Theorem 3.7.

Consider model

\[X = Z\beta + \varepsilon \]

(1)

with assumption A1 (\(\varepsilon \) is distributed as \(N_n(0, \sigma^2 I_n) \) with an unknown \(\sigma^2 > 0 \)).

(i) The LSE \(l^\tau \hat{\beta} \) is the UMVUE of \(l^\tau \beta \) for any estimable \(l^\tau \beta \).

(ii) The UMVUE of \(\sigma^2 \) is \(\hat{\sigma}^2 = (n - r)^{-1}\|X - Z\hat{\beta}\|^2 \), where \(r \) is the rank of \(Z \).

Proof of (i)

Let \(\hat{\beta} \) be an LSE of \(\beta \). By \(Z^\tau Z\hat{\beta} = Z^\tau X \),

\[(X - Z\hat{\beta})^\tau Z(\hat{\beta} - \beta) = (X^\tau Z - X^\tau Z)(\hat{\beta} - \beta) = 0\]

and, hence,
Theorem 3.7.

Consider model

\[X = Z\beta + \varepsilon \] \hspace{1cm} (1)

with assumption A1 (\(\varepsilon \) is distributed as \(N_n(0, \sigma^2 I_n) \) with an unknown \(\sigma^2 > 0 \)).

(i) The LSE \(l^\tau \hat{\beta} \) is the UMVUE of \(l^\tau \beta \) for any estimable \(l^\tau \beta \).

(ii) The UMVUE of \(\sigma^2 \) is \(\hat{\sigma}^2 = (n - r)^{-1} \| X - Z\hat{\beta} \|^2 \), where \(r \) is the rank of \(Z \).

Proof of (i)

Let \(\hat{\beta} \) be an LSE of \(\beta \). By \(Z^\tau Zb = Z^\tau X \),

\[(X - Z\hat{\beta})^\tau Z(\hat{\beta} - \beta) = (X^\tau Z - X^\tau Z)(\hat{\beta} - \beta) = 0 \]

and, hence,
Proof of (i) continue

\[\|X - Z\beta\|^2 = \|X - Z\hat{\beta} + Z\hat{\beta} - Z\beta\|^2 \]
\[= \|X - Z\hat{\beta}\|^2 + \|Z\hat{\beta} - Z\beta\|^2 \]
\[= \|X - Z\hat{\beta}\|^2 - 2\beta^\tau Z^\tau X + \|Z\beta\|^2 + \|Z\hat{\beta}\|^2. \]

Using this result and assumption A1, we obtain the following joint Lebesgue p.d.f. of \(X \):

\[(2\pi\sigma^2)^{-n/2} \exp \left\{ \frac{\beta^\tau Z^\tau X}{\sigma^2} - \frac{\|x - Z\hat{\beta}\|^2 + \|Z\hat{\beta}\|^2}{2\sigma^2} - \frac{\|Z\beta\|^2}{2\sigma^2} \right\}. \]

By Proposition 2.1 and the fact that \(Z\hat{\beta} = Z(Z^\tau Z)^{-1}Z^\tau X \) is a function of \(Z^\tau X \), the statistic \((Z^\tau X, \|X - Z\hat{\beta}\|^2) \) is complete and sufficient for \(\theta = (\beta, \sigma^2) \).

Note that \(\hat{\beta} \) is a function of \(Z^\tau X \) and, hence, a function of the complete sufficient statistic.

