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Lecture 4: Simultaneous estimation and shrinkage
estimators

Simultaneous estimation
Estimation of a p-vector ϑ of parameters (functions of θ ) under the
decision theory approach.
A vector-valued estimator T (X ) can be viewed as a decision rule
taking values in the action space Θ̃ (the range of ϑ ).

Difference from estimating ϑ component-by-component
A single loss function L(ϑ ,a), instead of p loss functions

Squared error loss
A natural generalization of the squared error loss is

L(θ ,a) = ‖a−ϑ‖2 =
p

∑
i=1

(ai −ϑi)
2,

where ai and ϑi are the i th components of a and ϑ , respectively.
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Many results for the case of a real-valued ϑ can be extended to
simultaneous estimation in a straightforward manner:
Unbiasedness and UMVUE, Bayes, Minimaxity

Admissibility
Results for admissibility in simultaneous estimation, however, are quite
different.

A surprising result (Stein, 1956)
In estimating the vector mean θ = EX of a normally distributed
p-vector X (Example 4.25), X is inadmissible under the squared error
loss when p ≥ 3, although X is the UMVUE and minimax estimator.
Since any estimator better than a minimax estimator is also minimax,
there exist many (in fact, infinitely many) minimax estimators in
Example 4.25 when p ≥ 3, which is different from the case of p = 1 in
which X is the unique admissible minimax estimator (Example 4.6 and
Theorem 4.13).
For p = 2, Stein (1956) showed that X is admissible and minimax
under the squared error loss.
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James-Stein estimator
We start with the simple case where X is from Np(θ , Ip) with an
unknown θ ∈Rp.
James and Stein (1961) proposed the following class of estimators of
ϑ = θ having smaller risks than X when the squared error loss is used
and p ≥ 3:

δc = X − p−2
‖X −c‖2

(X −c),

where c ∈Rp is fixed and the choice of c is discussed later.

Extended James-Stein estimators
For the purpose of generalizing the results to more complicated
situations, we consider the following extension of the James-Stein
estimator:

δc,r = X − r(p−2)

‖X −c‖2
(X −c),

where c ∈Rp and r ∈R are known.

δc = δc,1
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Motivation 1: shrink the observation toward a given point c
Suppose it were thought a priori likely, though not certain, that θ = c.
Then we might first test a hypothesis H0 : θ = c and estimate θ by c if
H0 is accepted and by X otherwise.
The best rejection region has the form ‖X −c‖2 > t for some constant
t > 0 (see Chapter 6) so that we might estimate θ by

I(t ,∞)(‖X −c‖2)X + [1− I(t ,∞)(‖X −c‖2)]c.

δc,r is a smoothed version of this estimator, since, for some function ψ,

δc,r = ψ(‖X −c‖2)X + [1−ψ(‖X −c‖2)]c

Any estimator having this form is called a shrinkage estimator.

Motivation 2: empirical Bayes estimator
In view of Example 2.25, a Bayes estimator of θ is of the form

δ = (1−B)X + Bc,

where c is the prior mean of θ and B involves prior variances.
1−B is “estimated" by ψ(‖X −c‖2)
δc,r can be viewed as an empirical Bayes estimator (§4.1.2).
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Theorem 4.15 (Risks of shrinkage estimators)
Suppose that X is from Np(θ , Ip) with p ≥ 3. Then, under the squared
error loss, the risks of the following shrinkage estimators of θ ,

δc,r = X − r(p−2)

‖X −c‖2
(X −c),

where c ∈Rp and r ∈R are known, are given by

Rδc,r (θ) = p− (2r − r2)(p−2)2E(‖X −c‖−2).

The risk of δc,r is smaller than p, the risk of X for every value of θ

when p ≥ 3 and 0 < r < 2.
δc = δc,1 is better than any δc,r with r 6= 1, since the factor 2r − r2

is maximized at r = 1 for 0 < r < 2.

Proof
We only need to show the case of c = 0, since, if Z = X −c,

Rδc,r (θ) = E‖δc,r −E(X )‖2 = E
∥∥∥∥[1− r(p−2)

‖Z‖2

]
Z −E(Z )

∥∥∥∥2

.
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Proof (continued)

Let h(θ) = Rδ0,r (θ), g(θ) = p− (2r − r2)(p−2)2E(‖X‖−2), and

πα (θ) = (2πα)−p/2e−‖θ‖
2/(2α), which is the p.d.f. of Np(0,αIp).

