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Lecture 6: Asymptotically efficient estimation

Asymptotic comparison

Let {θ̂n} be a sequence of estimators of θ based on a sequence of
samples {X = (X1, ...,Xn) : n = 1,2, ...}.
Suppose that as n→ ∞, θ̂n is asymptotically normal (AN) in the sense
that

[Vn(θ)]−1/2(θ̂n−θ)→d Nk (0, Ik ),

where, for each n, Vn(θ) is a k ×k positive definite matrix depending
on θ .
If θ is one-dimensional (k = 1), then Vn(θ) is the asymptotic variance
as well as the amse of θ̂n (§2.5.2).
When k > 1, Vn(θ) is called the asymptotic covariance matrix of θ̂n and
can be used as a measure of asymptotic performance of estimators.
If θ̂jn is AN with asymptotic covariance matrix Vjn(θ), j = 1,2, and
V1n(θ)≤ V2n(θ) (in the sense that V2n(θ)−V1n(θ) is nonnegative
definite) for all θ ∈Θ, then θ̂1n is said to be asymptotically more
efficient than θ̂2n.
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Remarks
Some estimators are not comparable under this criterion.
Since the asymptotic covariance matrices are unique only in the
limiting sense, we have to make our comparison based on limits.
When Xi ’s are i.i.d., Vn(θ) is usually of the form n−δ V (θ) for some
δ > 0 (= 1 in the majority of cases) and a positive definite matrix
V (θ) that does not depend on n.

Information inequality

If θ̂n is AN, it is asymptotically unbiased.
If Vn(θ) = Var(θ̂n), then, under some regularity conditions, it follows
from Theorem 3.3 that we have the following information inequality

Vn(θ)≥ [In(θ)]−1,

where, for every n, In(θ) is the Fisher information matrix for X of size n.
The information inequality may lead to an optimal estimator

Unfortunately, when Vn(θ) is an asymptotic covariance matrix, the
information inequality may not hold (even in the limiting sense), even if
the regularity conditions in Theorem 3.3 are satisfied.
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Example 4.38 (Hodges)

Let X1, ...,Xn be i.i.d. from N(θ ,1), θ ∈R, and X̄ be the sample mean.
The Fisher information is In(θ) = n.
By Proposition 3.2, all conditions in Theorem 3.3 are satisfied.
By the CLT, √

n(X̄ −θ)→d N(0,1)

In fact, X̄ achieves the information lower bound, Var(X̄ ) = n−1.
For a fixed constant t , define

θ̂n =

{
X̄ |X̄ | ≥ n−1/4

tX̄ |X̄ |< n−1/4

Consider first θ 6= 0.
By the SLLN, X̄ →a.s θ 6= 0, hence,

P(|X̄ |< n−1/4)→ 0

This means that the asymptotic distribution of θ̂n−θ is the same as
that of X̄ −θ , i.e.,

√
n(θ̂n−θ)→d N(0,1), θ 6= 0
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Consider now θ = 0.
By the CLT,

√
nX̄ →d N(0,1) and hence

P(|X̄ |< n−1/4) = P(
√

n|X̄ |< n1/4)

= Φ(n1/4)−Φ(−n1/4) + o(1)

→ 1

where Φ is the c.d.f. of N(0,1).
It shows that the asymptotic distribution of θ̂n is the same as that of tX̄ ,
i.e., √

nθ̂n→d N(0, t2) θ = 0

If t2 < 1, θ̂n is asymptotically more efficient than X̄ when θ = 0.