If \(l^\tau \beta \) is estimable, then \(l^\tau \hat{\beta} \) is unbiased for \(l^\tau \beta \) (Theorem 3.6) and, hence, \(l^\tau \hat{\beta} \) is the UMVUE of \(l^\tau \beta \).
Proof of (ii)

From \(\|X - Z\beta\|^2 = \|X - Z\hat{\beta}\|^2 + \|Z\hat{\beta} - Z\beta\|^2 \) and \(E(Z\hat{\beta}) = Z\beta \) (Theorem 3.6),

\[
E\|X - Z\hat{\beta}\|^2 = E(X - Z\beta)^\tau(X - Z\beta) - E(\beta - \hat{\beta})^\tau Z^\tau Z(\beta - \hat{\beta})
\]
\[
= \text{tr} \left(\text{Var}(X) - \text{Var}(Z\hat{\beta}) \right)
\]
\[
= \sigma^2 [n - \text{tr} \left(Z(Z^\tau Z)^{-1} Z^\tau Z(Z^\tau Z)^{-1} Z^\tau \right)]
\]
\[
= \sigma^2 [n - \text{tr} \left((Z^\tau Z)^{-1} Z^\tau Z \right)].
\]

Since each row of \(Z \in \mathcal{R}(Z) \), \(Z\hat{\beta} \) does not depend on the choice of \((Z^\tau Z)^{-1} \) in \(\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X \) (Theorem 3.6).

Hence, we can evaluate \(\text{tr}((Z^\tau Z)^{-1} Z^\tau Z) \) using a particular \((Z^\tau Z)^{-1} \).

From the theory of linear algebra, there exists a \(p \times p \) matrix \(C \) such that \(CC^\tau = I_p \) and

\[
C^\tau(Z^\tau Z)C = \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix},
\]
Proof of (ii)

From $\|X - Z\beta\|^2 = \|X - Z\hat{\beta}\|^2 + \|Z\hat{\beta} - Z\beta\|^2$ and $E(Z\hat{\beta}) = Z\beta$ (Theorem 3.6),

$$E\|X - Z\hat{\beta}\|^2 = E((X - Z\beta)^\tau(X - Z\beta)) - E((\beta - \hat{\beta})^\tau Z^\tau Z(\beta - \hat{\beta}))$$

$$= \text{tr}\left(\text{Var}(X) - \text{Var}(Z\hat{\beta}) \right)$$

$$= \sigma^2 [n - \text{tr} \left(Z(Z^\tau Z)^{-1} Z^\tau Z(Z^\tau Z)^{-1} Z^\tau \right)]$$

$$= \sigma^2 [n - \text{tr} \left((Z^\tau Z)^{-1} Z^\tau Z \right)].$$

Since each row of $Z \in \mathcal{R}(Z)$, $Z\hat{\beta}$ does not depend on the choice of $(Z^\tau Z)^{-1}$ in $\hat{\beta} = (Z^\tau Z)^{-1} Z^\tau X$ (Theorem 3.6).

Hence, we can evaluate $\text{tr}((Z^\tau Z)^{-1} Z^\tau Z)$ using a particular $(Z^\tau Z)^{-1}$.

From the theory of linear algebra, there exists a $p \times p$ matrix C such that $CC^\tau = I_p$ and

$$C^\tau(Z^\tau Z)C = \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix},$$
Proof of (ii) continue

Then, a particular choice of \((Z^\tau Z)^-\) is

\[
(Z^\tau Z)^- = C \begin{pmatrix} \Lambda^{-1} & 0 \\ 0 & 0 \end{pmatrix} C^\tau
\]

and

\[
(Z^\tau Z)^- Z^\tau Z = C \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} C^\tau
\]

whose trace is \(r\).

Hence \(\hat{\sigma}^2\) is the UMVUE of \(\sigma^2\), since it is a function of the complete sufficient statistic and

\[
E\hat{\sigma}^2 = (n - r)^{-1} E\|X - Z\hat{\beta}\|^2 = \sigma^2.
\]
Linear combination of LSEs

In general,

$$\text{Var}(l^\tau \hat{\beta}) = l^\tau (Z^\tau Z)^{-1} Z^\tau \text{Var}(\varepsilon) Z (Z^\tau Z)^{-1} l.$$ \hspace{1cm} (3)

If $l \in \mathcal{R}(Z)$ and $\text{Var}(\varepsilon) = \sigma^2 I_n$ (assumption A2), then the use of the generalized inverse matrix in (2) leads to

$$\text{Var}(l^\tau \hat{\beta}) = \sigma^2 l^\tau (Z^\tau Z)^{-1} l,$$

which attains the Cramér-Rao lower bound under assumption A1 (Proposition 3.2).

