Lecture 7: MLE in generalized linear models (GLM)

and quasi-MLE
MLE in exponential families

Suppose that X has a distribution from a natural exponential family so
that the likelihood function is
() = exp{n°T(x) - {(n)}h(x),
where n € = is a vector of unknown parameters.
The likelihood equation is then

dlogé(n) _ -\ _95(M) _
811 - (X) an - Oa
which has a unique solution T(x) =d{(n)/dn, assuming that T(x) is
in the range of d¢(n)/dn.
Note that ) »
0"logl(n) __9°6(n) _ _ v, 7y

anan’ - onont
(see the proof of Proposition 3.2).

v
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Since Var(T) is positive definite, —log¢(n) is convex in n and T(x) is
the unique MLE of the parameter u(n) =9¢&(n)/dn.

Also, the function u(n) is one-to-one so that u~' exists.

By Definition 4.3, the MLE of n is = u~"(T(x)).

If the distribution of X is in a general exponential family and the
likelihood function is

£(6) = exp{[n ()" T(x) — &(6)}h(x),

then the MLE of 6 is § =~ (M), if = exists and 7 is in the range of
n(6). R
Of course, 0 is also the solution of the likelihood equation
dlog((8) _ 9n(8) 9E(6) _
20~ a6 T3 =0
Suppose that Xj,..., X, are i.i.d. with a distribution in a natural
exponential family, i.e., the p.d.f. of X; is

f (%) = exp{n"T(x;) = &(n) }h(x;).
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From Proposition 3.2 and 92 log fy, (x;)/dnan® = —a2¢(n)/dnan*, all
conditions in Theorem 4.16 are satisfied.

If 6, = n" 1Y, T(X;) € ©, the range of 6 = g(n) = d¢(n)/dn, then 6,
is a unique RLE of 6, which is also a unique MLE of 6 since
92¢(n)/dnan® = Var(T(X))) is positive definite.

Also, 1 = g~1(6) exists and a unique RLE (MLE) of i is i, = g~ 1(6,).
However, 6, may not be in © and the previous argument fails (e.g.,
Example 4.29).

WhAat Theorem 4.17 tells us in tAhis case is that as n — o,

P(6, € ©) — 1 and, therefore, 6, (or i) is the unique asymptotically
efficient RLE (MLE) of 6 (or n) in the limiting sense.

In an example like this we may directly show that P(6, € ©) — 1, using
the fact that 6, —45. E[T(X7)] = 9(n) (the SLLN).

The results for exponential families lead to an estimation method in a
class of models that have very wide applications.
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Generalized linear models (GLM)

The GLM is a generalization of the normal linear model discussed in
§3.3.1-§3.3.2.

The GLM is useful since it covers situations where the relationship
between E(X;) and Z; is nonlinear and/or X;’s are discrete.

The structure of a GLM

The sample X = (X, ..., X) has independent Xj’s and X; has the p.d.f.

exp {7’1")(/;/;(17") } h(X,'7 (P,'), i=1 9 00og My
w.r.t. a o-finite measure v, where n; and ¢; are unknown, ¢; > 0,
nie=={n: 0< [h(x,9)e™/?dv(x) <} CZ

for all i, £ and h are known functions, and {”(n) > 0 is assumed for all
n € =°, the interior of =.

Note that the p.d.f. belongs to an exponential family if ¢; is known.

As a consequence,

E(X)=¢'(m) and  Var(X;)=¢;¢"(mi), i=1,..n
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Define u(n) = ¢'(n).
It is assumed that n; is related to Z;, the ith value of a p-vector of
covariates, through

gu(mi))=p°Z, i=1,..n,

where f is a p-vector of unknown parameters and g, called a link
function, is a known one-to-one, third-order continuously differentiable
function on {u(n):n € =°}.

If u=g', thenn,=B7Z and g is called the canonical or natural link
function.

If g is not canonical, we assume that -& Fr(gou)(n) # 0 for all .
In a GLM, the parameter of interest is ﬁ

We assume that the range of f3 is
B={B:(gon)'(B°z)e="forall ze &}
where % is the range of Z;'’s.