Points in Θ at which the information inequality does not hold are called
points of superefficiency.
Example 4.38 shows that θ = 0 is a single spperefficiency point.
However, the following result, due to Le Cam (1953), shows that, for
i.i.d. Xi ’s, the set of superefficiency points is of Lebesgue measure 0,
under regularity conditions.
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Theorem 4.16
Let X1, ...,Xn be i.i.d. from a p.d.f. fθ w.r.t. a σ -finite measure ν on
(R,B), where θ ∈Θ and Θ is an open set in Rk .
Suppose that for every x in the range of X1, fθ (x) is twice continuously
differentiable in θ and satisfies

∂

∂θ

∫
ψθ (x)dν =

∫
∂

∂θ
ψθ (x)dν

for ψθ (x) = fθ (x) and = ∂ fθ (x)/∂θ ; the Fisher information matrix

I1(θ) = E
{

∂

∂θ
log fθ (X1)

[
∂

∂θ
log fθ (X1)

]τ}
is positive definite; and for any given θ ∈Θ, there exists a positive
number cθ and a positive function hθ such that E [hθ (X1)] < ∞ and

sup
γ:‖γ−θ‖<cθ

∥∥∥∥∂ 2 log fγ (x)

∂γ∂γτ

∥∥∥∥≤ hθ (x)

for all x in the range of X1, where ‖A‖=
√

tr(AτA) for any matrix A.
If θ̂n is an estimator of θ (based on X1, ...,Xn) and is AN with
Vn(θ) = V (θ)/n, then there is a Θ0 ⊂Θ with Lebesgue measure 0
such that the information inequality holds if θ 6∈Θ0.
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Motivated by Theorem 4.16, we have the following definition.

Definition 4.4 (Asymptotic efficiency)
Assume that the Fisher information matrix In(θ) is well defined and
positive definite for every n.
A sequence of estimators {θ̂n} that is AN is said to be asymptotically
efficient or asymptotically optimal if and only if Vn(θ) = [In(θ)]−1.

Estimating a function of θ

Suppose that we are interested in estimating ϑ = g(θ), where g is a
differentiable function from Θ to Rp, 1≤ p ≤ k .
If θ̂n is AN, then, by Theorem 1.12(i), ϑ̂n = g(θ̂n) is asymptotically
distributed as Np(ϑ , [∇g(θ)]τVn(θ)∇g(θ)).
Thus, the information inequality becomes

[∇g(θ)]τVn(θ)∇g(θ)≥ [̃In(ϑ)]−1,

where Ĩn(ϑ) is the Fisher information matrix about ϑ contained in X .
If p = k and g is one-to-one, then

[̃In(ϑ)]−1 = [∇g(θ)]τ [In(θ)]−1
∇g(θ)
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and, therefore, ϑ̂n is asymptotically efficient if and only if θ̂n is
asymptotically efficient.
For this reason, in the case of p < k , ϑ̂n is considered to be
asymptotically efficient if and only if θ̂n is asymptotically efficient, and
we can focus on the estimation of θ only.

Asymptotic efficiency of MLE’s and RLE’s in the i.i.d. case
Under some regularity conditions, a root of the likelihood equation
(RLE), which is a candidate for an MLE, is asymptotically efficient.

Theorem 4.17
Assume the conditions of Theorem 4.16.

(i) Asymptotic existence and consistency.
There is a sequence of estimators {θ̂n} such that

P
(
sn(θ̂n) = 0

)
→ 1 and θ̂n→p θ ,

where sn(γ) = ∂ log`(γ)/∂γ.
(ii) Asymptotic efficiency.

Any consistent sequence θ̃n of RLE’s is asymptotically normal and
asymptotically efficient.

UW-Madison (Statistics) Stat 710, Lecture 6 Jan 2019 7 / 15



beamer-tu-logo

Remarks
If the RLE is unique, then it is consistent and asymptotically
efficient, whether or not it is MLE.
If there are more than one sequences of RLE, the theorem does
not tell which one is consistent and asymptotically efficient.
An MLE sequence is often consistent, but this needs to be verified.

