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Lecture 7: MLE in generalized linear models (GLM)
and quasi-MLE
MLE in exponential families
Suppose that X has a distribution from a natural exponential family so
that the likelihood function is

`(η) = exp{ητT (x)−ζ (η)}h(x),

where η ∈ Ξ is a vector of unknown parameters.
The likelihood equation is then

∂ log`(η)

∂η
= T (x)− ∂ζ (η)

∂η
= 0,

which has a unique solution T (x) = ∂ζ (η)/∂η , assuming that T (x) is
in the range of ∂ζ (η)/∂η .
Note that

∂ 2 log`(η)

∂η∂ητ
=−∂ 2ζ (η)

∂η∂ητ
=− Var(T )

(see the proof of Proposition 3.2).
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Since Var(T ) is positive definite, − log`(η) is convex in η and T (x) is
the unique MLE of the parameter µ(η) = ∂ζ (η)/∂η .
Also, the function µ(η) is one-to-one so that µ−1 exists.
By Definition 4.3, the MLE of η is η̂ = µ−1(T (x)).
If the distribution of X is in a general exponential family and the
likelihood function is

`(θ) = exp{[η(θ)]τT (x)−ξ (θ)}h(x),

then the MLE of θ is θ̂ = η−1(η̂), if η−1 exists and η̂ is in the range of
η(θ).
Of course, θ̂ is also the solution of the likelihood equation

∂ log`(θ)

∂θ
=

∂η(θ)

∂θ
T (x)− ∂ξ (θ)

∂θ
= 0.

Suppose that X1, ...,Xn are i.i.d. with a distribution in a natural
exponential family, i.e., the p.d.f. of Xi is

fη (xi) = exp{ητT (xi)−ζ (η)}h(xi).
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From Proposition 3.2 and ∂ 2 log fη (xi)/∂η∂ητ =−∂ 2ζ (η)/∂η∂ητ , all
conditions in Theorem 4.16 are satisfied.
If θ̂n = n−1

∑
n
i=1 T (Xi) ∈Θ, the range of θ = g(η) = ∂ζ (η)/∂η , then θ̂n

is a unique RLE of θ , which is also a unique MLE of θ since
∂ 2ζ (η)/∂η∂ητ = Var(T (Xi)) is positive definite.
Also, η = g−1(θ) exists and a unique RLE (MLE) of η is η̂n = g−1(θ̂n).
However, θ̂n may not be in Θ and the previous argument fails (e.g.,
Example 4.29).
What Theorem 4.17 tells us in this case is that as n→ ∞,
P(θ̂n ∈Θ)→ 1 and, therefore, θ̂n (or η̂n) is the unique asymptotically
efficient RLE (MLE) of θ (or η) in the limiting sense.
In an example like this we may directly show that P(θ̂n ∈Θ)→ 1, using
the fact that θ̂n→a.s. E [T (X1)] = g(η) (the SLLN).

The results for exponential families lead to an estimation method in a
class of models that have very wide applications.
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Generalized linear models (GLM)
The GLM is a generalization of the normal linear model discussed in
§3.3.1-§3.3.2.
The GLM is useful since it covers situations where the relationship
between E(Xi) and Zi is nonlinear and/or Xi ’s are discrete.

The structure of a GLM
The sample X = (X1, ...,Xn) has independent Xi ’s and Xi has the p.d.f.

exp
{

ηi xi−ζ (ηi )
φi

}
h(xi ,φi), i = 1, ...,n,

w.r.t. a σ -finite measure ν , where ηi and φi are unknown, φi > 0,

ηi ∈ Ξ =
{

η : 0 <
∫

h(x ,φ)eηx/φ dν(x) < ∞
}
⊂R

for all i , ζ and h are known functions, and ζ ′′(η) > 0 is assumed for all
η ∈ Ξ◦, the interior of Ξ.
Note that the p.d.f. belongs to an exponential family if φi is known.
As a consequence,

E(Xi) = ζ
′(ηi) and Var(Xi) = φiζ

′′(ηi), i = 1, ...,n.
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Define µ(η) = ζ ′(η).
It is assumed that ηi is related to Zi , the i th value of a p-vector of
covariates, through

g(µ(ηi)) = β
τZi , i = 1, ...,n,

where β is a p-vector of unknown parameters and g, called a link
function, is a known one-to-one, third-order continuously differentiable
function on {µ(η) : η ∈ Ξ◦}.
If µ = g−1, then ηi = β τZi and g is called the canonical or natural link
function.
If g is not canonical, we assume that d

dη
(g ◦µ)(η) 6= 0 for all η .

