Lecture 8: Other asymptotically efficient estimators

and pseudo MLE

Let s,(y) be the score function.
Let §,(,°) be an estimator of 6 that may not be asymptotically efficient.
The one-step MLE is the first iteration in computing an MLE (or RLE)

using the Newton-Raphson method with OA,(,O) as the initial value,

65" = 83" — [Vsn(85)] " sn(81”)
Without any further iteration, 5,(,1) is asymptotically efficient under

some conditions.
Theorem 4.19

Assume that the conditions in Theorem 4.16 hold and that 5,(,0) is
v/n-consistent for 8 (Definition 2.10).

(i) The one-step MLE §,(71) is asymptotically efficient.

(i) The one-step MLE obtained by replacing Vs, (y) with its expected
value, — I, the Fisher-scoring method), is asymptotically efficient.

UW-Madison (Statistics) Stat 710, Lecture 8 Jan 2019 1/15



Proof

Since 9(0) n-consistent, we can focus on the event
9,(,0) €A ={v:||ly— 0| < &} for a sufficiently small € such that A, C ©.
From the mean-value theorem,

sn(85") = $n(6) + [/01 V(6 +1(8) - 6))dt] 6 - 0).

Substituting this into the formular for §,(,1), we obtain that
05" =0 = —[Vsn(8:")] " 5n(0) + [ — Gn(0:")1(05” — 0),
where
Gn(619) = [V5(8} ]1/ Vsn(6+ (8% — 0))dt.
From the proof of Theorem 4.17,

1n(8)]/2[VSn(85°)] ' [n(6)]'/2 + k|| —p O.
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Proof (continued)

Using an argument similar to those in the proof of Theorem 4.17, we
can show that

1Gn(85>)) — Ikl —p 0.
These results and the fact that ﬁ(@,(,o) —0) = Op(1) imply
V(85" — 6) = v/nlln(6)] ' 51(8) + 0p(1).

This proves (i).
The proof for (ii) is similar.

| \

Example 4.40

Let Xi,...,X, be i.i.d. from the Weibull distribution W(6,1), where 6 >0
is unknown.
Note that

n n n
sn(0) =5+ ), 109X — ) X7 log X;
i=1 j

i=1

v
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Example 40 (continued)
Then

n
Vsn(0) = —— — Y X? (log X;)?.
Hence, the one-step MLE of 6 is

n+e‘°’(z, 1Iogx I 1X9" log X))
n+ (B2 xr, X% (log X,)?

80— |14

Usually one can use a moment estimator (§3.5.2) as the initial
estimator 6.°.

In this example, a moment estimator of 6 is the solution of
X=T(6""+1).

v

Results similar to that in Theorem 4.19 can be obtained in the GLM.

J
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One-way random effects model

Consider the one-way random effects model

X,y:u+A,-+e,-j, j=1,..,ni=1,.
where u € %, A/’s are iid as N(0,02), ej’s are iid as N(O, 6?), 62 and
o2 are unknown, and A;’s and gj’'s are independent.
It can be shown that the MLE of u is X. = (nm)~' £, ¥, Xj, which is
normally distributed with mean u and variance m~'(o2 + n—'0?2).
The MLE of 62 is

m n

62=Se/Imn-1)]. Se=) Y.(%-X) X=1Yx;

i=1j=1 j=1
and the MLE of 6% is 62 /jp...)(53), where

_ Su/[n(m— 1)~ Se/lnm(n—1)]. Sa=nY (X —X.)2

62 is an ANOVA type estimator, which may be negative.
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One-way random effects model

We now show that as long as nm — «, P(62 < 0) — 0.
Since Sg/0? has the chi-square distribution xfn(

n—1)°
Se/[m(n—1)] —p 62 as nm — o (either n — oo or M — oo).

Since Sa/(0? + no2) has the chi-square distribution x2, |,
Sa/ln(m—1)] ~ (62 +n"'62)Wp_1/(m—1), where W,,_; is a random
variable having the chi-square distribution x2 ,.

