Lecture 3: Minimaxity and admissibility

Consider estimators of a real-valued ¥ = g(0) based on a sample X
from Py, 6 € ©, under loss L and risk Rr(6) = E[L(T(X),0)]. J

Minimax estimator
An estimator & is minimax if supg Rs(60) = inf,y; 7supg R7(6)

Discussion

@ A minimax estimator can be very conservative and unsatisfactory.
It tries to do as well as possible in the worst case.

@ A unigue minimax estimator is admissible, since any estimator
better than a minimax estimator is also minimax.

@ We should find an admissible minimax estimator.

@ Different for UMVUE: if a UMVUE is inadmissible, it is dominated
by a biased estimator)

@ If a minimax estimator has some other good properties (e.g., itis a
Bayes estimator), then it is often a reasonable estimator.

v
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Minimax estimator
The following result shows when a Bayes estimator is minimax.

Theorem 4.11 (minimaxity of a Bayes estimator)

Let I be a proper prior on © and § be a Bayes estimator of ¢ w.r.t. I.
Suppose § has constant risk on ©p.

If N(©n) =1, then § is minimax.

If, in addition, & is the unique Bayes estimator w.r.t. I, then it is the
unique minimax estimator.

Let T be any other estimator of . Then

sup Ry(8) = / Rr(6)dn > / Rs(6)dM = sup Rs(6).
0cO ©n ©n 0cO

If 6 is the unique Bayes estimator, then the second inequality in the
previous expression should be replaced by > and, therefore, § is the
unique minimax estimator.

v
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Example 4.18

Let Xi,..., X, be i.i.d. binary random variables with P(X; =1) =p.
Consider the estimation of p under the squared error loss.

The UMVUE X has risk p(1 — p)/n which is not constant.

In fact, X is not minimax (Exercise 67).

To find a minimax estimator by applying Theorem 4.11, we consider
the Bayes estimator w.r.t. the beta distribution B(a, ) with known o
and B (Exercise 1):

8(X) = (a+nX)/(a+B+n).
Rs(p) = [np(1 — p) + (0. — otp — Bp)?] /(e + B + n)?.

To apply Theorem 4.11, we need to find values of « >0 and 8 > 0
such that Rs(p) is constant.

It can be shown that Rs(p) is constant if and only if &« = 8 = v/n/2,
which leads to the unique minimax estimator

T(X) = (nX +/n/2) /(n+v/n).
The risk of T is Ry = 1/[4(1 +v/n)?].
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Example 4.18 (continued)

Note that T is a Bayes estimator and has some good properties.
Comparing the risk of T with that of X, we find that T has smaller risk
if and only if

1 1 1 1
pe<2—2,/1—(1+’\’m)z, 2+2'/1_(1+%)2>'

Thus, for a small n, T is better (and can be much better) than X for
most of the range of p (Figure 4.1).

When n — «, the above interval shrinks tov!ard %

Hence, for a large (and even moderate) n, X is better than T for most
of the range of p (Figure 4.1).

The limit of the asymptotic relative efficiency of T w.r.t. X is 4p(1 —p),
which is always smaller than 1 when p # } and equals 1 when p = J.
Minimaxity depends strongly on the loss function.

Under the loss function L(p,a) = (a— p)?/[p(1 — p)], X has constant
risk and is the unique Bayes estimator w.r.t. the uniform prior on (0,1).
By Theorem 4.11, X is the unique minimax estimator.

The risk, however, of T is 1/[4(1 ++/n)?p(1 — p)], which is unbounded.

UW-Madison (Statistics) Stat 710 Lecture 3 Jan 2019 4/15



Figure 4.1. mse’s of X (curve) and T(X) (straight line)

in Example 4.18
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How to find a minimax estimator?

Candidates for minimax: estimators having constant risks.
Theorem 4.11 (minimaxity of a Bayes estimator)

A limit of Bayes estimators

In many cases a constant risk estimator is not a Bayes estimator (e.g.,
an unbiased estimator under the squared error loss), but a limit of
Bayes estimators w.r.t. a sequence of priors.

The next result may be used to find a minimax estimator.

Theorem 4.12

Let M, j=1,2,..., be a sequence of priors and r; be the Bayes risk of a
Bayes estimator of ¢ w.r.t. ;.

Let T be a constant risk estimator of 9.

If liminf;r; > R, then T is minimax.

Although Theorem 4.12 is more general than Theorem 4.11 in finding
minimax estimators, it does not provide uniqueness of the minimax

estimator even when there is a unique Bayes estimator w.r.t. each I1;.
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Example 2.25

Let Xj,..., X, be i.i.d. components having the N(u, c?) distribution with
an unknown u = 6 € % and a known 62

If the prior is N(uo,cro) then the posterlor of 6 given X = x is
N(u.(x),c?) with

2 2 2
(o] no? o050
0 < 2 0
pe(X) = —5——SMo+ —% X and CC=—07
n60+c7 nog+o noy +o

We now show that X is minimax under the squared error loss.
For any decision rule T,

sup Rr(6 / Ry (6)d(6 / R,
0cx

— E{6 - w12} = E{E{[6 —u»«(X)lle}} — ()=
Since this result is true for any of >0 and ¢ — 62/n as 6g — o,

2
sup Rr(6) > &= sup Rx(0),
0c# n 0c#
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Example 2.25 (continued

where the equality holds because the risk of X under the squared error
loss is 62 /n and independent of 6 = .

Thus, X is minimax.

To discuss the minimaxity of X in the case where &2 is unknown, we
need the following lemma.

