Lecture 10: Density estimation and nonparametric

regression
Density estimation

Suppose that Xi,..., X, are i.i.d. random variables from F and that F is
unknown but has a Lebesgue p.d.f. f.

Estimation of F can be done by estimating f.

Note that estimators of F derived in §5.1.1 and §5.1.2 do not have
Lebesgue p.d.f.s. n

Having a density estimator f, F can be estimated by /f:_(X) = [*_f(t)dt,
which may be better than Fj,

f itself may be of interest

Difference quotient

Since f(t) = F'(t), a simple estimator of f(t) is the difference quotient
£(t) = ol An) = Falt=20) =
2An
where F, is the empirical c.d.f. and {A,} is a sequence of positive

constants.
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Properties of difference quotient
Since 2nA,f,(t) has the binomial distribution

Bi(F(t+An) — F(t—An),n),
E[f,(1)] — (1) if Ap —0as n— oo

and
Var(fn(t)) —0 if A«n —0 and nA«n —> o0,

Thus, we should choose A, converging to 0 slower than n~'.
If we assume that A, — 0, nA, — =, and f is continuously differentiable
at t, then it can be shown (exercise) that

f(t 1
mse,(p)(F) = 2,(7/1)n +0 < )Ln) +0(27)

and, under the additional condition that nA3 — 0,

V[ fa(t) = £(£)] =g N(0, 3£(t)).
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Kernel density estimators

A useful class of estimators is the class of kernel density estimators:

1) = /l,,ZW< X):

where w is a known Lebesgue p.d.f. on # and is called the kernel.

If we choose w(t) = %/[_171](1‘), then 7(1‘) is essentially the same as the
so-called histogram.

Properties of kernel density estimator

\

f is a Lebesgue density on #, since

[t 3 5 [ ()= w1

The bias of 7(t) as an estimator of f(t) is
ETF(8)] - £(t) - / (42) H2)0z—1(1)

:/W Y)f(t—Any) — £(1)]dy
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If f is bounded and continuous at ¢, then, by the dominated
convergence theorem, the bias of f(t) converges to 0 as A, — 0.
If f' is bounded and continuous at t and [ |t|w(t)dt < «, then the bias

~

of (1) is O(An).

If f” is bounded and continuous at t, [ tw(t)dt =0, and
0 < [ Pw(t)dt < « (2nd order kernel), then the bias of f(t) is O(A32).

If f is bounded and continuous at t and wy = [[w/(t)]?dt < o, then

A~

Var(f(t)) =
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Hence, if wy < , f’ is bounded and continuous at t, then

wof(t) 2
mse; (F)= i, + O(A5)

and the best rate n~2/3 is achieved when A, has order n=1/3,
If wy < oo, " is bounded and continuous at t and [ tw(t)dt = 0, then

wof(t) 4
mse; (F)= M, + O(Ay)

and the best rate n~*/% is achieved when A, has order n—1/5.
If A, — 0, nA, — oo, f is bounded and continuous at t and wy < «, then

Vi {(t) — E[f(1)]} =0 N(0, wof(1)).

This can be shown as follows.
Then Yj,, ..., Yan are independent and identically distributed with

E(Ysy) = /_Z w (t;_t,,x> F(x)dx
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= ln/_i w(y)f(t—Any)dy
=O(Ln)

va(Vio) = [ [w<t;nx>]2f(x)dx
(Lo ()]
_ g /_Z[w(y)12f(t—any)dy+ O(A2)
= Aawof(t) +o(An),

since f is bounded and continuous at t and wy = [_[w(t)]2dt < .

Then ( )
Wof t 1
Var 12 Z m) = n + 0 <%> c

Note that 7(t) — EF(t) = X4 [Yin — E(Yin)l/(nAn).
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To apply Lindeberg’s central limit theorem to 7(1‘), we find, for € > 0,

E(Yinlyvin £ ievim))
An

= w(y)Pf(t — Aay)dy,
w)-ECrppesam T AN

Since E(Y1n) = O(An), if A — 0 and nA, — oo, the set
{Iw(y) — E(Y1n)| > €V/nn} shrinks to empty as n — .
This proves that Lindeberg’s condition is satisfied and thus

Vnn{f(t) — E[F(t)]} —a N(0,wof(1)).

Furthermore, if

ETF(1)] - £(£) = O(An)
Vaa{E[(0)] - ()} = O (V/1Ass) =0

if N2 — 0, which implies that

Van{f(t) — £(O]} —a N(0, wof(t)).
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If
E[f(1)] - (1) = O(AZ)

Vaa{EF(t)] - (1)} = O (\/nAaA2) — 0

if N5 — 0, which implies that
VA (1) = ()]} =g N(O, wof(1)).

In any case, the best choice of A, for the mse does not satisfy nA3 — 0
or nAy — 0.

then

Example 5.4
An i.i.d. sample of size n =200 was generated from N(0,1).

Density curve estimates, difference quotient f, (short dashed curve)
and kernel estimate 7 (long dashed curve), are plotted in Figure 5.1
with the curve of the true p.d.f. (solid curve)

For the kernel estimate, w(t) = 1e~Il is used and 1, = 0.4.

