Lecture 9: Likelihood approach for incomplete data

Likelihood function when there are missing data

\(y \): a variable or a vector of variables of interest.
\(x \): a vector of covariates.
\(Y = (y_1, \ldots, y_n) \): the complete data when there is no missing.
\(X = (x_1, \ldots, x_n) \): the observed covariates.

If there is no missing data, then the likelihood function is

\[\ell(\theta | Y, X) = f_\theta(Y | X), \]

the joint probability density of \(Y \), given \(X \).

When there are missing data, this likelihood function cannot be used, because some values in \(Y \) are not observed.

\(Y_o \): the observed data
\(Y_m \): missing data
\(A \): the set of indicators of observing \(Y \)

\(f_\psi(A | Y, X) \): the probability density of \(A \) given \(Y \) and \(X \), where \(\psi \) is an unknown parameter vector.

The joint probability density of \(Y \) and \(A \) given \(X \) is

\[f_{\theta, \psi}(Y, A | X) = f_\psi(A | Y, X)f_\theta(Y | X) \]
Lecture 9: Likelihood approach for incomplete data

Likelihood function when there are missing data

y: a variable or a vector of variables of interest.

x: a vector of covariates.

Y = \((y_1, ..., y_n)\): the complete data when there is no missing.

X = \((x_1, ..., x_n)\): the observed covariates.

If there is no missing data, then the likelihood function is

\[\ell(\theta | Y, X) = f_\theta (Y | X), \]

the joint probability density of **Y**, given **X**.

When there are missing data, this likelihood function cannot be used, because some values in **Y** are not observed.

Y_o: the observed data

Y_m: missing data

A: the set of indicators of observing **Y**

\[f_\psi (A | Y, X) \]: the probability density of **A** given **Y** and **X**, where \(\psi \) is an unknown parameter vector.

The joint probability density of **Y** and **A** given **X** is

\[f_{\theta, \psi} (Y, A | X) = f_\psi (A | Y, X) f_\theta (Y | X) \]
Missing at random and likelihood analysis

Missing at random (MAR) or Ignorable Missingness:

\[f_\psi(A|Y_o, Y_m, X) = f_\psi(A|Y_o, X). \]

The observed likelihood under MAR is

\[
\ell(\theta, \psi|Y_o, A, X) = \int f_{\theta, \psi}(Y_o, Y_m, A|X) dY_m
\]

\[
= \int f_\psi(A|Y_o, Y_m, X)f_\theta(Y_o, Y_m|X) dY_m
\]

\[
= f_\psi(A|Y_o, X) \int f_\theta(Y_o, Y_m|X) dY_m
\]

When \(\theta \) and \(\psi \) are unrelated parameter vectors, maximizing \(\ell(\theta, \psi|Y_o, A, X) \) over \((\theta, \psi)\) can be done by separately maximizing \(\int f_\theta(Y_o, Y_m|X) dY_m \) over \(\theta \) (ignoring \(A \) and \(f_\psi(A|Y_o, X) \)) and maximizing \(f_\psi(A|Y_o, X) \) over \(\psi \).

If \(y \) is discrete then the integral should be replaced by summation. Other parameters can be estimated based on \(\hat{\theta} \) and \(\hat{\psi} \).
Estimation for univariate \(y \) under MAR

Assume that \((y_1, x_1), \ldots, (y_n, x_n)\) are iid.

Assuming without loss of generality that \(y_1, \ldots, y_{n_1}\) are observed and \(y_{n_1+1}, \ldots, y_n\) are missing, we obtain that

\[
\ell(\theta \mid Y_0, X) = \int f_\theta (Y \mid X) dY_m
\]

\[
= \int f_\theta (y_1 \mid x_1) \cdots f_\theta (y_n \mid x_n) dY_m
\]

\[
= f_\theta (y_1 \mid x_1) \cdots f_\theta (y_{n_1} \mid x_{n_1})
\]

\[
\times \int f_\theta (y_{n_1+1} \mid x_{n_1+1}) dy_{n_1+1} \cdots \int f_\theta (y_n \mid x_n) dy_n
\]

\[
= f_\theta (y_1 \mid x_1) \cdots f_\theta (y_{n_1} \mid x_{n_1}).
\]

This means that the maximum likelihood estimator of \(\theta \) can be obtained by simply maximizing

\[
f_\theta (y_1 \mid x_1) \cdots f_\theta (y_{n_1} \mid x_{n_1}).
\]

