Lecture 36: LASSO and Thresholding

LASSO estimator

Consider linear model $X = Z\beta + \varepsilon$, $\beta \in \mathbb{R}^p$ and $\text{Var}(\varepsilon) = \sigma^2 I_n$. The ridge regression estimator of β is obtained from

$$\min_{\beta \in \mathbb{R}^p} (\|X - Z\beta\|^2 + \lambda \|\beta\|^2)$$

If we change the L_2 penalty $\|\beta\|^2$ to the L_1 penalty $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$, where β_j is the jth component of β, then the LASSO estimator is from

$$\min_{\beta \in \mathbb{R}^p} (\|X - Z\beta\|^2 + \lambda \|\beta\|_1)$$

Difference between LASSO and ridge regression:

- LASSO estimator does not have an explicit form.
- When a component of β is 0, its LASSO estimator may be 0, but its ridge regression estimator is never 0.
- The minimization for LASSO is still for a convex objective function, but the objective function is not always differentiable.
- If $p < n$, Z can be deterministic; if $p \geq n$, Z must be random.
Notation

\(\mathcal{A} \) = the set of indices of non-zero coefficients of \(\beta \)

\[\beta = (\beta_\mathcal{A}, \beta_{\mathcal{A}^c}), \dim(\beta_\mathcal{A}) = q, \dim(\beta_{\mathcal{A}^c}) = p - q; \ X = (X_\mathcal{A}, X_{\mathcal{A}^c}) \]

\[C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \frac{1}{n} \begin{pmatrix} X^\tau X_\mathcal{A} & X^\tau X_{\mathcal{A}^c} \\ X^\tau c X_\mathcal{A} & X^\tau c X_{\mathcal{A}^c} \end{pmatrix} = \frac{1}{n} X^\tau X \]

Consistency

The LASSO estimator \(\hat{\beta} \) of \(\beta \) is strongly sign consistent if there exists \(\lambda = \lambda_n \) not depending on \(Y \) or \(X \) such that

\[\lim_{n \to \infty} P \left(\text{sign}(\hat{\beta}) = \text{sign}(\beta) \right) = 1 \]

which implies variable selection consistent (since \(\text{sign}(a) = 0 \) if \(a = 0 \)),

\[\lim_{n \to \infty} P \left(\hat{\mathcal{A}} = \mathcal{A} \right) = 1 \]

where \(\hat{\mathcal{A}} \) is the index set of nonzero components of \(\hat{\beta} \).

Strong Irrepresentable Condition (SIC)

There exists a vector \(\eta \) whose components are positive such that

\[|C_{21} C_{11}^{-1} \text{sign}(\beta_\mathcal{A})| \leq 1 - \eta \text{ component-wise, where } |a| = (|a_1|, |a_2|, ...) \]

for \(a = (a_1, a_2, ...) \) and 1 is the vector of ones.
Critical Lemma

Under the SIC,

\[P \left(\text{sign} (\hat{\beta}) = \text{sign}(\beta) \right) \geq P(A_n \cap B_n), \]

where

\[A_n = \left\{ |C_{11}^{-1} W_\mathcal{A}| < \sqrt{n} |\beta_\mathcal{A}| - \frac{\lambda_n}{2\sqrt{n}} |C_{11}^{-1} \text{sign}(\beta_\mathcal{A})| \right\} \]

\[B_n = \left\{ |C_{21} C_{11}^{-1} W_\mathcal{A} - W_\mathcal{A}^c| \leq \frac{\lambda_n}{2\sqrt{n}} \eta \right\} \]

\[W_\mathcal{A} = \frac{1}{\sqrt{n}} X_\mathcal{A}^\tau \varepsilon \quad W_\mathcal{A}^c = \frac{1}{\sqrt{n}} X_\mathcal{A}^c \varepsilon \]