Lemma 4.3
Let ©¢ be a subset of © and T be a minimax estimator of ¥ when ©g is
the parameter space. Then T is a minimax estimator if

sup R7(0) = sup Rr(6).
CISC) CISSH

Proof

If there is an estimator T with supg.g R7,(0) < supgco RT(0), then
sup Rr,(6) < sup Rr,(6) < sup Rr(6) = sup Rr(6),
60O CISC] CISC] CISION)

which contradicts the minimaxity of T when ©q is the parameter space.

Hence, T is minimax when © is the parameter space.
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Example 4.19

Let Xi,..., X, be i.i.d. from N(u,5?) with unknown 6 = (u, 6?).
Consider the estimation of u under the squared error loss.
Suppose first that © = #Z x (0, c] with a constant ¢ > 0.
Let Oy =Z % {C}
From Example 2.25, X is a minimax estimator of u when the
parameter space is Q.
By Lemma 4.3, X is also minimax when the parameter space is ©.
Although 62 is assumed to be bounded by ¢, the minimax estimator X
does not depend on c.
Consider next the case where © = % x (0,), i.e., 62 is unbounded.
Let T be any estimator of . For any fixed ¢,
2

- < sup Ar(6),
n  uez
since 62/n is the risk of X that is minimax when 2 is known.
Letting 62 — oo, we obtain that sup, R7(6) =  for any estimator T.
Thus, minimaxity is meaningless (any estimator is minimax).
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Admissibility

The following is another result to show admissibility. J

Theorem 4.14 (Admissibility in one-parameter exponential

families)

Suppose that X has the p.d.f. ¢(6)e? ¥ w.r.t. a o-finite measure v,
where T(x) is real-valued and 6 € (6_,6,) C Z%.

Consider the estimation of ¥ = E[T(X)] under the squared error loss.
Let A > 0 and y be known constants and let

T X)=(T+yA)/(1+1).

Then a sufficient condition for the admissibility of T, , is that

o @7 o oo %=

where 6, € (6_,6).

/9+ e*'}’le 6o e*?de
6

v
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@ Theorem 4.14 provides a class of admissible estimators.

@ The reason why T, , is considered is that it is often a Bayes
estimator w.r.t. some prior; see Examples 2.25, 4.1, 4.7, and 4.8.

@ Using this theorem and Theorem 4.13, we can obtain a class of
minimax estimators.

@ Although the proof of this theorem is more complicated than that
of Theorem 4.3, the application of Theorem 4.14 is typically easier.

@ To find minimax estimators, we may use the following result.

Corollary 4.3

Assume that X has the p.d.f. as described in Theorem 4.14 with

0_ = —ccand 6 = oco.

(i) As an estimator of & = E(T), T(X) is admissible under the squared
error loss and the loss (a— )2/ Var(T).

(i) T is the unique minimax estimator of ¥ under the loss

(a— )2/ Var(T).
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Example 4.20
Let X1, ..., X, be i.i.d. from N(0,5?) with an unknown o2 > 0 and let
Y=Y X,

Consider the estimation of 2.

The risk of Y/(n+2) is a constant under the loss (a— 62)?/c*.
We now apply Theorem 4.14 to show that Y/(n+2) is admissible.
Note that the joint p.d.f. of X;’s is of the form ¢(6)e®7(*) with

8 = —n/(46?), ¢(8) = (—26/n)"/?, T(X) =2Y/n, 6_ = —e, and
9+ = O

By Theorem 4.14, T, , = (T +yA)/(1+ 1) is admissible under the
squared error loss if, for some ¢ > 0,

/_C o TA0 <—29> k2 do — /C STA09-1/240 _ o
— n 0
This means that T , is admissible if y=0and A =2/n, orif y> 0 and
A>2/n.

In particular, 2Y/(n+2) is admissible for estimating
E(T)=2E(Y)/n= 202, under the squared error loss.
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Example 4.20 (continued)

It is easy to see that Y/(n+2) is then an admissible estimator of o2
under the squared error loss and the loss (a— 62)?/c*.

Hence Y/(n-+2) is minimax under the loss (a— 62)?/c*.

Note that we cannot apply Corollary 4.3 directly since 6, = 0.

| \

Example 4.21

Let Xi,..., X, be i.i.d. from the Poisson distribution P(6) with an
unknown 6 > 0.
The joint p.d.f. of Xj’s w.r.t. the counting measure is

(X1 I.. 'Xn!)_1 e—neen)_(loge

For n = nlog 6, the conditions of Corollary 4.3 are satisfied with
T(X)=X.

Since E(T) =6 and Var(T) = 6/n, by Corollary 4.3, X is the unique
minimax estimator of @ under the loss function (a— 6)2/6.

A\
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Exercise 37 (#4.83)

Let X be an observation from the distribution with Lebesgue density
Sc(0)e® X, 18] < 1.

(i) Show that ¢(8) =1 — 62.

(i) Show thatif 0 < o < % then aX + B is admissible for estimating
E(X) under the squared error loss.

Solution
(i) Note that

T _ 1 6x—|x|
c®) 2 /e ax

9x+xdx+/ ex XdX>

( o~ (1+6) de+/ (- e)xdx>

1
1+ 9 1-02
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Solution (continued)
(i) Consider first « > 0. Let a = (1 +A)~" and B = yA /(1 + ).
0 —YA6 1 —YA6
/ e e[t e
-1 (1-62)4 o (1—62)*
if and only if A > 1, i.e., o < .

Hence, aX + f is an admissible estimator of £(X) when 0 < & < J.
Consider next a = 0.

E(X) = 1 26 </ xe9X+de+/ xeex"dx>
— 0

1-6° *—(1+46) 2 —(1-6)x
= —/ xe dx+/ xe ax
2 0 0

B 1—92<1+9 1—9> 26

2 \1-6 1+6) 1-62

which takes any value in (—oo, ).
Hence, the constant estimator f is an admissible estimator of E(X).
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