Chapter 4: Estimation in Parametric Models

Lecture 1: Bayesian approach

X is from a population in a parametric family &2 = {Py : 6 € ©}, where
© C %X for a fixed integer k > 1

Bayes approach

@ Optimal rules in the Bayesian approach, which is fundamentally
different from the classical frequentist approach that we have
been adopting

@ 6 is viewed as a realization of a random vector 6 € © whose prior
distribution is I1

@ Prior distribution: past experience, past data, or a statistician’s
belief (subjective)

@ Sample X € 2": from Py = Py, the conditional distribution of X
given 6 =6

@ Posterior distribution: updated prior distribution using observed
X=x
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How to construct the posterior?

By Theorem 1.7, the joint distribution of X and 6 is a probability
measure on 2" x © determined by

P(AxB):/BPX‘g(A)dI‘I(e), Ac By, Be %o

The posterior distribution is the conditional distribution Py, whose
existence is guaranteed by Theorem 1.7 a.s. x € 2~

Theorem 4.1 (Bayes formula)

Assume & = {Pyjy : 6 € ©} is dominated by a c-finite measure v and
fo(x) = dPyjg/dv is a Borel function on (2" x ©,0(%42 x %e)). Let T
be a prior distribution on ©. Suppose that m(x) = [g fo(x)dIM > 0.
(m(x) is called the marginal p.d.f. of X w.r.t. v)
(i) The posterior distribution Py, < 1 and
dPg|x/dl = fo(x)/m(x)

(i) f N < A and dIN/dA = =(0) for a o-finite measure A, then

dPp|x/dA = fo(x)7(6)/m(x)

If T is a sufficient statistic for 8, then the posterior depends only on T.
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Discrete X and 6: The Bayes formula in elementary probability
P(X =x|6 =6)P(6 = 6)

P(6=06|X=x)= ~ —
Yoeo P(X =x|6 = 6)P(6 = 0)

Remarks on the Bayesian approach

@ Without loss of generality we may assume m(x) > 0
If m(x)=0foran x € 2, then fg(x) =0a.s. I
Either x should be eliminated from 2" or the prior I is incorrect
and a new prior should be specified

@ The posterior Py, contains all the information we have about 6
@ Statistical decisions and inference should be made based on Py,
conditional on the observed X = x

@ In estimating 6, Py, can be viewed as a randomized decision rule
under the approach discussed in §2.3
After X = x is observed, Py is a randomized rule, which is a
probability distribution on the action space «/ = ©

@ The Bayesian method can be applied iteratively
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Definition 4.1 (Bayes action)

Let .7 be an action space in a decision problem and L(6,a) > 0 be a
loss function
For any x € 27, a Bayes actionw.r.t. [1is any §(x) € </ such that

E[L(6,8(x))|X = x] = min E[L(6,a)|X = X]

where the expectation is w.r.t. the posterior distribution Pg)

REINEE
@ The Bayes action minimizes the posterior expected loss
@ x is fixed, although &(x) depends on x
@ The Bayes action depends on the prior
@ The Bayes action depends on the loss function

@ The existence and uniqueness of Bayes actions are discussed in
Proposition 4.1

@ If 8(x) is a measurable function of x, then 4(X) is a

nonrandomized decision rule under the frequentist approach
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Example 4.1: the estimation of ¥ = g(6)

Assume [g[g(8)]?dN < =, </ = the range of g(#), and
L(6,a) = [g(8) — a]? (squared error loss).
Using the argument in Example 1.22, we obtain the Bayes action

5(x) = Jo9(0)fa(x)dN _ Jog(8)fe(x)dN
= m(x) B f@ fo(x)d )

which is the posterior expectation of g(6), given X = x.

|

A more specific case

9(8) = 6/ for some integer j > 1

fo(Xx) = e—"exl{omgw}(x)/x! (the Poisson distribution) with 6 > 0
M has a Lebesgue p.d.f. 7(6) = 6% e}, (6)/[T () ¥*]

(the gamma distribution I'( e, y) with known a > 0 and y > 0)
Then, for x =0,1,2,..., and some function c¢(x),

fo(x)7(6)/m(x) = c(x)0** 4~ e~ D/T}4 (0),
This is the gamma distribution I'(x + a,y/(y+1)).
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Without actually working out the integral m(x), we know that
c(x)=(1+v 1) /T(x+a),
§(x) = o(x) / T gitxta-1g-6r)/rgg,
0

The integrand is proportional to the p.d.f. of the gamma distribution
FJj+x+a,v/(y+1)).
Hence

8(x) = cO)M(j+x+a)/(1+y Tytx+a
= (j+x+a—1)---(x+a)/(1+y ).