Case 1: m— oo and n— oo,

Se/[nm(n—1)] =0 and (62 +n~'6?)Wy,_1/(m—1) —p 62 > 0.
Hence, 62 —p 02 > 0, which implies P(62 < 0) — 0.

Case 2: m — « but nis fixed.

(62 +n'0®)Wn_1/(m—1) —=p (c5+n '0?) and

Se/[nm(n—1)] —, n~"62, which implies 62 —p 62 > 0.

Case 3: n— « but mis fixed.

(05 +n"0®)Wp_1/(m—1) =4 65 Wp_1/(m—1) and
Se/[nm(n—1)] =, 0. By Slutsky’s theorem,

62 —q02Wp_1/(m—1)>0.

Hence, P(62 < 0) — 0.
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One-way random effects model

Thus, the asymptotic distributions of MLE'’s are the same as those of
X., 62, and 62.
Since Sg/0? ~ xﬁv(nq), as nm — oo (either n — oo or M — oo),

vnm (82 — 62> —4 N(0,26%).

For 62, we need to consider the three cases previously discussed.
Case 1: m — o and n — . In this case,

5
vm _S% o —,0 and f( m11—1)—>dN(072)-

nm(n—1) n |
Since Sa/[n(m—1)] ~ (65 +n"10?)Wp_1/(m—1),
S c? c? S
G2 _ 52) — _PA (5242 > CPE
vm(eg = og) m_n(m—1) (Ga+ n>jL n nm(n—1)]
has the same asymptotic distribution as that of

fa(e %) (82 )
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One-way random effects model
Thus,

Vm(62 — 62) =4 N(0,263).
Case 2: m — « but nis fixed.
In this case,
2

\/E[ Se c

__9E o 4,.-3
A =1) n] —q N(0,207n7°).

From the argument in the previous case and the fact that S5 and Sg
are independent, we obtain that

Vm(62 —62) =4 N <0,2(G§ +n'62)2 4 204n*3) .

Case 3: n— o« but mis fixed.
In this case, Sg/[nm(n—1)]—062/n—, 0 and

2 W, W,
<6§+(;> <m”i_11 —1) —q 6§<m"1_11 —1).

Therefore,
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Pseudo MLE

Let Xi,..., X, be a random sample from a pdf in a family indexed by
two parameters 6 and = with likelihood ¢(0, ).
The method of pseudo MLE may be viewed as follows.
@ Based on the sample, an estimate 7 of x is obtained using some
technique other than MLE.

@ The pseudo MLE of 6 is then obtained by maximizing the

likelihood ¢(6, 7).
Discussion

@ 7 is viewed as a nuisance parameter.

@ Pseudo MLE consists of replacing = by an estimate and solving a
reduced system of likelihood equations, which works when a
higher dimensional MLE is intractable but a lower dimensional
MLE is feasible.

@ The consistency and asymptotic normality hold under fairly
standard regularity conditions.

@ The requirements on the model are slightly less stringent for
pseudo MLE than for the MLE.
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Lemma

Let Xi,..., X, be i.i.d. from a distribution F;, with = € 1.

Let my € N be the true value of parameter, and let 7 be a sample
estimator such that 7 — .

Let y(x, ) be a differentiable function of = for = € B, an open
neighborhood of 7y, and for almost all x in the sample space.
Suppose E|y(X,mp)| < eo.

If
5| < M)

for all = € B, where E[M(X)] < oo, then

fZl// i, ) —p EW(X, m).

Proof. Consider the Taylor series expansion of %Z,’-’:1 v (X, 7).

|

Notation
s(6,m)=dlogt(6,m)/d6
Ves(0,m)=09s(6,7)/de, o =06 or x.

v
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Asymptotic existence and consistency of pseudo MLE

Assume the conditions in Theorem 4.16.
Assume also 7 is a consistent estimator of . N
As n — oo, with probability tending to 1, there exists 6 such that
s(6,7)=0 and 6 —, 6
where 6y is the true value of 6.
By the lemma,
log(6,7) —log (6, )
n

f@,ﬂ'o (X1)

f@ ,ﬂo(X1)
fo.z,(X1) -0

f907ﬂ0 (X1 )

which means /4(6, ) has a local maximum in (6 — €, 6o + €).
The rest of proof is the same as that for Theorem 4.17.