From Figure 5.1, it seems that the kernel estimate is much better than

the difference quotient.
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Figure 5.1. Density estimates in Example 5.4
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Nonparametric regression
In many applications we want to estimate the regression function

u(t) = E(Yilt) = E(Yi|Xi = 1)

based on a random sample (Y7, X1),...,(Yn, X) from a population with
a pdf f(x,y).

In nonparametric regression, we do not specify any form of u(t) except
that it is a smooth function of t.

A nonparametric estimator of u(t) based on a kernel w(t) is

- frw(5) /(52 eeo

From the previous discussion on the kernel estimation of the pdf of X;,
f(t), the denominator divided by ni, converges in probability to () if
An— 0 and ni, — oo.

Hence, for the consistency of i(t) as an estimator of u(t), it suffices to
show that, for any t € Z,
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t— X
hn(t) = MHZY (kn )—>p/yfty)dy

Consider first the expectation:

et =76 [ (5]

_ )zn//yw <t;nx> F(x, y)dxdy
_ / / yw (2) F(t — Anz, y)dzdy

Suppose that f(x,y) is continuous and f(x,y) < c(y)g(y), where g(y)
is the pdf of Y; and c(y) is a function of y satisfies

E[Yile(Yil = [ lyle)a(y)dy <=
Then, if A, — 0 as n — «, by the dominated convergence theorem,

lim E[n(t)] = lim //yw (2) f(t — Anz.y)dzdy

_//yw f(t,y)dzdy
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. / w(z) dz/yf(t,y)dy

= /yf(t,y)dy

Thus, it remains to show that the variance of h,(t) converges to 0
under some conditions.

Var(hp(t)) =

2 Yo (5
Mg//y tT f(x,y)dxdy

:nT” [ [ (@1t~ anz,y)azay

Suppose that f(x, y) is continuous and f(x,y) < c(y)g(y), where g(y)
is the pdf of Y; and c(y) is a function of y satisfies
E[Y?e(Y)] = [ y*e(y)g(y)dy < e
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Also, assume wy = [[w(2)]?dz < = and E(Y?) < .

Then
im [ [V w@F H(t~Anz.y)dzdy = [ [ y?(w(2) f(t.y)dzay
~ [w@rez [ y*t.y)dy
< oo
Hence,

Var(hn(t)) = O (nl)

which converges to 0 if nA, — .

Under some more conditions, similar to the estimation of f(¢), for any
t € #, we can show that for some function ¢2(t),

v/ nAq[1i(t) — u(t)] converges in distribution to N(0, 62(t))

Note that 1i(t) is a ratio estimator hn(t)/7(t).
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Averaging kernel estimators

Kernel estimators of u(t) = E(Y;|X; = t) have convergence rates
slower than n~1/2.

However, the convergence rate is n—'/2 if we average kernel
estimators.

For example, we can estimate u = E(Y;) = E[E(Yi|Xi)] = E[u(X;)] by

o) /()

j=1i=1 j=1i=

a ratio of V-statistics (but the kernel of V-statistics depending on A,).
Under some conditions, it can be shown that

V/n(fi — w) converges in distribution to N(0, 62)
for some 2.
Conditions on A,: for some constant C > 0,
Ap=Cn~®, %<s<1 or %<s<1 if [tw(t)dt=0

This is not the best choice (s = 1/3 or 1/5) for estimating u(t) with a
fixed t.
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k-nearest neighbor (k-NN) estimators
The kernel estimator

- X

An

ﬁ(t)zéY;W( )/§w<t;X> te

is a weighted average of Y;’s in a fixed neighorhood around ¢,
determined in shape by the kernel w and the bandwidth A,.

The k-NN estimator is a weighted average in a varying neighborhood
defined through those Xj’s which are among the k-nearest neighbors
of t in Euclidean distance:

t

n

ﬁngnmm

1/k i€ X;is one of the k nearest observations to t
Wii = :
0 otherwise

Example
(Xi, Yi)'s = (1,5), (7,12), (3,1), (2,0),(5,4)
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n=>35Kk=3,t=4.
The 3 nearest neighborsto t=4are3 (i=3),2 (i=4),5 (i=5)
Wi1(4) =0, Wio(4) = 0, Wis(4) =1/3, Wia(4) =1/3, Wis(4) =1/3
Thus, u=(1+0+4)/3=5/3.
Asymptotic theory
@ To reduce noise we need let k tend to infinity as a function of n.
@ To keep the approximation error (bias) low we need the
neighborhood around t shrinks asymptotically to O.
@ k/n~= A, the bandwidth in kernel estimation; i.e., we need k — o
and k/n— 0.

If (X1, Y1), ... (Xn, Yn) are i.i.d. with E(Y?) < o, X;sim Lebesgue p.d.f.
f, and u(t) = E(Yy|X; = t), then, for some 2(t),

n(t) - u(t) = Lo e (1) +o(5)

2
Gk(t)—i—o

Var(ii(t)) =

Jan 2019 16/16

UW-Madison (Statistics) Stat 710, Lecture 10