The incomplete “data” \((y_{n_1+1}, x_{n_1+1}), \ldots, (y_n, x_n)\) are ignored.
Example 1: Normal distributions

Consider the case where \(f_\theta(y|x) \) is the normal distribution with mean \(\alpha + \beta x \) and variance \(\sigma^2 \) and \(\theta = (\alpha, \beta, \sigma^2) \). Then,

\[
\ell(\theta|Y_o, X) = f_\theta(y_1|x_1) \cdots f_\theta(y_{n_1}|x_{n_1}) = \frac{1}{(2\pi\sigma^2)^{n_1/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n_1} (y_i - \alpha - \beta x_i)^2\right\}
\]

\[
\log \ell(\theta|Y_o, X) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n_1} (y_i - \alpha - \beta x_i)^2 - \frac{n_1}{2} \log \sigma^2.
\]

Maximizing \(\ell(\theta|Y_o, X) \) over \(\theta \) is the same as maximizing \(\log \ell(\theta|Y_o, X) \) over \(\theta \), which yields the solution

\[
\hat{\beta} = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)y_i}{\sum_{i=1}^{n_1} (x_i - \bar{x}_1)^2}, \quad \hat{\alpha} = \bar{y}_1 - \hat{\beta} \bar{x}_1,
\]

\[
\hat{\sigma}^2 = \frac{1}{n_1} \sum_{i=1}^{n_1} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2, \quad \bar{y}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} y_i, \quad \bar{x}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i.
\]
Two dimensional Case

\[Y_o = (y_{11}, \ldots, y_{n1}, y_{12}, \ldots, y_{n2}) \quad \text{and} \quad Y_m = (y_{(n_2+1)1}, \ldots, y_{n2}) \]

After removing \(X \) in the likelihood \(\ell(\theta|Y_o, X) \), we obtain that

\[
\ell(\theta|Y_o) = \int f_{\theta}(Y_o, Y_m) dY_m \\
= f_{\theta}(y_{11}, y_{12}) \cdots f_{\theta}(y_{n21}, y_{n22}) \int f_{\theta}(y_{(n_2+1)1}, y_{(n_2+1)2}) \cdots f_{\theta}(y_{n1}, y_{n2}) dY_m \\
= f_{\theta}(y_{11}, y_{12}) \cdots f_{\theta}(y_{n21}, y_{n22}) f_{\vartheta}(y_{(n_2+1)1}) \cdots f_{\vartheta}(y_{n1}),
\]

where \(\vartheta \) is a function of \(\theta \).

Using \(f_{\theta}(y_{i1}, y_{i2}) = f_{\varphi}(y_{i2}|y_{i1}) f_{\vartheta}(y_{i1}) \), where \((\vartheta, \varphi)\) is a one-to-one function of \(\theta \), we get

\[
\ell(\theta|Y_o) = f_{\vartheta}(y_{11}) \cdots f_{\vartheta}(y_{n1}) f_{\varphi}(y_{12}|y_{11}) \cdots f_{\varphi}(y_{n22}|y_{n21})
\]

Thus, \(\theta = (\vartheta, \varphi) \) can be estimated by seperately maximizing

\[
f_{\vartheta}(y_{11}) \cdots f_{\vartheta}(y_{n1}) \quad \text{and} \quad f_{\varphi}(y_{12}|y_{11}) \cdots f_{\varphi}(y_{n22}|y_{n21})
\]
Example 2: Bivariate normal data

Suppose that $f_\theta(y)$ is the density of the bivariate normal distribution with mean vector (μ_1, μ_2) and covariance matrix

$$
\begin{pmatrix}
\sigma_1^2 & \sigma_1 \sigma_2 \rho \\
\sigma_1 \sigma_2 \rho & \sigma_2^2
\end{pmatrix}
$$

Then

$$
\theta = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho).
$$

From the properties of the normal distribution, $f_\vartheta(y_{i1})$ is the normal distribution with mean μ_1 and variance σ_1^2, where $\vartheta = (\mu_1, \sigma_1^2)$, and $f_\varphi(y_{i2}|y_{i1})$ is the normal distribution with mean $\alpha + \beta y_{i1}$ and variance τ^2, where

$$
\alpha = \mu_2 - \frac{\sigma_2 \rho \mu_1}{\sigma_1}, \quad \beta = \frac{\sigma_2 \rho}{\sigma_1}, \quad \tau^2 = \sigma_2^2 (1 - \rho^2), \quad \varphi = (\alpha, \beta, \tau^2).
$$