Residual vector

- The vector $X - Z\hat{\beta}$ is called the residual vector and $\|X - Z\hat{\beta}\|^2$ is called the sum of squared residuals and is denoted by SSR.
- The estimator $\hat{\sigma}^2$ is then equal to $\text{SSR}/(n - r)$.

- Since $X - Z\hat{\beta} = [I_n - Z(Z^\tau Z)^{-1} Z^\tau] X$ and $l^\tau \hat{\beta} = l^\tau (Z^\tau Z)^{-1} Z^\tau X$ are linear in X, they are normally distributed under assumption A1.
Linear combination of LSEs

In general,

$$\text{Var}(l^\tau \hat{\beta}) = l^\tau (Z^\tau Z)^{-1} Z^\tau \text{Var}(\varepsilon) Z (Z^\tau Z)^{-1} l.$$

(3)

If $l \in \mathbb{R}(Z)$ and $\text{Var}(\varepsilon) = \sigma^2 I_n$ (assumption A2), then the use of the generalized inverse matrix in (2) leads to $\text{Var}(l^\tau \hat{\beta}) = \sigma^2 l^\tau (Z^\tau Z)^{-1} l$, which attains the Cramér-Rao lower bound under assumption A1 (Proposition 3.2).

Residual vector

- The vector $X - Z\hat{\beta}$ is called the residual vector and $\|X - Z\hat{\beta}\|^2$ is called the sum of squared residuals and is denoted by SSR.

- The estimator $\hat{\sigma}^2$ is then equal to $\text{SSR}/(n - r)$.

Since $X - Z\hat{\beta} = [I_n - Z(Z^\tau Z)^{-1} Z^\tau]X$ and $l^\tau \hat{\beta} = l^\tau (Z^\tau Z)^{-1} Z^\tau X$ are linear in X, they are normally distributed under assumption A1.
Linear combination of LSEs

In general,

$$\text{Var}(l^\tau \hat{\beta}) = l^\tau (Z^\tau Z)^{-1} Z^\tau \text{Var}(\varepsilon) Z (Z^\tau Z)^{-1} l. \quad (3)$$

If \(l \in \mathcal{R}(Z) \) and \(\text{Var}(\varepsilon) = \sigma^2 I_n \) (assumption A2), then the use of the generalized inverse matrix in (2) leads to

$$\text{Var}(l^\tau \hat{\beta}) = \sigma^2 l^\tau (Z^\tau Z)^{-1} l,$$

which attains the Cramér-Rao lower bound under assumption A1 (Proposition 3.2).

Residual vector

- The vector \(X - Z\hat{\beta} \) is called the residual vector and \(\|X - Z\hat{\beta}\|^2 \) is called the sum of squared residuals and is denoted by SSR.
- The estimator \(\hat{\sigma}^2 \) is then equal to \(SSR/(n - r) \).

- Since \(X - Z\hat{\beta} = [I_n - Z(Z^\tau Z)^{-1} Z^\tau]X \) and \(l^\tau \hat{\beta} = l^\tau (Z^\tau Z)^{-1} Z^\tau X \) are linear in \(X \), they are normally distributed under assumption A1.
Also, using the generalized inverse matrix in (2), we obtain that
\[
[I_n - Z(Z^\tau Z)^{-} Z^\tau]Z(Z^\tau Z)^{-} = Z(Z^\tau Z)^{-} - Z(Z^\tau Z)^{-} Z^\tau Z(Z^\tau Z)^{-} = 0,
\]
which implies that \(\sigma^2 \) and \(I^\tau \hat{\beta} \) are independent (Exercise 58 in §1.6) for any estimable \(I^\tau \beta \).