In particular, 8(x) = (x+a)y/(y+1) when j=1.

|

Conjugate prior
An interesting phenomenon is that the prior and the posterior are in the
same parametric family of distributions.
Such a prior is called a conjugate prior.
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@ Whether a prior is conjugate involves a pair of families, the family
P = {fy : 6 € ©} and the family from which I is chosen.

@ Example 4.1 shows that the Poisson family and the gamma family
produce conjugate priors.

@ Many pairs of families in Table 1.1 (page 18) and Table 1.2 (pages
20-21) produce conjugate priors.

@ Under a conjugate prior, Bayes actions often have explicit forms
(in x) when the loss function is simple.

@ Even under a conjugate prior, the integral in 6(x) in Example 4.1
involving a general g may not have an explicit form.

@ In general, numerical methods have to be used in evaluating the
integrals in 8(x) under general loss functions.

Example 2.25/4.8

Xi,...,Xp i.i.d. ~ N(u,02), where u € % is unknown and o2 is known.
Let 7(u) be the pdf of N(uo, 02).

Since X ~ N(u,c?/n) is sufficient, we treat X = X as the observation.
UW-Madison (Statistics) Stat 710 Lecture 1 Jan 2019 7/16




. (X —p)? (1 — 1o)?

fu(X)m(1) = exp < 262/n exp 7270'5
1{n 1)\, nx  Wo nx? us
:eXp(—2 <+2)[.i _2<02+62>“+G2+62

0% o} 0 0
— <_; [AyQ _2Bu+ c]) — exp <—; [A(u _BJ/AR - B2/A+ CD

Integrating out u, we obtain that the marginal density of X is

m(X) o< exp (—; [C— BZ/A}> o< exp (_2(5;)_(2;;:0_);?))

i.e., m(X) is the density of N(uo,02/n+ og).
Also, the posterior of u given X is N(B/A,A~").
Then the Bayes estimate of u under the squared error loss is
of c?/n
5(X)=B/A= °o___x
(x) =5/ oz +02/n Jrcrngoz/n“O
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Next, assume that both u and o are unknown, the prior for

o = (202)~" is the gamma distribution I'(e, y) with known o and 7, and
the prior for u is N(uo, 02 /®) (conditional on w).

Then the posterior p.d.f. of (1, ®) is proportional to

o(M1/2ta exp |y +(nf1)32+n(?fu)2+—‘“2‘;‘§)2] o},
From
n(x — p)? + Bt — (n+21?> u2—2(nx+ Lo, )u+nx2+
0

204

the posterior p.d.f. of (1, ®) is proportional to
()2 gy {— [qﬂ TW (n+ 21?) (u— g()‘()}ﬂ a)} ,

R & g 1 2
)‘(:7 and W= x+—— e = x)|*.
(%) P, 21 202 ( 265>[C( )]
0

Thus, the posterior of w is F(n/2+ o, (y~' + W)~1) and the posterior of
1 (given @ and x) is N(¢(x),[(2n+ o, 2)w] ).

Under the squared error loss, the Bayes estimate of u is {(x) and the
Bayes estimate of 62 = (2w)~"is (y ' + W)/(n+2x —2), n+ 20 > 2.
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Generalized Bayes action
The minimization in Definition 4.1 is the same as the minimizing

/eL(G,S(x))fg(x)dl'l:arrelig/@L(G,a)fg(x)dl'l

This is still defined even if I is not a probability measure but a o-finite
measure on ©, in which case m(x) may not be finite.

If N(©) # 1, N is called an improper prior.

0(x) is called a generalized Bayes action.

With no past information, one has to choose a prior subjectively.

In such cases, one would like to select a noninformative prior that tries
to treat all parameter values in © equitably.

A noninformative prior is often improper.

Example 4.3

Suppose that X = (X, ..., Xp) and X’s are i.i.d. from N(u,?), where

U €O C Zis unknown and ¢? is known.

Consider the estimation of ¥ = u under the squared error loss.

