Lecture 7: MLE in generalized linear models (GLM) and quasi-MLE

MLE in exponential families

Suppose that X has a distribution from a natural exponential family so that the likelihood function is

$$\ell(\eta) = \exp\{\eta^{\tau} T(x) - \zeta(\eta)\}h(x),$$

where $\eta \in \Xi$ is a vector of unknown parameters. The likelihood equation is then

$$rac{\partial \log \ell(\eta)}{\partial \eta} = T(x) - rac{\partial \zeta(\eta)}{\partial \eta} = 0,$$

which has a unique solution $T(x) = \partial \zeta(\eta) / \partial \eta$, assuming that T(x) is in the range of $\partial \zeta(\eta) / \partial \eta$.

Note that

$$\frac{\partial^2 \log \ell(\eta)}{\partial \eta \partial \eta^{\tau}} = -\frac{\partial^2 \zeta(\eta)}{\partial \eta \partial \eta^{\tau}} = -\operatorname{Var}(T)$$

(see the proof of Proposition 3.2).

Since $\operatorname{Var}(T)$ is positive definite, $-\log \ell(\eta)$ is convex in η and T(x) is the unique MLE of the parameter $\mu(\eta) = \partial \zeta(\eta) / \partial \eta$. Also, the function $\mu(\eta)$ is one-to-one so that μ^{-1} exists. By Definition 4.3, the MLE of η is $\hat{\eta} = \mu^{-1}(T(x))$.

If the distribution of X is in a general exponential family and the likelihood function is

$$\ell(\theta) = \exp\{[\eta(\theta)]^{\tau}T(x) - \xi(\theta)\}h(x),$$

then the MLE of θ is $\hat{\theta} = \eta^{-1}(\hat{\eta})$, if η^{-1} exists and $\hat{\eta}$ is in the range of $\eta(\theta)$.

Of course, $\hat{\theta}$ is also the solution of the likelihood equation

$$\frac{\partial \log \ell(\theta)}{\partial \theta} = \frac{\partial \eta(\theta)}{\partial \theta} T(x) - \frac{\partial \xi(\theta)}{\partial \theta} = 0.$$

Suppose that $X_1, ..., X_n$ are i.i.d. with a distribution in a natural exponential family, i.e., the p.d.f. of X_i is

$$f_{\eta}(x_i) = \exp\{\eta^{\tau} T(x_i) - \zeta(\eta)\}h(x_i).$$

From Proposition 3.2 and $\partial^2 \log f_{\eta}(x_i) / \partial \eta \partial \eta^{\tau} = -\partial^2 \zeta(\eta) / \partial \eta \partial \eta^{\tau}$, all conditions in Theorem 4.16 are satisfied.

If $\widehat{\theta}_n = n^{-1} \sum_{i=1}^n T(X_i) \in \Theta$, the range of $\theta = g(\eta) = \partial \zeta(\eta) / \partial \eta$, then $\widehat{\theta}_n$ is a unique RLE of θ , which is also a unique MLE of θ since $\partial^2 \zeta(\eta) / \partial \eta \partial \eta^\tau = \operatorname{Var}(T(X_i))$ is positive definite.

Also, $\eta = g^{-1}(\theta)$ exists and a unique RLE (MLE) of η is $\hat{\eta}_n = g^{-1}(\hat{\theta}_n)$. However, $\hat{\theta}_n$ may not be in Θ and the previous argument fails (e.g., Example 4.29).

What Theorem 4.17 tells us in this case is that as $n \rightarrow \infty$,

 $P(\widehat{\theta}_n \in \Theta) \to 1$ and, therefore, $\widehat{\theta}_n$ (or $\widehat{\eta}_n$) is the unique asymptotically efficient RLE (MLE) of θ (or η) in the limiting sense.

In an example like this we may directly show that $P(\hat{\theta}_n \in \Theta) \to 1$, using the fact that $\hat{\theta}_n \to_{a.s.} E[T(X_1)] = g(\eta)$ (the SLLN).

The results for exponential families lead to an estimation method in a class of models that have very wide applications.

Generalized linear models (GLM)

The GLM is a generalization of the normal linear model discussed in §3.3.1-§3.3.2.

The GLM is useful since it covers situations where the relationship between $E(X_i)$ and Z_i is nonlinear and/or X_i 's are discrete.

The structure of a GLM

The sample $X = (X_1, ..., X_n)$ has independent X_i 's and X_i has the p.d.f.

$$\exp\left\{rac{\eta_i x_i - \zeta(\eta_i)}{\phi_i}
ight\}h(x_i,\phi_i), \qquad i=1,...,n,$$

w.r.t. a σ -finite measure v, where η_i and ϕ_i are unknown, $\phi_i > 0$,

$$\eta_i \in \Xi = \left\{\eta: \ 0 < \int h(x,\phi) e^{\eta x/\phi} dv(x) < \infty
ight\} \subset \mathscr{R}$$

for all *i*, ζ and *h* are known functions, and $\zeta''(\eta) > 0$ is assumed for all $\eta \in \Xi^{\circ}$, the interior of Ξ .