It follows from the same derivation as that in Example 1 that the maximum likelihood estimator of ϑ can be obtained by maximizing
Example 2: Bivariate normal data

\[f_\theta(y_{11}) \cdots f_\theta(y_{n1}) = \frac{1}{(2\pi \sigma_1^2)^{n/2}} \exp \left\{ -\frac{1}{2\sigma_1^2} \sum_{i=1}^{n} (y_{i1} - \mu_1)^2 \right\} \]

The maximum likelihood estimator of \(\theta \) is

\[\hat{\theta} = (\hat{\mu}_1, \hat{\sigma}_1^2), \quad \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n} y_{i1}, \quad \hat{\sigma}_1^2 = \frac{1}{n} \sum_{i=1}^{n} (y_{i1} - \hat{\mu}_1)^2 \]

The maximum likelihood estimator of \(\phi \) can be obtained by maximizing

\[f_\phi(y_{12}|y_{11}) \cdots f_\phi(y_{n2|y_{n1}}) = \frac{1}{(2\pi \tau^2)^{n_2/2}} \exp \left\{ -\frac{1}{2\tau^2} \sum_{i=1}^{n_2} (y_{i2} - \alpha - \beta y_{i1})^2 \right\} \]

The maximum likelihood estimator of \(\phi \) is

\[\hat{\phi} = (\hat{\alpha}, \hat{\beta}, \hat{\tau}^2), \quad \hat{\beta} = \frac{\sum_{i=1}^{n_2} (y_{i1} - \bar{y}_1)(y_{i2} - \bar{y}_2)}{\sum_{i=1}^{n_2} (y_{i1} - \bar{y}_1)^2}, \quad \bar{y}_k = \frac{1}{n_2} \sum_{i=1}^{n_2} y_{ik} \]
Example 2: Bivariate normal data

\[\hat{\alpha} = \bar{y}_2 - \hat{\beta} \bar{y}_1, \quad \hat{\tau}^2 = \frac{1}{n_2} \sum_{i=1}^{n_2} (y_{i2} - \hat{\alpha} - \hat{\beta} y_{i1})^2. \]

Since

\[\mu_2 = \alpha + \beta \mu_1, \quad \sigma_2^2 = \tau^2 + \sigma_1^2 \beta^2, \quad \rho = \sigma_1 \beta / \sigma_2, \]

estimators of \(\mu_2, \sigma_2^2, \) and \(\rho \) can be obtained by replacing \(\alpha, \beta, \tau^2, \mu_1 \) and \(\sigma_1^2 \) by their maximum likelihood estimators.

General case of monotone missing data

Let \(x \) be a covariate vector and \(y \) be an \(m \)-dimensional vector of variables having missing values. Suppose that missing is monotone in the sense that, for the \(t \)th component, \(y_{1t}, \ldots, y_{nt} \) are observed and \(y_{(n_t+1)t}, \ldots, y_{nt} \) are missing, and \(n \geq n_1 \geq n_2 \geq \cdots \geq n_m \geq 2 \). Then
Example 2: Bivariate normal data

\[\hat{\alpha} = \bar{y}_2 - \hat{\beta} \bar{y}_1, \quad \hat{\tau}^2 = \frac{1}{n_2} \sum_{i=1}^{n_2} (y_{i2} - \hat{\alpha} - \hat{\beta} y_{i1})^2. \]

Since

\[\mu_2 = \alpha + \beta \mu_1, \quad \sigma_2^2 = \tau^2 + \sigma_1^2 \beta^2, \quad \rho = \sigma_1 \beta / \sigma_2, \]

estimators of \(\mu_2, \sigma_2^2, \) and \(\rho \) can be obtained by replacing \(\alpha, \beta, \tau^2, \mu_1 \) and \(\sigma_1^2 \) by their maximum likelihood estimators.