Karush-Kuhn-Tucker (KKT) condition

\(\hat{\beta} = (\hat{\beta}_1, \ldots, \hat{\beta}_p) \) is the LASSO estimator if and only if

\[\frac{\partial \| Y - X\beta \|^2}{\partial \beta_j} \bigg|_{\beta_j=\hat{\beta}_j} = \begin{cases} \lambda \text{sign}(\hat{\beta}_j) & \hat{\beta}_j \neq 0 \\ \text{bounded by } \lambda \text{ in absolute value} & \hat{\beta}_j = 0 \end{cases} \]
Proof of the Lemma

Let $\hat{u} = \hat{\beta} - \beta$ and $V_n(u) = \sum_{i=1}^{n} [(\epsilon_i - X_i u)^2 - \epsilon_i]^2 + \lambda_n \|u + \beta\|_1$

Then $\hat{u} = \text{argmin} \ V_n(u)$

It can be verified that the KKT condition is equivalent to

$$C_{11}(\sqrt{n}\hat{u}_A) - W_A = \frac{\lambda_n}{2\sqrt{n}} \text{sign}(\beta_A),$$ \hspace{1cm} (1)

$$-\frac{\lambda_n}{2\sqrt{n}} \mathbf{1} \leq C_{21}(\sqrt{n}\hat{u}_A) - W_A c \leq \frac{\lambda_n}{2\sqrt{n}} \mathbf{1},$$ \hspace{1cm} (2)

$$|\hat{u}_A| < |\beta_A|$$ \hspace{1cm} (3)

We now show that on $A_n \cap B_n$, a solution \hat{u} satisfying (1) and $\hat{u}_A c = 0$ must satisfy (2) and (3), and hence $\hat{\beta} = \hat{u} + \beta$ is a LASSO estimator.

In fact, LASSO estimator is unique.

First, (1) and A_n holds imply (3).

Second, (1) and B_n holds and the SIC imply (2).

Finally, a sufficient condition for $\text{sign}(\hat{\beta}) = \text{sign}(\beta)$ is $|\hat{u}_A| < |\beta_A|$ and $\hat{u}_A c = 0$.

This proves that if $A_n \cap B_n$ holds, $\text{sign}(\hat{\beta}) = \text{sign}(\beta)$.
Theorem (strong sign consistency of LASSO)

(i) Assume that ε_i’s are iid with $E(\varepsilon_i^{2k}) < \infty$ for an integer $k > 0$, and there are positive constants $c_1 < c_2 \leq 1$, M_1, M_2, M_3, such that

C1: $n^{-1}\|Z_j\|^2 \leq M_1$ for any $j = 1,...,p$, Z_j is the jth column of Z;

C2: The smallest eigenvalue of $C_{11} \geq M_2$;

C3: $q = O(n^{c_1})$;

C4: $n^{(1-c_2)/2}\min_{j \in \mathcal{A}} |\beta_j| \geq M_3$;

C5: $p = o(n^{(c_2-c_1)k})$.

Under SIC, if λ is chosen with $\lambda = o(n^{1+c_2-c_1}/2)$ and $pn^k/\lambda^{2k} = o(1)$, then

$$P\left(\text{sign}(\hat{\beta}) = \text{sign}(\beta)\right) \geq 1 - O(pn^k/\lambda^{2k})$$

(ii) Assume that ε_i’s are iid normal and C1-C4 hold, and

C5a: $p = O(e^{nc_3})$ with a constant c_3, $0 \leq c_3 < c_2 - c_1$.

Under SIC, if λ is chosen with $\lambda \propto n^{(1+c_4)/2}$, c_4 is a constant, $c_3 < c_4 < c_2 - c_1$, then

$$P\left(\text{sign}(\hat{\beta}) = \text{sign}(\beta)\right) \geq 1 - O(e^{nc_3})$$
Proof.