Note that the p.d.f. belongs to an exponential family if ϕ_i is known. As a consequence,

$$E(X_i) = \zeta'(\eta_i)$$
 and $\operatorname{Var}(X_i) = \phi_i \zeta''(\eta_i), \quad i = 1, ..., n.$

Define $\mu(\eta) = \zeta'(\eta)$.

It is assumed that η_i is related to Z_i , the *i*th value of a *p*-vector of covariates, through

$$g(\mu(\eta_i)) = \beta^{\tau} Z_i, \qquad i = 1, ..., n,$$

where β is a *p*-vector of unknown parameters and *g*, called a *link function*, is a known one-to-one, third-order continuously differentiable function on $\{\mu(\eta) : \eta \in \Xi^\circ\}$.

If $\mu = g^{-1}$, then $\eta_i = \beta^{\tau} Z_i$ and g is called the *canonical* or *natural* link function.

If g is not canonical, we assume that $\frac{d}{d\eta}(g \circ \mu)(\eta) \neq 0$ for all η . In a GLM, the parameter of interest is β .

We assume that the range of β is

$$B = \{\beta : (g \circ \mu)^{-1} (\beta^{\tau} z) \in \Xi^{\circ} \text{ for all } z \in \mathscr{Z}\}$$

where \mathscr{Z} is the range of Z_i 's.

 ϕ_i 's are called *dispersion* parameters and are considered to be nuisance parameters.

MLE in GLM

An MLE of β in a GLM is considered under assumption

$$\phi_i = \phi/t_i, \qquad i = 1, ..., n,$$

with an unknown $\phi > 0$ and known positive t_i 's. Let $\theta = (\beta, \phi)$ and $\psi = (g \circ \mu)^{-1}$.

$$\log \ell(\theta) = \sum_{i=1}^{n} \left[\log h(x_i, \phi/t_i) + \frac{\psi(\beta^{\tau} Z_i) x_i - \zeta(\psi(\beta^{\tau} Z_i))}{\phi/t_i} \right]$$

$$\frac{\partial \log \ell(\theta)}{\partial \beta} = \frac{1}{\phi} \sum_{i=1}^{n} \left\{ [x_i - \mu(\psi(\beta^{\tau} Z_i))] \psi'(\beta^{\tau} Z_i) t_i Z_i \right\} = 0$$

$$\frac{\partial \log \ell(\theta)}{\partial \phi} = \sum_{i=1}^{n} \left\{ \frac{\partial \log h(x_i, \phi/t_i)}{\partial \phi} - \frac{t_i [\psi(\beta^{\tau} Z_i) x_i - \zeta(\psi(\beta^{\tau} Z_i))]}{\phi^2} \right\} = 0.$$

From the first likelihood equation, an MLE of β , if it exists, can be obtained without estimating ϕ .

The second likelihood equation, however, is usually difficult to solve. Some other estimators of ϕ are suggested by various researchers; see, for example, McCullagh and Nelder (1989).

UW-Madison (Statistics)

Stat 710, Lecture 7

Suppose that there is a solution $\widehat{\beta} \in B$ to the likelihood equation.

$$\operatorname{Var}\left(\frac{\partial \log \ell(\theta)}{\partial \beta}\right) = M_n(\beta)/\phi, \quad \frac{\partial^2 \log \ell(\theta)}{\partial \beta \partial \beta^{\tau}} = [R_n(\beta) - M_n(\beta)]/\phi.$$

where

$$M_n(\beta) = \sum_{i=1}^n [\psi'(\beta^{\tau} Z_i)]^2 \zeta''(\psi(\beta^{\tau} Z_i)) t_i Z_i Z_i^{\tau}$$
$$R_n(\beta) = \sum_{i=1}^n [x_i - \mu(\psi(\beta^{\tau} Z_i))] \psi''(\beta^{\tau} Z_i) t_i Z_i Z_i^{\tau}.$$

Consider first the simple case of canonical g, $\psi'' \equiv 0$ and $R_n \equiv 0$. If $M_n(\beta)$ is positive definite for all β , then $-\log \ell(\theta)$ is strictly convex in β for any fixed ϕ and, therefore, $\hat{\beta}$ is the unique MLE of β . For noncanonical g, $R_n(\beta) \neq 0$ and $\hat{\beta}$ is not necessarily an MLE. If $R_n(\beta)$ is dominated by $M_n(\beta)$, i.e.,

$$[M_n(\beta)]^{-1/2}R_n(\beta)[M_n(\beta)]^{-1/2}
ightarrow 0$$

in some sense, then $-\log \ell(\theta)$ is convex and $\hat{\beta}$ is an MLE for large *n*. In a GLM, an MLE $\hat{\beta}$ usually does not have an analytic form and a numerical method such as the Newton-Raphson has to be applied.

