The *maximum likelihood method* is the most popular method for deriving estimators in statistical inference that does not use any loss function.

Example 4.28

Let X be a single observation taking values from $\{0, 1, 2\}$ according to P_θ, where $\theta = \theta_0$ or θ_1 and the values of $P_\theta(i)$ are given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
<th>$x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = \theta_0$</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\theta = \theta_1$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

If $X = 0$ is observed, it is more plausible that it came from P_{θ_0}, since $P_{\theta_0}(\{0\})$ is much larger than $P_{\theta_1}(\{0\})$. We then estimate θ by θ_0.

The *maximum likelihood method* is the most popular method for deriving estimators in statistical inference that does not use any loss function.

Example 4.28

Let X be a single observation taking values from $\{0, 1, 2\}$ according to P_θ, where $\theta = \theta_0$ or θ_1 and the values of $P_{\theta_j}(\{i\})$ are given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>$x = 0$</th>
<th>$x = 1$</th>
<th>$x = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = \theta_0$</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\theta = \theta_1$</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

If $X = 0$ is observed, it is more plausible that it came from P_{θ_0}, since $P_{\theta_0}(\{0\})$ is much larger than $P_{\theta_1}(\{0\})$. We then estimate θ by θ_0.
Example 4.28 (continued)

On the other hand, if \(X = 1 \) or 2, it is more plausible that it came from \(P_{\theta_1} \), although in this case the difference between the probabilities is not as large as that in the case of \(X = 0 \). This suggests the following estimator of \(\theta \):

\[
T(X) = \begin{cases}
\theta_0 & X = 0 \\
\theta_1 & X \neq 0.
\end{cases}
\]

The idea in Example 4.28 can be easily extended to the case where \(P_\theta \) is a discrete distribution and \(\theta \in \Theta \subset \mathbb{R}^k \).

If \(X = x \) is observed, \(\theta_1 \) is more plausible than \(\theta_2 \) if and only if \(P_{\theta_1}({\{x}\}) > P_{\theta_2}({\{x}\}) \).

We then estimate \(\theta \) by a \(\hat{\theta} \) that maximizes \(P_\theta({\{x}\}) \) over \(\theta \in \Theta \), if such a \(\hat{\theta} \) exists.

Under the Bayesian approach with a prior that is the discrete uniform distribution on \(\{\theta_1, \ldots, \theta_m\} \), \(P_\theta({\{x}\}) \) is proportional to the posterior probability and we can say that \(\theta_1 \) is more probable than \(\theta_2 \) if \(P_{\theta_1}({\{x}\}) > P_{\theta_2}({\{x}\}) \).
Example 4.28 (continued)

On the other hand, if $X = 1$ or 2, it is more plausible that it came from P_{θ_1}, although in this case the difference between the probabilities is not as large as that in the case of $X = 0$.

This suggests the following estimator of θ:

$$T(X) = \begin{cases}
\theta_0 & X = 0 \\
\theta_1 & X \neq 0
\end{cases}$$

The idea in Example 4.28 can be easily extended to the case where P_θ is a discrete distribution and $\theta \in \Theta \subset \mathbb{R}^k$.

If $X = x$ is observed, θ_1 is more plausible than θ_2 if and only if $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$.

We then estimate θ by a $\hat{\theta}$ that maximizes $P_\theta(\{x\})$ over $\theta \in \Theta$, if such a $\hat{\theta}$ exists.

Under the Bayesian approach with a prior that is the discrete uniform distribution on $\{\theta_1, \ldots, \theta_m\}$, $P_\theta(\{x\})$ is proportional to the posterior probability and we can say that θ_1 is more probable than θ_2 if $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$.
Note that $P_\theta(\{x\})$ is the p.d.f. w.r.t. the counting measure. Hence, it is natural to extend the idea to the case of continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some σ-finite measure on the range \mathcal{X} of X.

Definition 4.3

Let $X \in \mathcal{X}$ be a sample with a p.d.f. f_θ w.r.t. a σ-finite measure ν, where $\theta \in \Theta \subset \mathbb{R}^k$.

(i) For each $x \in \mathcal{X}$, $f_\theta(x)$ considered as a function of θ is called the *likelihood function* and denoted by $\ell(\theta)$.