Proof of Theorem 4.17 (i)

Let Bn(c) = {γ : ‖[In(θ)]1/2(γ−θ)‖ ≤ c} for c > 0 and ∂Bn(c) be the
boundary of Bn(c).
Since Θ is open, for each c > 0, Bn(c)⊂Θ for sufficiently large n.
If log`(γ)− log`(θ) < 0 for all γ ∈ ∂Bn(c), then log`(γ) has a local
maximum point θ̂n inside Bn(c) and θ̂n must satisfy sn(θ̂n) = 0.
This means{

there exists θ̂n such that sn(θ̂n) = 0 and θ̂n ∈ Bn(c)
}

⊃
{

log`(γ)− log`(θ) < 0 for all γ ∈ ∂Bn(c)
}
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For a proof of the measurability of θ̂n, see Serfling (1980, p147).
Since In(θ) = nI1(θ)→ 0 as n→ ∞, Bn(c) shrinks to {θ} as n→ ∞.
Hence, the asymptotic existence and consistency of θ̂n is implied by

lim
n→∞

P
{

log`(γ)− log`(θ) < 0 for all γ ∈ ∂Bn(c)
}

= 0

To prove this, we use the definition of limit.
For any ε > 0, we want to show that there exists n0 > 1 such that

P
{

log`(γ)− log`(θ) < 0 for all γ ∈ ∂Bn(c)
}
≥ 1− ε, n ≥ n0, (1)

where we choose c = 4
√

k/ε.
For γ ∈ ∂Bn(c), the Taylor expansion gives

log`(γ)− log`(θ) = (γ−θ)τsn(θ) +
1
2

(γ−θ)τ
∇sn(γ

∗)(γ−θ)

where
∇sn(γ) = ∂sn(γ)/∂γ

and γ∗ lies between γ and θ .
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Let λ = [In(θ)]1/2(γ−θ)/c.
Then ‖λ‖= 1 and for γ ∈ ∂Bn(c),

log`(γ)− log`(θ) = cλ
τ [In(θ)]−1/2sn(θ) (2)

+(c2/2)λ
τ [In(θ)]−1/2

∇sn(γ
∗)[In(θ)]−1/2

λ ,

Note that

E
‖∇sn(γ∗)−∇sn(θ)‖

n
≤ E max

γ∈Bn(c)

‖∇sn(γ)−∇sn(θ)‖
n

≤ E max
γ∈Bn(c)

∥∥∥∥∂ 2 log fγ (X1)

∂γ∂γτ
− ∂ 2 log fθ (X1)

∂θ∂θ τ

∥∥∥∥
→ 0, (3)

which follows from
(a) ∂ 2 log fγ (x)/∂γ∂γτ is continuous in a neighborhood of θ for any fixed
x ;
(b) Bn(c) shrinks to {θ};
and
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(c) under the regularity condition, for sufficiently large n,

max
γ∈Bn(c)

∥∥∥∥∂ 2 log fγ (X1)

∂γ∂γτ
− ∂ 2 log fθ (X1)

∂θ∂θ τ

∥∥∥∥≤ 2hθ (X1)

By the SLLN (Theorem 1.13) and Proposition 3.1,

n−1
∇sn(θ)→a.s. −I1(θ) (i.e.,‖n−1

∇sn(θ) + I1(θ)‖→a.s. 0).

These results, together with (2), imply that

log`(γ)− log`(θ) = cλ
τ [In(θ)]−1/2sn(θ)− [1 + op(1)]c2/2. (4)

Note that

max
λ

{λ τ [In(θ)]−1/2sn(θ)}= ‖[In(θ)]−1/2sn(θ)‖

Hence, (1) follows from (4) and

P
(
‖[In(θ)]−1/2sn(θ)‖< c/4

)
≥ 1− (4/c)2E‖[In(θ)]−1/2sn(θ)‖2

= 1−k(4/c)2 = 1− ε

This completes the proof of (i).
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Proof of Theorem 4.17 (ii)
Let Aε = {γ : ‖γ−θ‖ ≤ ε} for ε > 0.
Since Θ is open, Aε ⊂Θ for sufficiently small ε.
If {θ̃n} is a sequence of consistent RLE’s, then for any ε > 0,

P(sn(θ̃n) = 0 and θ̃n ∈ Aε )→ 1

Hence, we can focus on the set on which sn(θ̃n) = 0 and θ̃n ∈ Aε .
Using the mean-value theorem for vector-valued functions, we obtain

−sn(θ) =

[∫ 1

0
∇sn

(
θ + t(θ̃n−θ)

)
dt
]

(θ̃n−θ).