¢;’'s are called dispersion parameters and are considered to be
nuisance parameters.
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MLE in GLM
An MLE of B in a GLM is considered under assumption
oi=0/t, i=1,....n,

with an unknown ¢ > 0 and known positive t;’s.
Let 6 = (B,9)and y = (gou)

n

log4(0) = Z [Iogh(x,-,q)/t,') + v(p

“Zi)Xi — C(W(B’Zi))}

i—1 ¢/ti
i '°g€ Z (I — (w(B*Z)IV (B 262} =0
dlogl(6) alogh(x,-,wt,-) (B Z)x— LB
20 ; { 2¢ ¢2 } =0

From the first likelihood equation, an MLE of 3, if it exists, can be
obtained without estimating ¢.

The second likelihood equation, however, is usually difficult to solve.
Some other estimators of ¢ are suggested by various researchers;
see, for example, McCullagh and Nelder (1989).
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Suppose that there is a solution E € B to the likelihood equation.

o ?lo
. ((9'(%(9) > _ M(B)/9, aa'ﬁgf;e) — [Ro(B) — Ma(B)1/9-

where

Z[W WL (w(B*Z)ZiZF

Z xi — u(w(B*2))v" (B*Z)tiZiZ .

Consider first the S|mple case of canonical g, " =0 and R, =0.
If Mn(B) is positive definite for all 8, then —log¢(0) is strictly convex in
B for any fixed ¢ and, therefore, E is the unique MLE of B.
For noncanonical g, R,(B) # 0 and E is not necessarily an MLE.
If Rn(B) is dominated by Mu(B), i.e
[Ma(B)] "2 Rn(B)[Mn(B)] /2 = 0

in some sense, then —log¢(0) is convex and B is an MLE for large n.

In a GLM, an MLE E usually does not have an analytic form and a

numerical method such as the Newton-Raphson has to be applied.
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Example 4.36

Consider the GLM with {(n) =n?/2, n € %.

If g is the canonical link, then the model is the same as a linear model
with independent ¢;’s distributed as N(0, ¢;).

If 9; = ¢, then the likelihood equation is exactly the same as the normal
equation in §3.3.1.

If Z is of full rank, then M(B) = Z°Z is positive definite.

Thus, the LSE ﬁ in a normal linear model is the unique MLE of .
Suppose now that g is noncanonical but ¢; = ¢.

Then the model reduces to the one with independent X;’s and

Xi=N (g*1 (B°Z). ¢) . i=1,..n.

This type of model is called a nonlinear regression model (with normal
errors) and an MLE of B under this model is also called a nonlinear
LSE, since maximizing the log-likelihood is equivalent to minimizing
the sum of squares Y7, [X;— g~ (B Z)]?.

Under certain conditions the matrix R,(B) is dominated by M,(f) and
an MLE of B exists.

UW-Madison (Statistics) Stat 710, Lecture 7 Jan 2019 8/14




Example 4.37 (The Poisson model)

Consider the GLM with {(n) =€e", n € Z, ¢; = ¢ /1;.

If ¢; =1, then X; has the Poisson distribution with mean e™.
Under the canonical link g(t) = logt,

n
Mn(B) =Y. &P 4tz:Z},
i=1

which is positive definite if inf; €#°4 > 0 and the matrix
(Vt12Zy,...,.\/1hZy) is of full rank.

There is one noncanonical link that deserves attention.

Suppose that we choose a link function so that [y/(1)]2¢"(w(t)) =
Then Mp(B) = L4 t;.Z;Z" does not depend on .

In §4.5.2 it is shown that the asymptotic variance of the MLE E is
9[Mn(B)] "

The fact that M,(B) does not depend on B makes the estimation of the

asymptotic variance (and, thus, statistical inference) easy.