(ii) Let $\overline{\Theta}$ be the closure of Θ. A $\hat{\theta} \in \overline{\Theta}$ satisfying $\ell(\hat{\theta}) = \max_{\theta \in \Theta} \ell(\theta)$ is called a *maximum likelihood estimate* (MLE) of θ. If $\hat{\theta}$ is a Borel function of X a.e. ν, then $\hat{\theta}$ is called a *maximum likelihood estimator* (MLE) of θ.

(iii) Let g be a Borel function from Θ to \mathbb{R}^p, $p \leq k$. If $\hat{\theta}$ is an MLE of θ, then $\hat{\vartheta} = g(\hat{\theta})$ is defined to be an MLE of $\vartheta = g(\theta)$.
Note that $P_{\theta}(\{x\})$ is the p.d.f. w.r.t. the counting measure. Hence, it is natural to extend the idea to the case of continuous (or arbitrary) X by using the p.d.f. of X w.r.t. some σ-finite measure on the range X^* of X.

Definition 4.3

Let $X \in X^*$ be a sample with a p.d.f. f_{θ} w.r.t. a σ-finite measure ν, where $\theta \in \Theta \subset \mathbb{R}^k$.

(i) For each $x \in X^*$, $f_{\theta}(x)$ considered as a function of θ is called the **likelihood function** and denoted by $\ell(\theta)$.

(ii) Let $\bar{\Theta}$ be the closure of Θ. A $\hat{\theta} \in \bar{\Theta}$ satisfying $\ell(\hat{\theta}) = \max_{\theta \in \bar{\Theta}} \ell(\theta)$ is called a **maximum likelihood estimate** (MLE) of θ. If $\hat{\theta}$ is a Borel function of X a.e. ν, then $\hat{\theta}$ is called a **maximum likelihood estimator** (MLE) of θ.

(iii) Let g be a Borel function from Θ to \mathbb{R}^p, $p \leq k$. If $\hat{\theta}$ is an MLE of θ, then $\hat{\vartheta} = g(\hat{\theta})$ is defined to be an MLE of $\vartheta = g(\theta)$.
Remarks

- Note that \(\bar{\Theta} \) instead of \(\Theta \) is used in the definition of an MLE. This is because a maximum of \(\ell(\theta) \) may not exist when \(\Theta \) is an open set.
 In some textbooks, \(\Theta \) is used, instead of \(\bar{\Theta} \)

- Part (iii) of Definition 4.3 is motivated by a fact given in Exercise 95 of §4.6.

- An MLE may not exist, or there are many MLE's.

- An MLE may not have an explicit form.

- In terms of their mse's, MLE's are not necessarily better than UMVUE's or Bayes estimators.

- MLE's are frequently inadmissible.
 This is not surprising, since MLE's are not derived under any given loss function.

- The main theoretical justification for MLE's is provided in the theory of asymptotic efficiency considered in §4.5.
Computation of MLE

If Θ contains finitely many points, then $\bar{\Theta} = \Theta$ and an MLE exists and can always be obtained by comparing finitely many values $\ell(\theta), \theta \in \Theta$. Since $\log x$ is a strictly increasing function, $\hat{\theta}$ is an MLE if and only if it maximizes the log-likelihood function $\log \ell(\theta)$.

It is often more convenient to work with $\log \ell(\theta)$. If $\ell(\theta)$ is differentiable on Θ°, the interior of Θ, then possible candidates for MLE's are the values of $\theta \in \Theta^\circ$ satisfying

$$\frac{\partial \log \ell(\theta)}{\partial \theta} = 0,$$

which is called the *likelihood equation* or *log-likelihood equation*. A root of the likelihood equation may be local or global minima, local or global maxima, or simply stationary points.

Also, extrema may occur at the boundary of Θ or when $\|\theta\| \to \infty$. Furthermore, if $\ell(\theta)$ is not always differentiable, then extrema may occur at nondifferentiable or discontinuity points of $\ell(\theta)$. Hence, it is important to analyze the entire likelihood function to find its maxima.
Example 4.29

Let X_1, \ldots, X_n be i.i.d. binary random variables with $P(X_1 = 1) = p \in \Theta = (0, 1)$. When $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ is observed, the likelihood function is

$$\ell(p) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1-x_i} = p^{n\bar{x}} (1 - p)^{n(1-\bar{x})},$$

where $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$. Note that $\bar{\Theta} = [0, 1]$ and $\Theta^\circ = \Theta$.