To show g(θ) = h(θ), we first establish∫
Rp

g(θ)πα (θ)dθ =
∫

Rp
h(θ)πα (θ)dθ , α > 0.

Note that the distribution of X can be viewed as the conditional
distribution of X given ~θ = θ , where ~θ has the Lebesgue p.d.f. πα (θ).∫

Rp
g(θ)πα (θ)dθ = p− (2r − r2)(p−2)2E [E(‖X‖−2|~θ)]

= p− (2r − r2)(p−2)2E(‖X‖−2)

= p− (2r − r2)(p−2)/(α + 1),

where the expectation in the second line of the previous expression is
w.r.t. the joint distribution of (X ,~θ) and the last equality follows from the
fact that the marginal distribution of X is Np(0,(α + 1)Ip), ‖X‖2/(α + 1)
has the chi-square distribution χ2

p and E(‖X‖−2) = 1/[(p−2)(α + 1)].
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Proof (continued)

Let B = 1/(α + 1) and B̂ = r(p−2)/‖X‖2.∫
Rp

h(θ)πα (θ)dθ = E‖(1− B̂)X −~θ‖2

= E{E [‖(1− B̂)X −~θ‖2|X ]}
= E{E [‖~θ −E(~θ |X )‖2|X ]

+‖E(~θ |X )− (1− B̂)X‖2}
= E{p(1−B) + (B̂−B)2‖X‖2}
= E{p(1−B) + B2‖X‖2

−2Br(p−2) + r2(p−2)2‖X‖−2}
= p− (2r − r2)(p−2)B,

where the fourth equality follows from the fact that the conditional
distribution of ~θ given X is Np

(
(1−B)X ,(1−B)Ip

)
and the last equality

follows from E‖X‖−2 = B/(p−2) and E‖X‖2 = p/B.
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Proof (continued)
This proves ∫

Rp
g(θ)πα (θ)dθ =

∫
Rp

h(θ)πα (θ)dθ , α > 0.

h(θ) and g(θ) are expectations of functions of ‖X‖2, θ τX , and ‖θ‖2.
Make an orthogonal transformation from X to Y such that
Y1 = θ τX/‖θ‖, EYj = 0 for j > 1, and Var(Y ) = Ip.
Then h(θ) and g(θ) are expectations of functions of Y1, ∑

p
j=2 Y 2

j , and
‖θ‖2.
Thus, both h and g are functions of ‖θ‖2.
For the family of p.d.f.’s {πα (θ) : α > 0}, ‖θ‖2 is a complete and
sufficient “statistic".
Hence,

∫
g(θ)πα (θ)dθ =

∫
h(θ)πα (θ)dθ and the fact that h and g are

functions of ‖θ‖2 imply that h(θ) = g(θ) a.e. w.r.t. Lebesgue measure.
From Theorem 2.1, both h and g are continuous functions of ‖θ‖2 and,
therefore, h(θ) = g(θ) for all θ ∈Rp.
This completes the proof.
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The improvement
To see that δc may have a substantial improvement over X in terms of
risks, consider the special case where θ = c.

Since ‖X −c‖2 has the chi-square distribution χ2
p when θ = c,

E‖X −c‖−2 = (p−2)−1

and

Rδc,1(θ) = p− (2r − r2)(p−1)2E(‖X −c‖−2)

= p− (p−2)2/(p−2)

= 2

The ratio RX (θ)/Rδc (θ) equals p/2 when θ = c and can be
substantially larger than 1 near θ = c when p is large.
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Minimaxity and admissibility of δc

Since X is minimax (Example 4.25), δc,r is minimax provided that p ≥ 3
and 0 < r < 2.
Unfortunately, the James-Stein estimator δc with any c is also
inadmissible.
It is dominated by

δ
+
c = X −min

{
1,

p−2
‖X −c‖2

}
(X −c)

see, for example, Lehmann (1983, Theorem 4.6.2).
This estimator, however, is still inadmissible.
An example of an admissible shinkage estimator is provided by
Strawderman (1971); see also Lehmann (1983, p. 304).
Although neither the James-Stein estimator δc nor δ

+
c is admissible, it

is found that no substantial improvements over δ
+
c are possible (Efron

and Morris, 1973).
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Extention of Theorem 4.15 to Var(X ) = σ2D

Consider the case where Var(X ) = σ2D with an unknown σ2 > 0 and a
known positive definite matrix D.
If σ2 is known, then an extended James-Stein estimator is

δ̃c,r = X − (p−2)rσ2

‖D−1(X −c)‖2
D−1(X −c).

