\[\mu_i = \mu + \alpha_i, \quad i = 1, \ldots, m. \]

Then our model becomes

\[X_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m, \tag{3} \]

which is called a one-way analysis of variance (ANOVA) model.

Under model (3), \(\beta = (\mu, \alpha_1, \ldots, \alpha_m) \in \mathbb{R}^{m+1}. \)

The matrix \(Z \) under model (3) is not of full rank.

An LSE of \(\beta \) under model (3) is

\[\hat{\beta} = (\bar{X}, \bar{X}_1 - \bar{X}, \ldots, \bar{X}_m - \bar{X}), \]

where \(\bar{X} \) is still the sample mean of \(X_{ij} \)'s and \(\bar{X}_i \) is the sample mean of the \(i \)th group \(\{ X_{ij}, j = 1, \ldots, n_i \} \).
The notation used in model (3) allows us to generalize the one-way ANOVA model to any \(s \)-way ANOVA model with a positive integer \(s \) under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

\[
X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, j = 1, \ldots, b, k = 1, \ldots, c, \tag{4}
\]

where \(a, b, \) and \(c \) are some positive integers.

Model (4) is called a two-way balanced ANOVA model.

If we view model (4) as a special case of model (1), then the parameter vector \(\beta \) is

\[
\beta = (\mu, \alpha_1, \ldots, \alpha_a, \beta_1, \ldots, \beta_b, \gamma_{11}, \ldots, \gamma_{1b}, \ldots, \gamma_{a1}, \ldots, \gamma_{ab}). \tag{5}
\]

One can obtain the matrix \(Z \) and show that it is \(n \times p \), where \(n = abc \) and \(p = 1 + a + b + ab \), and is of rank \(ab < p \).
The notation used in model (3) allows us to generalize the one-way ANOVA model to any \(s \)-way ANOVA model with a positive integer \(s \) under the so-called factorial experiments.

Example 3.14 (Two-way balanced ANOVA)

Suppose that

\[
X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}, \quad i = 1, \ldots, a, \quad j = 1, \ldots, b, \quad k = 1, \ldots, c, \tag{4}
\]

where \(a, b, \) and \(c \) are some positive integers. Model (4) is called a two-way balanced ANOVA model.

If we view model (4) as a special case of model (1), then the parameter vector \(\beta \) is

\[
\beta = (\mu, \alpha_1, \ldots, \alpha_a, \beta_1, \ldots, \beta_b, \gamma_{11}, \ldots, \gamma_{11}, \ldots, \gamma_{a1}, \ldots, \gamma_{ab}). \tag{5}
\]

One can obtain the matrix \(Z \) and show that it is \(n \times p \), where \(n = abc \) and \(p = 1 + a + b + ab \), and is of rank \(ab < p \).
Two-way balanced ANOVA

It can also be shown that an LSE of β is given by the right-hand side of (5) with μ, α_i, β_j, and γ_{ij} replaced by $\hat{\mu}$, $\hat{\alpha}_i$, $\hat{\beta}_j$, and $\hat{\gamma}_{ij}$, respectively, where

\[
\hat{\mu} = \bar{X}..., \\
\hat{\alpha}_i = \bar{X}_{i..} - \bar{X}..., \\
\hat{\beta}_j = \bar{X}_{.j} - \bar{X}..., \\
\hat{\gamma}_{ij} = \bar{X}_{ij} - \bar{X}_{i..} - \bar{X}_{.j} + \bar{X}...,
\]

and a dot is used to denote averaging over the indicated subscript, e.g.,

\[
\bar{X}_{.j} = \frac{1}{ac} \sum_{i=1}^{a} \sum_{k=1}^{c} X_{ijk}
\]

with a fixed j.