In a GLM, the parameter of interest is β .
We assume that the range of β is

B = {β : (g ◦µ)−1(β
τz) ∈ Ξ◦ for all z ∈Z }

where Z is the range of Zi ’s.
φi ’s are called dispersion parameters and are considered to be
nuisance parameters.
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MLE in GLM
An MLE of β in a GLM is considered under assumption

φi = φ/ti , i = 1, ...,n,

with an unknown φ > 0 and known positive ti ’s.
Let θ = (β ,φ) and ψ = (g ◦µ)−1.

log`(θ) =
n

∑
i=1

[
logh(xi ,φ/ti) +

ψ(β τZi)xi −ζ (ψ(β τZi))

φ/ti

]
∂ log`(θ)

∂β
=

1
φ

n

∑
i=1

{
[xi −µ(ψ(β

τZi))]ψ ′(β
τZi)tiZi

}
= 0

∂ log`(θ)

∂φ
=

n

∑
i=1

{
∂ logh(xi ,φ/ti)

∂φ
− ti [ψ(β τZi)xi −ζ (ψ(β τZi))]

φ2

}
= 0.

From the first likelihood equation, an MLE of β , if it exists, can be
obtained without estimating φ .
The second likelihood equation, however, is usually difficult to solve.
Some other estimators of φ are suggested by various researchers;
see, for example, McCullagh and Nelder (1989).
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Suppose that there is a solution β̂ ∈ B to the likelihood equation.

Var
(

∂ log`(θ)

∂β

)
= Mn(β )/φ ,

∂ 2 log`(θ)

∂β∂β τ
= [Rn(β )−Mn(β )]/φ .

where
Mn(β ) =

n

∑
i=1

[ψ ′(β
τZi)]2ζ

′′(ψ(β
τZi))tiZiZ τ

i

Rn(β ) =
n

∑
i=1

[xi −µ(ψ(β
τZi))]ψ ′′(β

τZi)tiZiZ τ

i .

Consider first the simple case of canonical g, ψ ′′ ≡ 0 and Rn ≡ 0.
If Mn(β ) is positive definite for all β , then − log`(θ) is strictly convex in
β for any fixed φ and, therefore, β̂ is the unique MLE of β .
For noncanonical g, Rn(β ) 6= 0 and β̂ is not necessarily an MLE.
If Rn(β ) is dominated by Mn(β ), i.e.,

[Mn(β )]−1/2Rn(β )[Mn(β )]−1/2→ 0

in some sense, then − log`(θ) is convex and β̂ is an MLE for large n.
In a GLM, an MLE β̂ usually does not have an analytic form and a
numerical method such as the Newton-Raphson has to be applied.
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Example 4.36

Consider the GLM with ζ (η) = η2/2, η ∈R.
If g is the canonical link, then the model is the same as a linear model
with independent εi ’s distributed as N(0,φi).
If φi ≡ φ , then the likelihood equation is exactly the same as the normal
equation in §3.3.1.
If Z is of full rank, then Mn(β ) = Z τZ is positive definite.
Thus, the LSE β̂ in a normal linear model is the unique MLE of β .
Suppose now that g is noncanonical but φi ≡ φ .
Then the model reduces to the one with independent Xi ’s and

Xi = N
(

g−1(β
τZi), φ

)
, i = 1, ...,n.

This type of model is called a nonlinear regression model (with normal
errors) and an MLE of β under this model is also called a nonlinear
LSE, since maximizing the log-likelihood is equivalent to minimizing
the sum of squares ∑

n
i=1[Xi −g−1(β τZi)]2.

Under certain conditions the matrix Rn(β ) is dominated by Mn(β ) and
an MLE of β exists.
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Example 4.37 (The Poisson model)
Consider the GLM with ζ (η) = eη , η ∈R, φi = φ/ti .
If φi = 1, then Xi has the Poisson distribution with mean eηi .
Under the canonical link g(t) = log t ,

Mn(β ) =
n

∑
i=1

eβ τ Zi tiZiZ τ

i ,

which is positive definite if inf i eβ τ Zi > 0 and the matrix
(
√

t1Z1, ...,
√

tnZn) is of full rank.
There is one noncanonical link that deserves attention.
Suppose that we choose a link function so that [ψ ′(t)]2ζ ′′(ψ(t))≡ 1.
Then Mn(β )≡ ∑

n
i=1 tiZiZ τ

i does not depend on β .
In §4.5.2 it is shown that the asymptotic variance of the MLE β̂ is
φ [Mn(β )]−1.
The fact that Mn(β ) does not depend on β makes the estimation of the
asymptotic variance (and, thus, statistical inference) easy.
Under the Poisson model, ζ ′′(t) = et and, therefore, we need to solve
the differential equation [ψ ′(t)]2eψ(t) = 1.
A solution is ψ(t) = 2 log(t/2) and the link g(µ) = 2