The likelihood equation is

$$\frac{n\bar{x}}{p} - \frac{n(1 - \bar{x})}{1 - p} = 0.$$

If $0 < \bar{x} < 1$, then this equation has a unique solution \bar{x}. The second-order derivative of log $\ell(p)$ is

$$- \frac{n\bar{x}}{p^2} - \frac{n(1 - \bar{x})}{(1 - p)^2},$$

which is always negative.
Example 4.29 (continued)

Also, when \(p \) tends to 0 or 1 (the boundary of \(\Theta \)), \(\ell(p) \rightarrow 0 \).
Thus, \(\bar{x} \) is the unique MLE of \(p \).
When \(\bar{x} = 0 \), \(\ell(p) = (1 - p)^n \) is a strictly decreasing function of \(p \) and, therefore, its unique maximum is 0.
Similarly, the MLE is 1 when \(\bar{x} = 1 \).
Combining these results, we conclude that the MLE of \(p \) is \(\bar{x} \).
When \(\bar{x} = 0 \) or 1, a maximum of \(\ell(p) \) does not exist on \(\Theta = (0, 1) \), although \(\sup_{p \in (0,1)} \ell(p) = 1 \); the MLE takes a value outside of \(\Theta \) and, hence, is not a reasonable estimator.
However, if \(p \in (0, 1) \), the probability that \(\bar{x} = 0 \) or 1 tends to 0 quickly as \(n \rightarrow \infty \).

Discussion

Example 4.29 indicates that, for small \(n \), a maximum of \(\ell(\theta) \) may not exist on \(\Theta \) and an MLE may be an unreasonable estimator; however, this is unlikely to occur when \(n \) is large.
A rigorous result of this sort is given in §4.5.2, where we study asymptotic properties of MLE's.
Example 4.29 (continued)

Also, when p tends to 0 or 1 (the boundary of Θ), $\ell(p) \to 0$. Thus, \bar{x} is the unique MLE of p.

When $\bar{x} = 0$, $\ell(p) = (1 - p)^n$ is a strictly decreasing function of p and, therefore, its unique maximum is 0.

Similarly, the MLE is 1 when $\bar{x} = 1$.

Combining these results, we conclude that the MLE of p is \bar{x}. When $\bar{x} = 0$ or 1, a maximum of $\ell(p)$ does not exist on $\Theta = (0, 1)$, although $\sup_{p \in (0, 1)} \ell(p) = 1$; the MLE takes a value outside of Θ and, hence, is not a reasonable estimator. However, if $p \in (0, 1)$, the probability that $\bar{x} = 0$ or 1 tends to 0 quickly as $n \to \infty$.

Discussion

Example 4.29 indicates that, for small n, a maximum of $\ell(\theta)$ may not exist on Θ and an MLE may be an unreasonable estimator; however, this is unlikely to occur when n is large.

A rigorous result of this sort is given in §4.5.2, where we study asymptotic properties of MLE’s.
Example 4.30

Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \sigma^2)$ with unknown $\theta = (\mu, \sigma^2)$, $n \geq 2$. Consider first the case where $\Theta = \mathbb{R} \times (0, \infty)$.

\[
\log \ell(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi).
\]

The likelihood equation is

\[
\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0 \quad \text{and} \quad \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{\sigma^2} = 0.
\]

Solving the first equation for μ, we obtain a unique solution $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$, and substituting \bar{x} for μ in the second equation, we obtain a unique solution $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

To show that $\hat{\theta} = (\bar{x}, \hat{\sigma}^2)$ is an MLE, first note that Θ is an open set and $\ell(\theta)$ is differentiable everywhere; as θ tends to the boundary of Θ or $\|\theta\| \to \infty$, $\ell(\theta)$ tends to 0; and

\[
\frac{\partial^2 \log \ell(\theta)}{\partial \theta \partial \theta^\tau} = -\begin{pmatrix}
\frac{n}{\sigma^2} & \frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) \\
\frac{1}{\sigma^4} \sum_{i=1}^{n} (x_i - \mu) & \frac{1}{\sigma^6} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2\sigma^4}
\end{pmatrix}
\]
Example 4.30 (continued)

This matrix is negative definite when \(\mu = \bar{x} \) and \(\sigma^2 = \hat{\sigma}^2 \). Hence \(\hat{\theta} \) is the unique MLE.