Note that
1
n

∥∥∥∥∫ 1

0
∇sn

(
θ + t(θ̃n−θ)

)
dt−∇sn(θ)

∥∥∥∥≤max
γ∈Aε

‖∇sn(γ)−∇sn(θ)‖
n

.

Using the argument in proving (3) and the fact that P(θ̃n ∈ Aε )→ 1 for
arbitrary ε > 0, we obtain that

1
n

∥∥∥∥∫ 1

0
∇sn

(
θ + t(θ̃n−θ)

)
dt−∇sn(θ)

∥∥∥∥→p 0.
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Since n−1∇sn(θ)→a.s. −I1(θ) and In(θ) = nI1(θ),

−sn(θ) =−In(θ)(θ̃n−θ) + op
(
‖In(θ)(θ̃n−θ)‖

)
.

This and Slutsky’s theorem (Theorem 1.11) imply that
√

n(θ̃n−θ) has
the same asymptotic distribution as

√
n[In(θ)]−1sn(θ) = n−1/2[I1(θ)]−1sn(θ)→d Nk

(
0, [I1(θ)]−1)

by the CLT (Corollary 1.2), since Var(sn(θ)) = In(θ).

Scoring and RLE
The method of estimating θ by solving sn(γ) = 0 over γ ∈Θ is called
scoring and the function sn(γ) is called the score function.
RLE’s are not necessarily MLE’s.
However, according to Theorem 4.17, when a sequence of RLE’s is
consistent, then it is asymptotically efficient.
We may not need to search for MLE’s, if asymptotic efficiency is the
only criterion to select estimators.
Typically a sequence of MLE’s is consistenct, although there are
examples in which an RLE sequence is consistent but not an MLE.
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Bayes estimators
Bayes estimators are often asymptotically efficient.
It can be checked if explicit forms of Bayes estimators are available.
The following is a general result.

Theorem 4.20
Assume the conditions of Theorem 4.16.
Let π(γ) be a prior p.d.f. (which may be improper) w.r.t. the Lebesgue
measure on Θ and pn(γ) be the posterior p.d.f., given X1, ...,Xn,
n = 1,2, ....
Assume that there exists an n0 such that pn0(γ) is continuous and
positive for all γ ∈Θ,

∫
pn0(γ)dγ = 1 and

∫
‖γ‖pn0(γ)dγ < ∞.

Suppose further that, for any ε > 0, there exists a δ > 0 such that

lim
n→∞

P

(
sup

‖γ−θ‖≥ε

log`(γ)− log`(θ)

n
>−δ

)
= 0

lim
n→∞

P

(
sup

‖γ−θ‖≤δ

‖∇sn(γ)−∇sn(θ)‖
n

≥ ε

)
= 0,

where `(γ) is the likelihood function and sn(γ) is the score function.
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(i) Let p∗n(γ) be the posterior p.d.f. of
√

n(γ−Tn), where
Tn = θ + [In(θ)]−1sn(θ) and θ is the true parameter value, and let
ψ(γ) be the p.d.f. of Nk (0, [I1(θ)]−1).
Then ∫

(1 +‖γ‖)
∣∣p∗n(γ)−ψ(γ)

∣∣dγ →p 0.

(ii) The Bayes estimator of θ under the squared error loss is
asymptotically efficient.

Conclusions from Theorem 4.20
The posterior p.d.f. is approximately normal with mean
θ + [In(θ)]−1sn(θ) and covariance matrix [In(θ)]−1.
The Bayes estimator under the squared error loss is consistent
and asymptotically efficient, which provides an additional support
for the early suggestion that the Bayesian approach is a useful
method for generating estimators.
The results hold regardless of the prior being used, indicating that
the effect of the prior declines as n→ ∞.
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