√
µ.
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Theorem 4.18
Consider the GLM with φi = φ/ti and ti ’s in a fixed interval (t0, t∞),
0 < t0 ≤ t∞ < ∞.
Assume that the range of the unknown parameter β is an open subset
of Rp; at the true value of β , 0 < inf i ϕ(β τZi)≤ supi ϕ(β τZi) < ∞, where
ϕ(t) = [ψ ′(t)]2ζ ′′(ψ(t)); as n→ ∞, maxi≤n Z τ

i (Z τZ )−1Zi → 0 and
λ−[Z τZ ]→ ∞, where Z is the n×p matrix whose i th row is the vector
Zi and λ−[A] is the smallest eigenvalue of A.

(i) There is a unique sequence of estimators {β̂n} such that

P
(
sn(β̂n) = 0

)
→ 1 and β̂n→p β ,

where sn(β ) = ∂ log`(β ,φ)/∂β is the score function.
(ii) Let In(β ) = Var(sn(β )). Then

[In(β )]1/2(β̂n−β )→d Np(0, Ip).

(iii) If φ is known or the p.d.f. indexed by θ = (β ,φ) satisfies the
conditions for fθ in Theorem 4.16, then β̂n is asymptotically
efficient.
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Key issues in the proof of Theorem 4.18
The proof of asymptotic existence and consistency is similar to that of
Theorem 4.17.
For the asymptotic normality of β̂n, we still use Taylor’s expansion and,
similar to the proof of Theorem 4.17, can establish that

[In(β )]1/2(β̂n−β ) = [In(β )]−1/2sn(β ) + op(1),

where In(β ) = Mn(β )/φ .
Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show
(exercise) that

[In(β )]−1/2sn(β )→d Np(0, Ip).

These two results and Slutsky’s theorem imply that

[In(β )]1/2(β̂n−β )→d N(0, Ip)

Since In(β ) is the Fisher information about β , this result implies that β̂n
is asymptotically efficient when φ is known.
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Key issues in the proof of Theorem 4.18
When φ is unknown, however, we cannot directly conclude from the
previous result whether β̂n is asymptotically efficient.

A complete argument for the asymptotic efficiency of β̂n is as follows.
Note that

∂

∂φ

[
∂ log`(θ)

∂β

]
=−sn(β )

φ
.

Since E [sn(β )] = 0, the Fisher information about θ = (β ,φ) is

In(β ,φ) =−E
[

∂ 2 log`(θ)

∂θ∂θ τ

]
=

(
In(β ) 0

0 Ĩn(φ)

)
,

where Ĩn(φ) is the Fisher information about φ .
Then the asymptotic efficiency of β̂n follows from

[In(β ,φ)]−1 =

(
[In(β )]−1 0

0 [̃In(φ)]−1

)
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Quasi-MLE
If assumption φi is arbitrary, or the distribution assumption on Xi does
not hold (e.g., Xi is longitudinal), but

E(Xi) = ζ
′(ηi) and Var(Xi) = φiζ

′′(ηi), i = 1, ...,n.

and
g(µ(ηi)) = β

τZi , i = 1, ...,n,
still hold, and we estimate β by solving equation

Gn(β ) =
n

∑
i=1

{
[xi −µ(ψ(β

τZi))]ψ ′(β
τZi)tiZi

}
= 0

then the resulting estimator is called a quasi-MLE.
This method is also called the method of generalized estimating
equations (GEE).
They are efficient if the GEE is a likelihood equation, and is robust if it
is not.
Quasi-MLE or GEE has some good asymptotic properties.
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Discussion of asymptotic properties of quasi-MLE
The asymptotic existence and consistency of quasi-MLE can be shown
using a similar argument to the proof of Theorem 4.17.
To show the asymptotic normality, using the Taylor expansion we
obtain that

−Gn(β ) = ∇Gn(β )(β̂n−β ) + op(n−1/2)

Then
−
√

n[∇Gn(β )]−1Gn(β ) =
√

n(β̂n−β ) + op(1)

By the SLLN and CLT,

n−1
∇Gn(β )→a.s. Γ n−1/2Gn(β )→d N(0,Σ)

where Σ = Var(Gn(β )) and Γ is a positive definite matrix.
Hence,

√
n(β̂n−β ) =−

√
n[∇Gn(β )]−1Gn(β ) + op(1)

→d N(0,Γ−1ΣΓ−1)

If β̂n is an MLE, then Γ = Σ = Fisher information and Γ−1ΣΓ−1 = Σ−1.
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