Sometimes we can avoid the calculation of the second-order derivatives.

For instance, in this example we know that \(\ell(\theta) \) is bounded and \(\ell(\theta) \to 0 \) as \(\|\theta\| \to \infty \) or \(\theta \) tends to the boundary of \(\Theta \); hence the unique solution to the likelihood equation must be the MLE.

Another way to show that \(\hat{\theta} \) is the MLE is indicated by the following discussion.

Consider next the case where \(\Theta = (0, \infty) \times (0, \infty) \), i.e., \(\mu \) is known to be positive.

The likelihood function is differentiable on \(\Theta^\circ = \Theta \) and \(\tilde{\Theta} = [0, \infty) \times [0, \infty) \).

If \(\bar{x} > 0 \), then the same argument for the previous case can be used to show that \((\bar{x}, \hat{\sigma}^2) \) is the MLE.

If \(\bar{x} \leq 0 \), then the first equation in the likelihood equation does not have a solution in \(\Theta \).
Example 4.30 (continued)

However, the function \(\log \ell(\theta) = \log \ell(\mu, \sigma^2) \) is strictly decreasing in \(\mu \) for any fixed \(\sigma^2 \).

Hence, a maximum of \(\log \ell(\mu, \sigma^2) \) is \(\mu = 0 \), which does not depend on \(\sigma^2 \).

Then, the MLE is \((0, \tilde{\sigma}^2)\), where \(\tilde{\sigma}^2 \) is the value maximizing \(\log \ell(0, \sigma^2) \) over \(\sigma^2 \geq 0 \).

Maximizing \(\log \ell(0, \sigma^2) \) leads to \(\tilde{\sigma}^2 = n^{-1} \sum_{i=1}^{n} x_i^2 \).

Thus, the MLE is

\[
\hat{\theta} = \begin{cases}
(\bar{x}, \tilde{\sigma}^2) & \bar{x} > 0 \\
(0, \tilde{\sigma}^2) & \bar{x} \leq 0.
\end{cases}
\]

Again, the MLE in this case is not in \(\Theta \) if \(\bar{x} \leq 0 \).

One can show that a maximum of \(\ell(\theta) \) does not exist on \(\Theta \) when \(\bar{x} \leq 0 \).
Example 4.31

Let X_1, \ldots, X_n be i.i.d. from the uniform distribution on an interval I_θ with an unknown θ.

First, consider the case where $I_\theta = (0, \theta)$ and $\theta > 0$, $\Theta^o = (0, \infty)$.

The likelihood function is $\ell(\theta) = \theta^{-n} l_{(x(n), \infty)}(\theta)$, $x(n) = \max(x_1, \ldots, x_n)$.

On $(0, x(n))$, $\ell \equiv 0$ and on $(x(n), \infty)$, $\ell'(\theta) = -n\theta^{n-1} < 0$ for all θ. $\ell(\theta)$ is not differentiable at $x(n)$ and the method of using the likelihood equation is not applicable.

Since $\ell(\theta)$ is strictly decreasing on $(x(n), \infty)$ and is 0 on $(0, x(n))$, a unique maximum of $\ell(\theta)$ is $x(n)$, which is a discontinuity point of $\ell(\theta)$. This shows that the MLE of θ is the largest order statistic $X_{(n)}$.

Next, consider the case where $I_\theta = (\theta - \frac{1}{2}, \theta + \frac{1}{2})$ with $\theta \in \mathbb{R}$.

The likelihood function is $\ell(\theta) = l_{(x(n) - \frac{1}{2}, x(1) + \frac{1}{2})}(\theta)$, $x(1) = \min(x_1, \ldots, x_n)$.

Again, the method of using the likelihood equation is not applicable. However, it follows from Definition 4.3 that any statistic $T(X)$ satisfying $x(n) - \frac{1}{2} \leq T(X) \leq x(1) + \frac{1}{2}$ is an MLE of θ.

This example indicates that MLE’s may not be unique and can be unreasonable.