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Lecture 8: Other asymptotically efficient estimators
and pseudo MLE
One-Step MLE
Let sn(γ) be the score function.
Let θ̂

(0)
n be an estimator of θ that may not be asymptotically efficient.

The one-step MLE is the first iteration in computing an MLE (or RLE)
using the Newton-Raphson method with θ̂

(0)
n as the initial value,

θ̂
(1)
n = θ̂

(0)
n − [∇sn(θ̂

(0)
n )]−1sn(θ̂

(0)
n )

Without any further iteration, θ̂
(1)
n is asymptotically efficient under

some conditions.
Theorem 4.19

Assume that the conditions in Theorem 4.16 hold and that θ̂
(0)
n is√

n-consistent for θ (Definition 2.10).
(i) The one-step MLE θ̂

(1)
n is asymptotically efficient.

(ii) The one-step MLE obtained by replacing ∇sn(γ) with its expected
value, −In(γ) (the Fisher-scoring method), is asymptotically efficient.
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Proof

Since θ̂
(0)
n is

√
n-consistent, we can focus on the event

θ̂
(0)
n ∈ Aε = {γ : ‖γ−θ‖ ≤ ε} for a sufficiently small ε such that Aε ⊂Θ.

From the mean-value theorem,

sn(θ̂
(0)
n ) = sn(θ) +

[∫ 1

0
∇sn

(
θ + t(θ̂

(0)
n −θ)

)
dt
]

(θ̂
(0)
n −θ).

Substituting this into the formular for θ̂
(1)
n , we obtain that

θ̂
(1)
n −θ =−[∇sn(θ̂

(0)
n )]−1sn(θ) + [Ik −Gn(θ̂

(0)
n )](θ̂

(0)
n −θ),

where

Gn(θ̂
(0)
n ) = [∇sn(θ̂

(0)
n )]−1

∫ 1

0
∇sn

(
θ + t(θ̂

(0)
n −θ)

)
dt .

From the proof of Theorem 4.17,

‖[In(θ)]1/2[∇sn(θ̂
(0)
n )]−1[In(θ)]1/2 + Ik‖→p 0.
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Proof (continued)
Using an argument similar to those in the proof of Theorem 4.17, we
can show that

‖Gn(θ̂
(0)
n )− Ik‖→p 0.

These results and the fact that
√

n(θ̂
(0)
n −θ) = Op(1) imply

√
n(θ̂

(1)
n −θ) =

√
n[In(θ)]−1sn(θ) + op(1).

This proves (i).
The proof for (ii) is similar.

Example 4.40
Let X1, ...,Xn be i.i.d. from the Weibull distribution W (θ ,1), where θ > 0
is unknown.
Note that

sn(θ) =
n
θ

+
n

∑
i=1

logXi −
n

∑
i=1

X θ

i logXi
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Example 40 (continued)
Then

∇sn(θ) =− n
θ 2 −

n

∑
i=1

X θ

i (logXi)
2.

Hence, the one-step MLE of θ is

θ̂
(1)
n = θ̂

(0)
n

1 +
n + θ̂

(0)
n (∑

n
i=1 logXi −∑

n
i=1 X θ̂

(0)
n

i logXi)

n + (θ̂
(0)
n )2 ∑

n
i=1 X θ̂

(0)
n

i (logXi)2

 .
Usually one can use a moment estimator (§3.5.2) as the initial
estimator θ̂

(0)
n .

In this example, a moment estimator of θ is the solution of
X̄ = Γ(θ−1 + 1).

Results similar to that in Theorem 4.19 can be obtained in the GLM.
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One-way random effects model
Consider the one-way random effects model

Xij = µ + Ai + eij , j = 1, ...,n, i = 1, ...,m,

where µ ∈R, Ai ’s are iid as N(0,σ2
a ), eij ’s are iid as N(0,σ2), σ2

a and
σ2 are unknown, and Ai ’s and eij ’s are independent.
It can be shown that the MLE of µ is X̄·· = (nm)−1

∑
m
i=1 ∑

n
j=1 Xij , which is

normally distributed with mean µ and variance m−1(σ2
a + n−1σ2).

The MLE of σ2 is

σ̂
2 = SE/[m(n−1)], SE =

m

∑
i=1

n

∑
j=1

(Xij − X̄i ·)
2, X̄i · =

1
n

n

∑
j=1

Xij ,

and the MLE of σ2
a is σ̂2

a I[0,∞)(σ̂2
a ), where

σ̂
2
a = SA/[n(m−1)]−SE/[nm(n−1)], SA = n

m

∑
i=1

(X̄i ·− X̄··)2.

σ̂2
a is an ANOVA type estimator, which may be negative.
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One-way random effects model

We now show that as long as nm→ ∞, P(σ̂2
a ≤ 0)→ 0.

Since SE/σ2 has the chi-square distribution χ2
m(n−1),

SE/[m(n−1)]→p σ2 as nm→ ∞ (either n→ ∞ or m→ ∞).
Since SA/(σ2 + nσ2

a ) has the chi-square distribution χ2
m−1,

SA/[n(m−1)]∼ (σ2
a + n−1σ2)Wm−1/(m−1), where Wm−1 is a random

variable having the chi-square distribution χ2
m−1.