Furthermore,
\[
[Z(Z^\tau Z)^{-} Z^\tau]^2 = Z(Z^\tau Z)^{-} Z^\tau
\]
(i.e., \(Z(Z^\tau Z)^{-} Z^\tau \) is a projection matrix) and
\[
SSR = X^\tau [I_n - Z(Z^\tau Z)^{-} Z^\tau]X.
\]

The rank of \(Z(Z^\tau Z)^{-} Z^\tau \) is \(\text{tr}(Z(Z^\tau Z)^{-} Z^\tau) = r. \)

Similarly, the rank of the projection matrix \(I_n - Z(Z^\tau Z)^{-} Z^\tau \) is \(n - r. \)
From
\[X^\tau X = X^\tau [Z(Z^\tau Z)^{-1} Z^\tau] X + X^\tau [I_n - Z(Z^\tau Z)^{-1} Z^\tau] X \]
and Theorem 1.5 (Cochran’s theorem), SSR/σ^2 has the chi-square distribution $\chi^2_{n-r}(\delta)$ with
\[\delta = \sigma^{-2} \beta^\tau Z^\tau [I_n - Z(Z^\tau Z)^{-1} Z^\tau] Z \beta = 0. \]
Thus, we have proved the following result.

Theorem 3.8.
Consider model (1) with assumption A1. For any estimable parameter $l^\tau \beta$, the UMVUE’s $l^\tau \hat{\beta}$ and $\hat{\sigma}^2$ are independent; the distribution of $l^\tau \hat{\beta}$ is $N(l^\tau \beta, \sigma^2 l^\tau (Z^\tau Z)^{-1} l)$; and $(n-r)\hat{\sigma}^2/\sigma^2$ has the chi-square distribution χ^2_{n-r}.
From

\[X^\tau X = X^\tau[Z(Z^\tau Z)^{-}Z^\tau]X + X^\tau[I_n - Z(Z^\tau Z)^{-}Z^\tau]X \]

and Theorem 1.5 (Cochran’s theorem), \(SSR/\sigma^2 \) has the chi-square distribution \(\chi^2_{n-r}(\delta) \) with

\[\delta = \sigma^{-2}\beta^\tau Z^\tau[I_n - Z(Z^\tau Z)^{-}Z^\tau]Z\beta = 0. \]

Thus, we have proved the following result.

Theorem 3.8.

Consider model (1) with assumption A1. For any estimable parameter \(l^\tau \beta \), the UMVUE’s \(l^\tau \hat{\beta} \) and \(\hat{\sigma}^2 \) are independent; the distribution of \(l^\tau \hat{\beta} \) is \(N(l^\tau \beta, \sigma^2 l^\tau (Z^\tau Z)^{-}l) \); and \((n - r)\hat{\sigma}^2 / \sigma^2 \) has the chi-square distribution \(\chi^2_{n-r} \).
Example 3.15.

In Examples 3.12-3.14, UMVUE’s of estimable $l^\tau \beta$ are the LSE’s $l^\tau \hat{\beta}$, under assumption A1. In Example 3.13,

$$SSR = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2;$$

in Example 3.14, if $c > 1$,

$$SSR = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} (X_{ijk} - \bar{X}_{ij})^2.$$
We now study properties of $l^\tau \hat{\beta}$ and $\hat{\sigma}^2$ under assumption A2, i.e., without the normality assumption on ε.

- From Theorem 3.6 and the proof of Theorem 3.7(ii), $l^\tau \hat{\beta}$ (with an $l \in \mathcal{R}(Z)$) and $\hat{\sigma}^2$ are still unbiased without the normality assumption.
- In what sense are $l^\tau \hat{\beta}$ and $\hat{\sigma}^2$ optimal beyond being unbiased?
- We have the following result for the LSE $l^\tau \hat{\beta}$.
- Some discussion about $\hat{\sigma}^2$ can be found, for example, in Rao (1973, p. 228).
Theorem 3.9

Consider model (1) with assumption A2.

(i) A necessary and sufficient condition for the existence of a linear unbiased estimator of $l^\tau \beta$ (i.e., an unbiased estimator that is linear in X) is $l \in \mathbb{R}(Z)$.