UW-Madison (Statistics)

Stat 710, Lecture 7

Jan 2019 7 / 14

Example 4.36

Consider the GLM with $\zeta(\eta) = \eta^2/2, \ \eta \in \mathscr{R}.$

If *g* is the canonical link, then the model is the same as a linear model with independent ε_i 's distributed as $N(0, \phi_i)$.

If $\phi_i \equiv \phi$, then the likelihood equation is exactly the same as the normal equation in §3.3.1.

If *Z* is of full rank, then $M_n(\beta) = Z^{\tau}Z$ is positive definite.

Thus, the LSE $\hat{\beta}$ in a normal linear model is the unique MLE of β . Suppose now that *g* is noncanonical but $\phi_i \equiv \phi$.

Then the model reduces to the one with independent X_i 's and

$$X_i = N\left(g^{-1}(\beta^{\tau}Z_i),\phi\right), \qquad i = 1,...,n.$$

This type of model is called a *nonlinear regression model* (with normal errors) and an MLE of β under this model is also called a nonlinear LSE, since maximizing the log-likelihood is equivalent to minimizing the sum of squares $\sum_{i=1}^{n} [X_i - g^{-1}(\beta^{\tau} Z_i)]^2$. Under certain conditions the matrix $R_n(\beta)$ is dominated by $M_n(\beta)$ and an MLE of β exists.

UW-Madison (Statistics)

Example 4.37 (The Poisson model)

Consider the GLM with $\zeta(\eta) = e^{\eta}$, $\eta \in \mathscr{R}$, $\phi_i = \phi/t_i$. If $\phi_i = 1$, then X_i has the Poisson distribution with mean e^{η_i} . Under the canonical link $g(t) = \log t$,

$$M_n(\beta) = \sum_{i=1}^n e^{\beta^{\tau} Z_i} t_i Z_i Z_i^{\tau},$$

which is positive definite if $\inf_i e^{\beta^{\tau} Z_i} > 0$ and the matrix $(\sqrt{t_1}Z_1, ..., \sqrt{t_n}Z_n)$ is of full rank.

There is one noncanonical link that deserves attention.

Suppose that we choose a link function so that $[\psi'(t)]^2 \zeta''(\psi(t)) \equiv 1$. Then $M_n(\beta) \equiv \sum_{i=1}^n t_i Z_i Z_i^{\tau}$ does not depend on β .

In §4.5.2 it is shown that the asymptotic variance of the MLE $\hat{\beta}$ is $\phi[M_n(\beta)]^{-1}$.

The fact that $M_n(\beta)$ does not depend on β makes the estimation of the asymptotic variance (and, thus, statistical inference) easy.

Under the Poisson model, $\zeta''(t) = e^t$ and, therefore, we need to solve the differential equation $[\psi'(t)]^2 e^{\psi(t)} = 1$.

A solution is $\psi(t) = 2\log(t/2)$ and the link $g(\mu) = 2\sqrt{\mu}$.

Theorem 4.18

Consider the GLM with $\phi_i = \phi/t_i$ and t_i 's in a fixed interval (t_0, t_{∞}) , $0 < t_0 \le t_{\infty} < \infty$.

Assume that the range of the unknown parameter β is an open subset of \mathscr{R}^p ; at the true value of β , $0 < \inf_i \varphi(\beta^{\tau} Z_i) \le \sup_i \varphi(\beta^{\tau} Z_i) < \infty$, where $\varphi(t) = [\psi'(t)]^2 \zeta''(\psi(t))$; as $n \to \infty$, $\max_{i \le n} Z_i^{\tau} (Z^{\tau} Z)^{-1} Z_i \to 0$ and $\lambda_-[Z^{\tau} Z] \to \infty$, where Z is the $n \times p$ matrix whose *i*th row is the vector Z_i and $\lambda_-[A]$ is the smallest eigenvalue of A.

(i) There is a unique sequence of estimators $\{\widehat{\beta}_n\}$ such that

$${m P}ig({m s}_n(\widehateta_n) = 0 ig) o 1 \qquad ext{and} \qquad \widehateta_n o_{{m
ho}} m eta,$$

where $s_n(\beta) = \partial \log \ell(\beta, \phi) / \partial \beta$ is the score function.

(ii) Let $I_n(\beta) = \operatorname{Var}(s_n(\beta))$. Then

$$[I_n(\beta)]^{1/2}(\widehat{\beta}_n-\beta)\rightarrow_d N_p(0,I_p).$$

(iii) If ϕ is known or the p.d.f. indexed by $\theta = (\beta, \phi)$ satisfies the conditions for f_{θ} in Theorem 4.16, then $\hat{\beta}_n$ is asymptotically efficient.