General case of monotone missing data

Let \(x \) be a covariate vector and \(y \) be an \(m \)-dimensional vector of variables having missing values. Suppose that missing is monotone in the sense that, for the \(t \)th component, \(y_{1t}, \ldots, y_{nt} \) are observed and \(y_{(nt+1)t}, \ldots, y_{nt} \) are missing, and \(n \geq n_1 \geq n_2 \geq \cdots \geq n_m \geq 2 \). Then
General case of monotone missing data

\[\ell(\theta | Y_o, X) \]

\[= \int \prod_{i=1}^{n} f_\theta(\mathbf{y}_{i1}, \ldots, \mathbf{y}_{im} | \mathbf{x}_i) d\mathbf{y}_m \]

\[= \int \prod_{i=1}^{n} f_\theta(\mathbf{y}_{i1} | \mathbf{x}_i) f_\theta(\mathbf{y}_{i2} | \mathbf{y}_{i1}, \mathbf{x}_i) \cdots f_\theta(\mathbf{y}_{im} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(m-1)}, \mathbf{x}_i) d\mathbf{y}_m \]

\[= \int \prod_{i=1}^{n} \prod_{t=1}^{m} f_\theta(\mathbf{y}_{it} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(t-1)}, \mathbf{x}_i) d\mathbf{y}_m \]

\[= \prod_{t=1}^{m} \int \prod_{i=1}^{n} f_\theta(\mathbf{y}_{it} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(t-1)}, \mathbf{x}_i) dy_{(nt+1)t} \cdots dy_{nt} \]

\[= \prod_{t=1}^{m} \prod_{i=1}^{nt} f_\theta(\mathbf{y}_{it} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(t-1)}, \mathbf{x}_i) \prod_{i=nt+1}^{n} \int f_\theta(\mathbf{y}_{it} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(t-1)}, \mathbf{x}_i) dy_{it} \]

\[= \prod_{t=1}^{m} \prod_{i=1}^{nt} f_\theta(\mathbf{y}_{it} | \mathbf{y}_{i1}, \ldots, \mathbf{y}_{i(t-1)}, \mathbf{x}_i) \]
General case of monotone missing data

The MLE of θ can be obtained by the following iterative method:

1. Calculate the MLE of θ_1 in the linear regression between y_{i1} and x_i, $i = 1, \ldots, n_1$.

2. Calculate the MLE of θ_2 in the linear regression between y_{i2} and (y_{i1}, x_i), $i = 1, \ldots, n_2$.

......

m. Calculate the MLE of θ_m in the linear regression between y_{im} and $(y_{i1}, \ldots, y_{i(m-1)}, x_i)$, $i = 1, \ldots, n_m$.

final. Obtain the MLE of θ using the function relationship between θ and $(\theta_1, \ldots, \theta_m)$.

The EM algorithm under MAR

If missing is not monotone, maximizing $\ell(\theta | Y_o, X)$ can be very difficult or impossible. The well-known EM algorithm can be applied to partially solve this problem (see Little and Rubin, 2002). The EM algorithm consists of an E step (expectation step) and an M step (maximization step) and we carry out iterations between the E and M steps.
General case of monotone missing data

The MLE of θ can be obtained by the following iterative method:

1. Calculate the MLE of θ_1 in the linear regression between y_{i1} and x_i, $i = 1, \ldots, n_1$.
2. Calculate the MLE of θ_2 in the linear regression between y_{i2} and (y_{i1}, x_i), $i = 1, \ldots, n_2$.

m. Calculate the MLE of θ_m in the linear regression between y_{im} and $(y_{i1}, \ldots, y_{i(m-1)}, x_i)$, $i = 1, \ldots, n_m$.

final. Obtain the MLE of θ using the function relationship between θ and $(\theta_1, \ldots, \theta_m)$.

The EM algorithm under MAR

If missing is not monotone, maximizing $\ell(\theta | Y_o, X)$ can be very difficult or impossible. The well-known EM algorithm can be applied to partially solve this problem (see Little and Rubin, 2002). The EM algorithm consists of an E step (expectation step) and an M step (maximization step) and we carry out iterations between the E and M steps.
E step at the tth iteration

Let $\theta^{(t-1)}$ be the estimate of θ at the $(t-1)$th iteration of the EM algorithm. The E step at the tth iteration calculates the expectation

$$Q(\theta|\theta^{(t-1)}) = E_{\theta^{(t-1)}}[\log f_\theta(Y_o, Y_m|X)|Y_o, X]$$

$$= \int [\log f_\theta(Y_o, Y_m|X)] f_{\theta^{(t-1)}}(Y_m|Y_o, X) dY_m$$

M step at the tth iteration

We maximize $Q(\theta|\theta^{(t-1)})$ over θ, i.e., we find a $\theta^{(t)}$ that satisfies

$$Q(\theta^{(t)}|\theta^{(t-1)}) = \max_\theta Q(\theta|\theta^{(t-1)})$$

Why does EM algorithm work?