(ii) (Gauss-Markov theorem). If $l \in \mathbb{R}(Z)$, then the LSE $l^\tau \hat{\beta}$ is the best linear unbiased estimator (BLUE) of $l^\tau \beta$ in the sense that it has the minimum variance in the class of linear unbiased estimators of $l^\tau \beta$.

Proof of (i)

The sufficiency has been established in Theorem 3.6.

Suppose now a linear function of X, $c^\tau X$ with $c \in \mathbb{R}^n$, is unbiased for $l^\tau \beta$. Then

$$l^\tau \beta = E(c^\tau X) = c^\tau EX = c^\tau Z\beta.$$

Since this equality holds for all β, $l = Z^\tau c$, i.e., $l \in \mathbb{R}(Z)$.
Theorem 3.9

Consider model (1) with assumption A2.

(i) A necessary and sufficient condition for the existence of a linear unbiased estimator of \(l^\tau \beta \) (i.e., an unbiased estimator that is linear in \(X \)) is \(l \in \mathcal{R}(Z) \).

(ii) (Gauss-Markov theorem). If \(l \in \mathcal{R}(Z) \), then the LSE \(l^\tau \hat{\beta} \) is the best linear unbiased estimator (BLUE) of \(l^\tau \beta \) in the sense that it has the minimum variance in the class of linear unbiased estimators of \(l^\tau \beta \).

Proof of (i)

The sufficiency has been established in Theorem 3.6.

Suppose now a linear function of \(X \), \(c^\tau X \) with \(c \in \mathcal{R}^n \), is unbiased for \(l^\tau \beta \). Then

\[
l^\tau \beta = E(c^\tau X) = c^\tau EX = c^\tau Z\beta.
\]

Since this equality holds for all \(\beta \), \(l = Z^\tau c \), i.e., \(l \in \mathcal{R}(Z) \).
Proof of (ii)

Let \(l \in \mathcal{R}(Z) = \mathcal{R}(Z^\tau Z) \).

- Then \(l = (Z^\tau Z)\zeta \) for some \(\zeta \) and \(l^\tau \hat{\beta} = \zeta^\tau (Z^\tau Z)\hat{\beta} = \zeta^\tau Z^\tau X \) by \(Z^\tau Zb = Z^\tau X \).

- Let \(c^\tau X \) be any linear unbiased estimator of \(l^\tau \beta \). From the proof of (i), \(Z^\tau c = l \). Then

\[
\text{Cov}(\zeta^\tau Z^\tau X, c^\tau X - \zeta^\tau Z^\tau X) = E(X^\tau Z\zeta c^\tau X) - E(X^\tau Z\zeta \zeta^\tau Z^\tau X)
\]
\[
= \sigma^2 \text{tr}(Z\zeta c^\tau) + \beta^\tau Z^\tau Z\zeta c^\tau Z\beta
\]
\[
- \sigma^2 \text{tr}(Z\zeta \zeta^\tau Z^\tau) - \beta^\tau Z^\tau Z\zeta \zeta^\tau Z^\tau Z\beta
\]
\[
= \sigma^2 \zeta^\tau l + (l^\tau \beta)^2 - \sigma^2 \zeta^\tau l - (l^\tau \beta)^2
\]
\[
= 0.
\]
Proof of (ii) continue

Hence

\[\text{Var}(c^\tau X) = \text{Var}(c^\tau X - \zeta^\tau Z^\tau X + \zeta^\tau Z^\tau X) \]
\[= \text{Var}(c^\tau X - \zeta^\tau Z^\tau X) + \text{Var}(\zeta^\tau Z^\tau X) \]
\[+ 2 \text{Cov}(\zeta^\tau Z^\tau X, c^\tau X - \zeta^\tau Z^\tau X) \]
\[= \text{Var}(c^\tau X - \zeta^\tau Z^\tau X) + \text{Var}(l^\tau \hat{\beta}) \]
\[\geq \text{Var}(l^\tau \hat{\beta}). \]