—p Elog

<logE

In many applications, the pseudo maximum likelihood equation has a

unique solution and the pseudo MLE is indeed consistent.
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Asymptotic Normality of pseudo MLE
Assume an additional assumption that

—TL'O— Z'}’ +0p 1/2)

where v is a function satisfying Ey(X1) =0and Var(y(X1)) =X is
finite.
We can then establish the asymptotic normality of the pseudo MLE.
We consider a consistent sequence 0.
Since s(6,7) =0,

—5(60,7) = Vos(6o, ) (8 — 6) + 0p(n'/?)
By the Lemma again, we can show that

n'Ves(60,7) —p —Xo

where ¥ g is the Fisher information about 6 when mp is known.
Then

n~ 125 1s(6, %) = /(6 — 6) + 0p(1)
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We need to derive the asymptotic normality of s(6y, 7).
n~"/2s(6o, ) = n~"/?[s(60, M) + (60, ) — (60, o))

=n"25(60,m0) + N2V 15(60, 70) (T — M) + 0p(1)
By the SLLN, n='V;5(6p, ) —as. E[N'Vz8(60,m)] = —Zox -
Also,
Voo fop, 7 (Xi)
6 , T X X _ % 0,0\ "M/
0 0 Zg ) C( ) fG,no(X)
with E¢(X;) = 0 and Var(C(X)) Yo.

Define Cov(& (X)), Y(Xi)) = Zcov-
Then

Var(C(X,) + ZenY(Xi)) = Z9 + Zenznzén - 22(97rzcov
and
V/n(6 —60) = n~"/25"s(60, ) + 0p(1)

= 112 Y 51 06) ~ Zarr(X)] + 0p(1)

—aN(0, "+, (ZenZ2T0, — 2% 07T cov)Zg
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Comparison

§7ro: the MLE when g is known.

O the MLE of 6.

Opp: the pseudo MLE of 6. R R
From Theorem 4.17, §ﬂo is more efficient than §ML or Opyy; also, 6y is
more efficient than §pML.

In the special case where ¥y, =0, all three estimators are
asymptotically equivalent.

Example: Signal plus noise model

Let Xi,..., X, be i.i.d. from Y + Z, where Y ~ Poisson(6y) is signal,
Z ~ Bi(N,m) is noise, and Y and Z are independent.
The moment estimators of mg and 6y are

T=1/(X—S?)/N and 6=X- N7,

where X and S? are the sample mean and variance, provided X > S?,
which occurs with probability tending to 1 as n — .

UW-Madison (Statistics) Stat 710, Lecture 8 Jan 2019 14/15



Since the p.d.f. of X; involves convolution, the MLE of (6, x) is not so
easy to compute.
The pseudo MLE can be computed with 7 replaced by 7 in the p.d.f.

The asymptotic variances of the MLE, pseudo MLE and moment
estimator (MME) of the signal parameter 6, are:

GI\ZIILE :7(1522 )
$11022 — 02,
2 1 9%,
OpuLe =7 + 5 1 (T22 — 223+ '33),
P11 0%

G|\2/|ME :(1 = Nt)2F22 —|—2Nt(1 = Nt)F23 + (Nt)2F33,

where f = 1/2N7’L’0, o5 = 6 +N7'L'0(1 = 7170), o3 = 6 +N7‘L’0(1 —271'0),
33 = 6 +2(60 I N7170(1 = 71'0))2 = N7'L'0(1 = ﬂo)(1 = 67!70(1 = 77:0))2,
011 =Xg,, P12 = Zg,n,, aNd P22 is the last diagonal element of the
Fisher information matrix about (6, p).

It is not easy to compare these expressions analytically.

For a specific range of parameters, we could find 63, £ < SaE-
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