\(z_j = \) the \(j \)th component of \(C_{11}^{-1} W_\mathcal{A} \), \(j = 1, \ldots, q \)

\(\zeta_j = \) the \(j \)th component of \(C_{21} C_{11}^{-1} W_\mathcal{A} - W_\mathcal{A}^c \), \(j = 1, \ldots, p - q \)

\(b_j = \) the \(j \)th component of \(C_{11}^{-1} \text{sign}(\beta_\mathcal{A}) \), \(j = 1, \ldots, q \)

The condition \(E(\varepsilon_i^{2k}) < \infty \) implies that \(E(z_j^{2k}) < \infty \) and \(E(\zeta_j^{2k}) < \infty \)

By the lemma,

\[
P \left(\text{sign}(\hat{\beta}) \neq \text{sign}(\beta) \right) \leq 1 - P(A_n \cap B_n)
\]

\[
\leq \sum_{j \in \mathcal{A}} P \left(|z_j| \geq \sqrt{n|\beta_j| - \lambda b_j / 2\sqrt{n}} \right)
\]

\[
+ \sum_{j \in \mathcal{A}^c} P \left(|\zeta_j| \geq \lambda \eta_j / 2\sqrt{n} \right)
\]

\[
\leq \sum_{j \in \mathcal{A}} \frac{E|z_j|^{2k}}{n^k \beta_j^{2k}} + \sum_{j \in \mathcal{A}^c} \frac{E|\zeta_j|^{2k}}{(2\lambda \eta_j)^{2k} / n^k}
\]

\[
= qO(n^{-kc_2}) + (p - q)O(n^k / \lambda^{2k})
\]

\[
= o(pn^k / \lambda^{2k}) + O(pn^k / \lambda^{2k}) = O(pn^k / \lambda^{2k})
\]

This proves (i).
For (ii), the normality of ε_j implies that z_j and ζ_j are normal.
Instead of using Markov inequality, using $1 - \Phi(t) \leq t^{-1} e^{-t^2/2}$ leads to the result (ii).

Advantage and disadvantage of using LASSO

- Variable selection and parameter estimation at the same time
- It is very good in estimation and prediction, but it is often too conservative in variable selection.
- Need SIC.
- Population version of SIC.

\[|\Sigma_{21} \Sigma_{11}^{-1} \text{sign}(\beta_{\mathcal{A}})| \leq 1 - \eta, \quad \Sigma_{kj} \text{ are submatrices of } \Sigma = \text{Var}(z_j), \text{ if } z_j's \text{ are iid, } z_j \text{ is the } j\text{th row of } Z. \]

Improvements

- Adaptive LASSO
- Group LASSO
- Elastic net (other penalties)
- LASSO plus thresholding (ridge regression plus thresholding)
Variable selection by thresholding

Can we do variable selection using p-values?
Or, can we simply select variables by using the values $\hat{\beta}_j, j = 1, \ldots, p$?
Here $\hat{\beta}_j$ is the jth component of $\hat{\beta}$, the least squares estimator of β.
For simplicity, assume that $X|Z \sim N(Z\beta, \sigma^2 I)$.
Then
\[
\hat{\beta}_j - \beta_j = \sum_{i=1}^{n} l_{ij} \varepsilon_i \bigg| Z \sim N \left(0, \sigma^2 \sum_{i=1}^{n} l_{ij}^2 \right)
\]
where ε_i and l_{ij} are the ith components of $\varepsilon = X - Z\beta$ and $(Z^\tau Z)^{-1} z_i$.
z_j is the jth row of Z.
Because
\[
1 - \Phi(t) \leq \frac{\sqrt{2\pi}}{t} e^{-t^2/2}, \quad t > 0
\]
where Φ is the standard normal cdf,
\[
P \left(|\hat{\beta}_j - \beta_j| > t \sqrt{\text{var}(\hat{\beta}|Z)} \bigg| Z \right) \leq \frac{2\sqrt{2\pi}}{t} e^{-t^2/2}, \quad t > 0
\]
Let J_j be the p-vector whose jth component is 1 and other components are 0:
\[
l_{ij}^2 = [J_j^c (Z^\tau Z)^{-1} z_i]^2 \leq J_j^c (Z^\tau Z)^{-1} J_j z_i^c (Z^\tau Z)^{-1} z_i
\]
\[\sum_{i=1}^{n} l_{ij}^2 \leq c_j \sum_{i=1}^{n} z_i^\tau (Z^\tau Z)^{-1} z_i = pc_j \leq p/\eta_n \]

where \(c_j \) is the \(j \)th diagonal element of \((Z^\tau Z)^{-1}\) and \(\eta_n \) is the smallest eigenvalue of \(Z^\tau Z \).