Case 1: m→ ∞ and n→ ∞.
SE/[nm(n−1)]→p 0 and (σ2

a + n−1σ2)Wm−1/(m−1)→p σ2
a > 0.

Hence, σ̂2
a →p σ2

a > 0, which implies P(σ̂2
a ≤ 0)→ 0.

Case 2: m→ ∞ but n is fixed.
(σ2

a + n−1σ2)Wm−1/(m−1)→p (σ2
a + n−1σ2) and

SE/[nm(n−1)]→p n−1σ2, which implies σ̂2
a →p σ2

a > 0.
Case 3: n→ ∞ but m is fixed.
(σ2

a + n−1σ2)Wm−1/(m−1)→d σ2
a Wm−1/(m−1) and

SE/[nm(n−1)]→p 0. By Slutsky’s theorem,
σ̂2

a →d σ2
a Wm−1/(m−1)≥ 0.

Hence, P(σ̂2
a ≤ 0)→ 0.
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One-way random effects model
Thus, the asymptotic distributions of MLE’s are the same as those of
X̄··, σ̂2

a , and σ̂2.
Since SE/σ2 ∼ χ2

m(n−1), as nm→ ∞ (either n→ ∞ or m→ ∞),
√

nm
(

σ̂
2−σ

2
)
→d N(0,2σ

4).

For σ̂2
a , we need to consider the three cases previously discussed.

Case 1: m→ ∞ and n→ ∞. In this case,
√

m
[

SE

nm(n−1)
− σ2

n

]
→p 0 and

√
m
(

Wm−1

m−1
−1
)
→d N(0,2).

Since SA/[n(m−1)]∼ (σ2
a + n−1σ2)Wm−1/(m−1),

√
m(σ̂

2
a −σ

2
a ) =

√
m
[

SA

n(m−1)
−
(

σ
2
a +

σ2

n

)
+

σ2

n
− SE

nm(n−1)

]
has the same asymptotic distribution as that of

√
m
(

σ
2
a +

σ2

n

)(
Wm−1

m−1
−1
)
.
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One-way random effects model
Thus, √

m(σ̂
2
a −σ

2
a )→d N(0,2σ

4
a ).

Case 2: m→ ∞ but n is fixed.
In this case,

√
m
[

SE

nm(n−1)
− σ2

n

]
→d N(0,2σ

4n−3).

From the argument in the previous case and the fact that SA and SE
are independent, we obtain that

√
m(σ̂

2
a −σ

2
a )→d N

(
0,2(σ

2
a + n−1

σ
2)2 + 2σ

4n−3
)
.

Case 3: n→ ∞ but m is fixed.
In this case, SE/[nm(n−1)]−σ2/n→p 0 and(

σ
2
a +

σ2

n

)(
Wm−1

m−1
−1
)
→d σ

2
a

(
Wm−1

m−1
−1
)
.

Therefore,

σ̂
2
a −σ

2
a →d σ

2
a

(
Wm−1

m−1
−1
)
.
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Pseudo MLE
Let X1, . . . ,Xn be a random sample from a pdf in a family indexed by
two parameters θ and π with likelihood `(θ ,π).
The method of pseudo MLE may be viewed as follows.

Based on the sample, an estimate π̂ of π is obtained using some
technique other than MLE.
The pseudo MLE of θ is then obtained by maximizing the
likelihood `(θ , π̂).

Discussion
π is viewed as a nuisance parameter.
Pseudo MLE consists of replacing π by an estimate and solving a
reduced system of likelihood equations, which works when a
higher dimensional MLE is intractable but a lower dimensional
MLE is feasible.
The consistency and asymptotic normality hold under fairly
standard regularity conditions.
The requirements on the model are slightly less stringent for
pseudo MLE than for the MLE.
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Lemma
Let X1, . . . ,Xn be i.i.d. from a distribution Fπ , with π ∈ Π.
Let π0 ∈ Π be the true value of parameter, and let π̂ be a sample
estimator such that π̂ →p π0.
Let ψ(x ,π) be a differentiable function of π for π ∈ B, an open
neighborhood of π0, and for almost all x in the sample space.
Suppose E |ψ(X ,π0)|< ∞.
If ∣∣∣∣ ∂

∂π
ψ(x ,π)

∣∣∣∣≤M(x)

for all π ∈ B, where E [M(X )] < ∞, then

1
n

n

∑
i=1

ψ(Xi , π̂)−→p Eψ(X ,π0).

Proof. Consider the Taylor series expansion of 1
n ∑

n
i=1 ψ(Xi , π̂).

Notation
s(θ ,π) = ∂ log`(θ ,π)/∂θ

∇ϕs(θ ,π) = ∂s(θ ,π)/∂ϕ, ϕ = θ or π.
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Asymptotic existence and consistency of pseudo MLE
Assume the conditions in Theorem 4.16.
Assume also π̂ is a consistent estimator of π0.
As n→ ∞, with probability tending to 1, there exists θ̂ such that

s(θ̂ , π̂) = 0 and θ̂ →p θ0

where θ0 is the true value of θ .