Under the squared error loss, the risk of δ̃c,r is (exercise)

σ
2
[
tr(D)− (2r − r2)(p−2)2

σ
2E(‖D−1(X −c)‖−2)

]
.

When σ2 is unknown, we assume that there exists a statistic S2
0 such

that S2
0 is independent of X and S2

0/σ2 has the chi-square distribution
χ2

m (see Example 4.27).
Replacing rσ2 in δ̃c,r by σ̂2 = tS2

0 with a constant t > 0 leads to the
following extended James-Stein estimator:

δ̃c = X − (p−2)σ̂2

‖D−1(X −c)‖2
D−1(X −c).
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The risk of δ̃c

From the risk formula for δ̃c,r and the independence of σ̂2 and X , the
risk of δ̃c (as an estimator of ϑ = EX ) is

R
δ̃c

(θ) = E
[
E(‖δ̃c−ϑ‖2|σ̂2)

]
= E

[
E(‖δ̃c,(σ̂2/σ2)−ϑ‖2|σ̂2)

]
= σ

2E
{

tr(D)− [2(σ̂
2/σ

2)− (σ̂
2/σ

2)2](p−2)2
σ

2
κ(θ)

}
= σ

2
{

tr(D)− [2E(σ̂
2/σ

2)−E(σ̂
2/σ

2)2](p−2)2
σ

2
κ(θ)

}
= σ

2
{

tr(D)− [2tm− t2m(m + 2)](p−2)2
σ

2
κ(θ)

}
,

where θ = (ϑ ,σ2) and κ(θ) = E(‖D−1(X −c)‖−2).
Since 2tm− t2m(m + 2) is maximized at t = 1/(m + 2), replacing t by
1/(m + 2) leads to

R
δ̃c

(θ) = σ
2
[
tr(D)−m(m + 2)−1(p−2)2

σ
2E(‖D−1(X −c)‖−2)

]
.

which is smaller than σ2tr(D) (the risk of X ) for any fixed θ , p ≥ 3.
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Example 4.27
Consider the general linear model

X = Zβ + ε,

with ε ∼ Np(0,σ2), p ≥ 3, and a full rank Z ,
Consider the estimation of ϑ = β under the squared error loss.
From Theorem 3.8, the LSE β̂ is from N(β ,σ2D) with a known matrix
D = (Z τZ )−1

S2
0 = SSR is independent of β̂

S2
0/σ2 has the chi-square distribution χ2

n−p.
Hence, from the previous discussion, the risk of the shrinkage
estimator

β̂ − (p−2)σ̂2

‖Z τZ (β̂ −c)‖2
Z τZ (β̂ −c)

is smaller than that of β̂ for any β and σ2, where c ∈Rp is fixed and
σ̂2 = SSR/(n−p + 2).
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Other shinkage estimators
From the previous discussion, the James-Stein estimators improve X
substantially when we shrink the observations toward a vector c that is
near ϑ = EX .
Of course, this cannot be done since ϑ is unknown.
One may consider shrinking the observations toward the mean of the
observations rather than a given point;
that is, one may obtain a shrinkage estimator by replacing c in δc,r by
X̄Jp, where X̄ = p−1

∑
p
i=1 Xi and Jp is the p-vector of ones.

However, we have to replace the factor p−2 in δc,r by p−3.
This leads to shrinkage estimators

X − p−3
‖X − X̄Jp‖2

(X − X̄Jp)

and
X − (p−3)σ̂2

‖D−1(X − X̄Jp)‖2
D−1(X − X̄Jp).

These estimators are better than X (and, hence, are minimax) when
p ≥ 4, under the squared error loss.
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Other shrinkage estimators
The results discussed in this section for the simultaneous estimation of
a vector of normal means can be extended to a wide variety of cases

Brown (1966) considered loss functions that are not the squared
error loss
The results have also been extended to exponential families and
to general location parameter families.
Berger (1976) studied the inadmissibility of generalized Bayes
estimators of a location vector
Berger (1980) considered simultaneous estimation of gamma
scale parameters
Tsui (1981) investigated simultaneous estimation of several
Poisson parameters
See Lehmann (1983, pp. 320-330) for some further references.
The idea of shrinkage has now been used in problems with high
dimensions, such as LASSO.
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