Key issues in the proof of Theorem 4.18

The proof of asymptotic existence and consistency is similar to that of Theorem 4.17.

For the asymptotic normality of $\hat{\beta}_n$, we still use Taylor's expansion and, similar to the proof of Theorem 4.17, can establish that

$$[I_n(\beta)]^{1/2}(\widehat{\beta}_n - \beta) = [I_n(\beta)]^{-1/2} s_n(\beta) + o_p(1),$$

where $I_n(\beta) = M_n(\beta)/\phi$.

Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show (exercise) that

$$[I_n(\beta)]^{-1/2} s_n(\beta) \rightarrow_d N_p(0, I_p).$$

These two results and Slutsky's theorem imply that

$$[I_n(\beta)]^{1/2}(\widehat{\beta}_n - \beta) \to_d N(0, I_p)$$

Since $I_n(\beta)$ is the Fisher information about β , this result implies that $\hat{\beta}_n$ is asymptotically efficient when ϕ is known.

Key issues in the proof of Theorem 4.18

When ϕ is unknown, however, we cannot directly conclude from the previous result whether $\hat{\beta}_n$ is asymptotically efficient.

A complete argument for the asymptotic efficiency of $\hat{\beta}_n$ is as follows. Note that

$$\frac{\partial}{\partial \phi} \left[\frac{\partial \log \ell(\theta)}{\partial \beta} \right] = -\frac{s_n(\beta)}{\phi}.$$

Since $E[s_n(\beta)] = 0$, the Fisher information about $\theta = (\beta, \phi)$ is

$$I_n(\beta,\phi) = -E \begin{bmatrix} \frac{\partial^2 \log \ell(\theta)}{\partial \theta \partial \theta^{\tau}} \end{bmatrix} = \begin{pmatrix} I_n(\beta) & 0 \\ 0 & \tilde{I}_n(\phi) \end{pmatrix},$$

where $\tilde{l}_n(\phi)$ is the Fisher information about ϕ . Then the asymptotic efficiency of $\hat{\beta}_n$ follows from

$$[I_n(\beta,\phi)]^{-1} = \begin{pmatrix} [I_n(\beta)]^{-1} & 0 \\ 0 & [\tilde{I}_n(\phi)]^{-1} \end{pmatrix}$$

Quasi-MLE

If assumption ϕ_i is arbitrary, or the distribution assumption on X_i does not hold (e.g., X_i is longitudinal), but

$$E(X_i) = \zeta'(\eta_i)$$
 and $\operatorname{Var}(X_i) = \phi_i \zeta''(\eta_i), \quad i = 1, ..., n.$

and

$$g(\mu(\eta_i)) = \beta^{\tau} Z_i, \qquad i = 1, ..., n,$$

still hold, and we estimate β by solving equation

$$G_n(\beta) = \sum_{i=1}^n \left\{ [x_i - \mu(\psi(\beta^{\tau} Z_i))] \psi'(\beta^{\tau} Z_i) t_i Z_i \right\} = 0$$

then the resulting estimator is called a quasi-MLE.

This method is also called the method of generalized estimating equations (GEE).

They are efficient if the GEE is a likelihood equation, and is robust if it is not.

Quasi-MLE or GEE has some good asymptotic properties.

A B F A B F

< 17 ▶

Discussion of asymptotic properties of quasi-MLE

The asymptotic existence and consistency of quasi-MLE can be shown using a similar argument to the proof of Theorem 4.17.

To show the asymptotic normality, using the Taylor expansion we obtain that

$$-G_n(\beta) = \nabla G_n(\beta)(\widehat{\beta}_n - \beta) + o_p(n^{-1/2})$$

Then

$$-\sqrt{n}[\nabla G_n(\beta)]^{-1}G_n(\beta) = \sqrt{n}(\widehat{\beta}_n - \beta) + o_p(1)$$

By the SLLN and CLT,

$$n^{-1} \nabla G_n(\beta) \rightarrow_{a.s.} \Gamma$$
 $n^{-1/2} G_n(\beta) \rightarrow_d N(0, \Sigma)$

where $\Sigma = \operatorname{Var}(G_n(\beta))$ and Γ is a positive definite matrix. Hence,

$$\sqrt{n}(\widehat{\beta}_n - \beta) = -\sqrt{n}[\nabla G_n(\beta)]^{-1}G_n(\beta) + o_p(1)$$
$$\rightarrow_d N(0, \Gamma^{-1}\Sigma\Gamma^{-1})$$

If $\widehat{\beta}_n$ is an MLE, then $\Gamma = \Sigma =$ Fisher information and $\Gamma^{-1}\Sigma\Gamma^{-1} = \Sigma^{-1}$.