Thus, for any \(j \),

\[P \left(|\hat{\beta}_j - \beta_j| > t \sigma \sqrt{p/\eta_n} \mid Z \right) \leq \frac{2\sqrt{2\pi}}{t} e^{-t^2/2}, \quad t > 0 \]

and (letting \(t = a_n/(\sigma \sqrt{p/\eta_n}) \))

\[P \left(|\hat{\beta}_j - \beta_j| > a_n \mid Z \right) \leq Ce^{-a_n^2 \eta_n/(2\sigma^2 p)} \]

for some constant \(C > 0 \),

\[P \left(\max_{j=1,\ldots,p} |\hat{\beta}_j - \beta_j| > a_n \mid Z \right) \leq pCe^{-a_n^2 \eta_n/(2\sigma^2 p)} \]

Suppose that \(p/n \to 0 \) and \(p/(\eta_n \log n) \to 0 \) (typically, \(\eta_n = O(n) \)). Then, we can choose \(a_n \) such that \(a_n \to 0 \) and \(a_n^2 (\eta_n \log n/p) \to \infty \) such that
\[P \left(\max_{j=1,\ldots,p} |\hat{\beta}_j - \beta_j| > ca_n \mid Z \right) = O(n^{-s}) \]

for any \(c > 0 \) and some \(s \geq 1 \); e.g.,

\[a_n = M \left(\frac{p}{\eta_n \log n} \right)^{\alpha} \]

for some constants \(M > 0 \) and \(\alpha \in (0, \frac{1}{2}) \).

What can we conclude from this?

Let

\[\mathcal{A} = \{ j : \beta_j \neq 0 \} \quad \text{and} \quad \hat{\mathcal{A}} = \{ j : |\hat{\beta}_j| > a_n \} \]

That is, \(\hat{\mathcal{A}} \) contains the indices of variables we select by thresholding \(|\hat{\beta}_j| \) at \(a_n \).

Selection consistency:

\[P \left(\hat{\mathcal{A}} \neq \mathcal{A} \mid Z \right) \leq P \left(|\hat{\beta}_j| > a_n, j \notin \mathcal{A} \mid Z \right) + P \left(|\hat{\beta}_j| \leq a_n, j \in \mathcal{A} \mid Z \right) \]

The first term on the right hand side is bounded by

\[P \left(\max_{j=1,\ldots,p} |\hat{\beta}_j - \beta_j| > a_n \mid Z \right) = O(n^{-s}) \]
On the other hand, if we assume that

$$\min_{j \in \mathcal{A}} |\beta_j| \geq c_0 a_n$$

for some $c_0 > 1$, then

$$P \left(|\hat{\beta}_j| \leq a_n, j \in \mathcal{A} \mid Z \right) \leq P \left(|\beta_j| - |\hat{\beta}_j - \beta_j| \leq a_n, j \in \mathcal{A} \mid Z \right)$$

$$\leq P \left(c_0 a_n - |\hat{\beta}_j - \beta_j| \leq a_n, j \in \mathcal{A} \mid Z \right)$$

$$\leq P \left(\max_{j=1,\ldots,p} |\hat{\beta}_j - \beta_j| \geq (c_0 - 1)a_n \mid Z \right)$$

$$= O(n^{-s})$$

Hence, we have consistency; in fact, the convergence rate is $O(n^{-s})$.

We can also obtain similar results by thresholding $|\hat{\beta}_j| / \sqrt{\sum_{i=1}^{n} l_{ij}^2}$.

This approach may not work if $p/n \not\to 0$.

If $p > n$, then $Z^\top Z$ is not of full rank.

There exist several other approaches for the case where $p > n$; e.g., we replace $(Z^\top Z)^{-1}$ by some matrix, or use ridge regression instead of LSE.