If © = [a, b] with — < a < b < oo, then a noninformative prior that treats
all parameter values equitably is the uniform distribution on [a, b
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If © = %, however, the corresponding “uniform distribution" is the
Lebesgue measure on %, which is an improper prior.
If I is the Lebesgue measure on %, then

(2”62)7n/2/

—o0

n

. 2
(u—a)zexp{—z(x'zdg)}du

i=1

00

By differentiating a and using Y7, (x; — )% = Y74 (X — X)? + n(x — u)?,
we obtain that

_ [anexp{—n(x—p)?/(26%)} du
~ e {-n(x—w)?/(20)} du
Thus, the sample mean is a generalized Bayes action under the

squared error loss.
From Example 2.25, if M is N(uo,0g), then the Bayes action is

5(x) =X.

o? N nos
Ho
2 nog + o2

5(x)

- nog+o

Note that in this case X is a limit of §(x) as o6& — .

~
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More detailed discussions of the use of improper priors can be found in
Jeffreys (1939, 1948, 1961), Box and Tiao (1973), and Berger (1985).

Hyperparameters and empirical Bayes

A Bayes action depends on the chosen prior with a vector & of
parameters called hyperparameters.

So far, hyperparameters are assumed to be known.

If the hyperparameter & is unknown, one way to solve the problem is to
estimate & using some historical data; the resulting Bayes action is
called an empirical Bayes action.

If there is no historical data, we may estimate & using data x and the
resulting Bayes action is also called an empirical Bayes action.

The simplest empirical Bayes method is to estimate & by viewing x as
a “sample" from the marginal distribution

Py (A) = /er\e(A)dﬂe\g, Ac By,

where MMy is a prior depending on & or from the marginal p.d.f.
m(x) = Jo fo(x)dN, if Pye has a p.d.f. f.
The method of moments can be applied to estimate &.
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Example 4.4

Let X = (Xj,...,Xp) and X;’s be i.i.d. with an unknown mean u € # and
a known variance o2.

Assume the prior M, has mean g and variance 6§, & = (1o, 6§).

To obtain a moment estimate of &, we need to calculate

/x1m(x)dx and /xfm(x)dx, X=(X1,..., Xn).
n Qn

These two integrals can be obtained without knowing m(x).
Note that

/ﬁnx1m(x)dx:/e/%nxﬁu(x)dxdl'lmg :/ﬂudﬂmg = Ho

and

/ x)dx = // X2fy(x)dxdM e = o2 +/ pldn,, e

:62+u§+0'g
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Thus, by viewing xi, ..., X, as a sample from m(x), we obtain the
moment estimates

PO ~ 1 _
lo=x and 6f=—Y (x—X)?-o0%
ni5
where X is the sample mean of x;’s.
Replacing uo and o7 in
2 2 2 2
c nog _ o5o
= 5, Mot 5 ° 2X and ? = .’g 2
nog +o nos+o nog +o

1:(x)
(Example 2.25) by [ip and 63, respectively, we find that the empirical
Bayes action under the squared error loss is simply the sample mean
x (which is the generalized Bayes action in Example 4.3).

@ Note that 65 in Example 4.4 can be negative.
@ Better empirical Bayes methods can be found, for example, in

Berger (1985, §4.5)

~
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Hierarchical Bayes

Instead of estimating hyperparameters, in the hierarchical Bayes
approach we put a prior on hyperparameters.

Let My ¢ be a (first-stage) prior with a hyperparameter vector £ and let
A be a prior on =, the range of &.

Then the “marginal” prior for 6 is defined by

I‘I(B):/EI‘I6|5(B)d/\(§), B e Fo.

If the second-stage prior A also depends on some unknown
hyperparameters, then one can go on to consider a third-stage prior.

In most applications, however, two-stage priors are sufficient, since
misspecifying a second-stage prior is much less serious than
misspecifying a first-stage prior (Berger, 1985, §4.6).

In addition, the second-stage prior can be noninformative (improper).
Bayes actions can be obtained in the same way as before.

Thus, the hierarchical Bayes method is simply a Bayes method with a
hierarchical prior.
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Remarks
@ Empirical Bayes methods deviate from the Bayes method since x
is used to estimate hyperparameters.
@ The hierarchical Bayes method is generally better than empirical
Bayes methods.

Suppose that Mg has a p.d.f. 74 (0) and the prior A has a p.d.f. 1(&)
w.r.t. a o-finite measure x.
Then the marginal prior of 6 has a p.d.f. (w.r.t. k)

7(0) = [ moje(6)A(E)dx

If X ~ N(u,2/n) with a known &2, the prior z(u|€) is the p.d.f. of
N(&,07) with a known o, and the prior of & is N(ug,72) with known pig
and 72, then the marginal prior p.d.f. of i is N(uo, o3 + 72).

This can be derived using the result in Example 2.25 previously
discussed with (X, 1) replaced by (u,&).

Because of the hierarchical prior, the prior of u has more variation.
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