Proof.
By the lemma,

log`(θ , π̂)− log`(θ0, π̂)

n
→p E log

fθ ,π0(X1)

fθ0,π0(X1)

< logE
fθ ,π0(X1)

fθ0,π0(X1)
< 0,

which means `(θ , π̂) has a local maximum in (θ0− ε,θ0 + ε).
The rest of proof is the same as that for Theorem 4.17.

In many applications, the pseudo maximum likelihood equation has a
unique solution and the pseudo MLE is indeed consistent.
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Asymptotic Normality of pseudo MLE
Assume an additional assumption that

π̂−π0 =
1
n

n

∑
i=1

γ(Xi) + op(n−1/2)

where γ is a function satisfying Eγ(X1) = 0 and Var(γ(X1)) = Σπ is
finite.
We can then establish the asymptotic normality of the pseudo MLE.
We consider a consistent sequence θ̂ .
Since s(θ̂ , π̂) = 0,

−s(θ0, π̂) = ∇θ s(θ0, π̂)(θ̂ −θ0) + op(n1/2)

By the Lemma again, we can show that

n−1
∇θ s(θ0, π̂)→p −Σθ

where Σθ is the Fisher information about θ when π0 is known.
Then

n−1/2Σ−1
θ

s(θ0, π̂) =
√

n(θ̂ −θ0) + op(1)
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We need to derive the asymptotic normality of s(θ0, π̂).

n−1/2s(θ0, π̂) = n−1/2[s(θ0,π0) + s(θ0, π̂)−s(θ0,π0)]

= n−1/2s(θ0,π0) + n−1/2
∇πs(θ0,π0)(π̂−π0) + op(1)

By the SLLN, n−1∇πs(θ0,π0)→a.s. E [n−1∇πs(θ0,π0)] =−Σθπ .
Also,

s(θ0,π0) =
n

∑
i=1

ζ (Xi), ζ (Xi) =
∇θ0 fθ0,π0(Xi)

fθ ,π0(Xi)

with Eζ (Xi) = 0 and Var(ζ (Xi)) = Σθ .
Define Cov(ζ (Xi),γ(Xi)) = Σcov .
Then

Var(ζ (Xi) + Σθπγ(Xi)) = Σθ + ΣθπΣπΣτ
θπ −2ΣθπΣcov

and √
n(θ̂ −θ0) = n−1/2Σ−1

θ
s(θ0, π̂) + op(1)

= n−1/2
n

∑
i=1

Σ−1
θ

[ζ (Xi)−Σθπγ(Xi)] + op(1)

→d N
(

0,Σ−1
θ

+ Σ−1
θ

(ΣθπΣπΣτ
θπ −2ΣθπΣcov )Σ−1

θ

)
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Comparison

θ̂π0 : the MLE when π0 is known.
θ̂ML: the MLE of θ .
θ̂PML: the pseudo MLE of θ .
From Theorem 4.17, θ̂π0 is more efficient than θ̂ML or θ̂PML; also, θ̂ML is
more efficient than θ̂PML.
In the special case where Σθπ = 0, all three estimators are
asymptotically equivalent.

Example: Signal plus noise model
Let X1, . . . ,Xn be i.i.d. from Y + Z , where Y ∼ Poisson(θ0) is signal,
Z ∼ Bi(N,π0) is noise, and Y and Z are independent.
The moment estimators of π0 and θ0 are

π̂ =

√
(X̄ −S2)/N and θ̂ = X̄ −Nπ̂,

where X̄ and S2 are the sample mean and variance, provided X̄ ≥ S2,
which occurs with probability tending to 1 as n→ ∞.
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Since the p.d.f. of Xi involves convolution, the MLE of (θ ,π) is not so
easy to compute.
The pseudo MLE can be computed with π replaced by π̂ in the p.d.f.
The asymptotic variances of the MLE, pseudo MLE and moment
estimator (MME) of the signal parameter θ0 are:

σ
2
MLE =

φ22

φ11φ22−φ2
12
,

σ
2
PMLE =

1
φ11

+
φ2

12

φ2
11

t2(Γ22−2Γ23 + Γ33),

σ
2
MME =(1−Nt)2Γ22 + 2Nt(1−Nt)Γ23 + (Nt)2Γ33,

where t = 1/2Nπ0, Γ22 = θ0 + Nπ0(1−π0),Γ23 = θ0 + Nπ0(1−2π0),
Γ33 = θ0 + 2

(
θ0 + Nπ0(1−π0)

)2
+ Nπ0(1−π0)

(
1−6π0(1−π0)

)2,
φ11 = Σθ0 , φ12 = Σθ0π0 , and φ22 is the last diagonal element of the
Fisher information matrix about (θ ,p).
It is not easy to compare these expressions analytically.
For a specific range of parameters, we could find σ2

PMLE < σ2
MME.
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