Under the Poisson model, {”(t) = e! and, therefore, we need to solve

the differential equation [y/(t)]2e¥() = 1.
A solution is y(t) = 2log(t/2) and the link g(u) = 2,/1.
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Theorem 4.18

Consider the GLM with ¢; = ¢ /t; and t;’s in a fixed interval ({y, t..),
0<fy <t < oo

Assume that the range of the unknown parameter 8 is an open subset
of %P; at the true value of 8, 0 < inf; (B7Z;) < sup;p(B7Z) < =, where
o(t) = [V (DPL"(w(1)); as n— e, maxi<n ZF(Z°Z) ' Z; — 0 and
A_[Z7Z] — oo, where Z is the n x p matrix whose ith row is the vector
Z;and A_[A] is the smallest eigenvalue of A.

(i) There is a unique sequence of estimators {En} such that

P(sn(Bn)=0) =1 and  Bn—p B,
where s,(B) = dlogl(B,¢)/dp is the score function.
(i) Let I(B) = Var(sn(B)). Then

Un(B))'/2(Bn— B) = No(0, p)-
(iii) If ¢ is known or the p.d.f. indexed by 6 = (B, ¢) satisfies the

~

conditions for fy in Theorem 4.16, then B, is asymptotically
efficient.
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Key issues in the proof of Theorem 4.18

The proof of asymptotic existence and consistency is similar to that of
Theorem 4.17. R

For the asymptotic normality of B, we still use Taylor’s expansion and,
similar to the proof of Theorem 4.17, can establish that

[n(B)"2(Bn— B) = [In(B)]~/2sn(B) + 0p(1),

where In(B) = Mn(B)/¢-
Using the CLT (e.g., Corollary 1.3) and Theorem 1.9(iii), we can show

(exercise) that

[In(B)]~"/25n(B) —a No(0, Ip)-
These two results and Slutsky’s theorem imply that
[In(B)]'"2(Bn— B) —a N(O, o)

Since In(B) is the Fisher information about 3, this result implies that En
is asymptotically efficient when ¢ is known.
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Key issues in the proof of Theorem 4.18

When ¢ is unknown, however, we cannot directly conclude from the

previous result whether B,, is asymptotically efficient.

A complete argument for the asymptotic efficiency of En is as follows.

Note that

9 {alogae)] __si(B)
do | Ip ¢
Since E[sy(B)] = 0, the Fisher information about 6 = (B,¢) is

n(B.9) = —E [aza'egai(e)] = ( S T )

where Tn(¢) is the Fisher information about ¢.
Then the asymptotic efficiency of B, follows from

1
o= (9 gy )
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Quasi-MLE
If assumption ¢; is arbitrary, or the distribution assumption on X; does
not hold (e.g., Xj is longitudinal), but

E(X)=¢'(n;) and Var(X;)=¢;¢"(n;), i=1,..,n

g(u(m)) =Bz, i=1,..,n,
still hold, and we estimate B by solving equation

Gn(B) = 21 (I~ n(w(B*Z)W (B°Z)6Z} =0

then the resulting estimator is called a quasi-MLE.

This method is also called the method of generalized estimating
equations (GEE).

They are efficient if the GEE is a likelihood equation, and is robust if it
is not.

Quasi-MLE or GEE has some good asymptotic properties.

and

v
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Discussion of asymptotic properties of quasi-MLE

The asymptotic existence and consistency of quasi-MLE can be shown
using a similar argument to the proof of Theorem 4.17.

To show the asymptotic normality, using the Taylor expansion we

obtain that ~
—Gn(B) = VGn(B)(Bn—B) + 0p(n /%)

Then ~
—V/n[VGn(B)] ' Gn(B) = vV'n(Bn— B) + 0p(1)

By the SLLN and CLT,
n'VGh(B) —as T  n2Gn(B) —4 N(O,X)

where ¥ = Var(Gp(p)) and T is a positive definite matrix.
Hence,

V(Bn—B) = —v/N[VGn(B)] ' Gn(B) + 0p(1)
—gNO,r'sr-1
If B, is an MLE, then I' = ¥ = Fisher information and F—'xr—' = x-1.
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