The EM algorithm maximizes

$$Q(\theta|\theta) = \int [\log f_\theta(Y_o, Y_m|X)] f_{\theta}(Y_m|Y_o, X) dY_m$$

How does this relate to maximizing $\ell(\theta|Y_o, X)$?
E step at the tth iteration

Let $\theta^{(t-1)}$ be the estimate of θ at the $(t-1)$th iteration of the EM algorithm. The E step at the tth iteration calculates the expectation

$$Q(\theta|\theta^{(t-1)}) = E_{\theta^{(t-1)}}[\log f_\theta(Y_o, Y_m|X)|Y_o, X]$$

$$= \int [\log f_\theta(Y_o, Y_m|X)]f_{\theta^{(t-1)}}(Y_m|Y_o, X)dY_m$$

M step at the tth iteration

We maximize $Q(\theta|\theta^{(t-1)})$ over θ, i.e., we find a $\theta^{(t)}$ that satisfies

$$Q(\theta^{(t)}|\theta^{(t-1)}) = \max_\theta Q(\theta|\theta^{(t-1)})$$

Why does EM algorithm work?

The EM algorithm maximizes

$$Q(\theta|\theta) = \int [\log f_\theta(Y_o, Y_m|X)]f_\theta(Y_m|Y_o, X)dY_m$$

How does this relate to maximizing $\ell(\theta|Y_o, X)$?
E step at the tth iteration

Let $\theta^{(t-1)}$ be the estimate of θ at the $(t-1)$th iteration of the EM algorithm. The E step at the tth iteration calculates the expectation

$$Q(\theta|\theta^{(t-1)}) = E_{\theta^{(t-1)}}[\log f_\theta(Y_o, Y_m|X)|Y_o, X]$$

$$= \int \left[\log f_\theta(Y_o, Y_m|X) \right] f_\theta^{(t-1)}(Y_m|Y_o, X) dY_m$$

M step at the tth iteration

We maximize $Q(\theta|\theta^{(t-1)})$ over θ, i.e., we find a $\theta^{(t)}$ that satisfies

$$Q(\theta^{(t)}|\theta^{(t-1)}) = \max_\theta Q(\theta|\theta^{(t-1)})$$

Why does EM algorithm work?

The EM algorithm maximizes

$$Q(\theta|\theta) = \int \left[\log f_\theta(Y_o, Y_m|X) \right] f_\theta(Y_m|Y_o, X) dY_m$$

How does this relate to maximizing $\ell(\theta|Y_o, X)$?
Convergence of EM-algorithm

Since \(\ell(\theta | Y_o, X) = \int f_\theta(Y_o, Y_m | X) dY_m = f_\theta(Y_o, Y_m | X) / f_\theta(Y_m | Y_o, X) \),

\[\log \ell(\theta | Y_o, X) = Q(\theta | \theta) - H(\theta | \theta) \]

where \(H(\theta | \theta) = \int [\log f_\theta(Y_m | Y_o, X)] f_\theta(Y_m | Y_o, X) dY_m. \)

By Jensen’s inequality, for any \(t \), \(H(\theta | \theta(t)) \leq H(\theta(t) | \theta(t)). \)

Hence, at the \(t \)th iteration,

\[
\begin{align*}
\log \ell(\theta(t) | Y_o, X) - \log \ell(\theta(t-1) | Y_o, X) &= Q(\theta(t) | \theta(t-1)) - Q(\theta(t-1) | \theta(t-1)) - H(\theta(t) | \theta(t-1)) + H(\theta(t-1) | \theta(t-1)) \\
&\geq Q(\theta(t) | \theta(t-1)) - Q(\theta(t-1) | \theta(t-1)) \geq 0
\end{align*}
\]

with equality holds if and only if \(Q(\theta(t) | \theta(t-1)) = Q(\theta(t-1) | \theta(t-1)) \).

This means the change from \(\theta(t-1) \) to \(\theta(t) \) increases the likelihood.

For given observed \((Y_o, X) \), the EM algorithm produces a sequence \(\theta(t), t = 1, 2, \ldots \). Under certain conditions, this sequence converges and the limit is considered as the EM estimator of \(\theta \).