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Lecture 11: Sample quantiles, robustness, and
asymptotic efficiency
Estimation of quantiles (percentiles)
Suppose that X1, ...,Xn are i.i.d. random variables from an unknown
nonparametric F
For p ∈ (0,1),

G−1(p) = inf{x : G(x)≥ p}
is the pth quantile for any c.d.f. G on R.
Quantiles of F are often the parameters of interest.
θp = F−1(p) = pth quantile of F
Fn = empirical c.d.f. based on X1, ...,Xn
θ̂p = F−1

n (p) = the pth sample quantile.

θ̂p = cnpX(mp) + (1−cnp)X(mp+1),

where X(j) is the j th order statistic, mp is the integer part of np,
cnp = 1 if np is an integer, and cnp = 0 if np is not an integer.
Thus, θ̂p is a linear function of order statistics.
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F (θp−) = limx→θp ,x<θp F (x)
F (θp) = limx→θp ,x>θp F (x)
F (θp−)≤ p ≤ F (θp)
F is not flat in a neighborhood of θp if and only if p < F (θp + ε) for any
ε > 0.

Theorem 5.9
Let X1, ...,Xn be i.i.d. random variables from a c.d.f. F satisfying
p < F (θp + ε) for any ε > 0. Then, for every ε > 0 and n = 1,2,...,

P
(
|θ̂p−θp|> ε

)
≤ 2Ce−2nδ 2

ε ,

where δε is the smaller of F (θp + ε)−p and p−F (θp− ε) and C is the
same constant in Lemma 5.1(i).

Remarks

Theorem 5.9 implies that θ̂p is strongly consistent for θp (exercise)

Theorem 5.9 implies that θ̂p is
√

n-consistent for θp if F ′(θp−) and
F ′(θp+) (the left and right derivatives of F at θp) exist (exercise).
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Proof of Theorem 5.9
Let ε > 0 be fixed.
Note that, for any c.d.f. G on R,

G(x)≥ t if and only if x ≥G−1(t)

(exercise).
Hence

P
(
θ̂p > θp + ε

)
= P

(
p > Fn(θp + ε)

)
= P

(
F (θp + ε)−Fn(θp + ε) > F (θp + ε)−p

)
≤ P

(
ρ∞(Fn,F ) > δε

)
≤ Ce−2nδ 2

ε ,

where the last inequality follows from DKW’s inequality (Lemma 5.1(i)).
Similarly,

P
(
θ̂p < θp− ε

)
≤ Ce−2nδ 2

ε .

This completes the proof.
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The distribution of a sample quantile

The exact distribution of θ̂p can be obtained as follows.
Since nFn(t) has the binomial distribution Bi(F (t),n) for any t ∈R,

P
(
θ̂p ≤ t

)
= P

(
Fn(t)≥ p

)
=

n

∑
i=lp

(
n
i

)
[F (t)]i [1−F (t)]n−i ,

where lp = np if np is an integer and lp = 1+ the integer part of np if np
is not an integer.
If F has a Lebesgue p.d.f. f , then θ̂p has the Lebesgue p.d.f.

ϕn(t) = n
(

n−1
lp−1

)
[F (t)]lp−1[1−F (t)]n−lp f (t).

This can be shown by differentiating P
(
Fn(t)≥ p

)
term by term, which

leads to
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ϕn(t) =
n

∑
i=lp

(
n
i

)
i[F (t)]i−1[1−F (t)]n−i f (t)

−
n

∑
i=lp

(
n
i

)
(n− i)[F (t)]i [1−F (t)]n−i−1f (t)

=

(
n
lp

)
lp[F (t)]lp−1[1−F (t)]n−lp f (t)

+n
n

∑
i=lp+1

(
n−1
i−1

)
[F (t)]i−1[1−F (t)]n−i f (t)

−n
n−1

∑
i=lp

(
n−1

i

)
[F (t)]i [1−F (t)]n−i−1f (t)

= n
(

n−1
lp−1

)
[F (t)]lp−1[1−F (t)]n−lp f (t).

The following result provides an asymptotic distribution for
√

n(θ̂p−θp).
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Theorem 5.10
Let X1, ...,Xn be i.i.d. random variables from F .
(i) If F (θp) = p, then P(

√
n(θ̂p−θp)≤ 0)→ Φ(0) = 1

2 , where Φ is the
c.d.f. of the standard normal.
(ii) If F is continuous at θp and there exists F ′(θp−) > 0, then

P
(√

n(θ̂p−θp)≤ t
)
→ Φ(t/σ

−
F ), t < 0,

where σ
−
F =

√
p(1−p)/F ′(θp−).

(iii) If F is continuous at θp and there exists F ′(θp+) > 0, then

P
(√

n(θ̂p−θp)≤ t
)
→ Φ(t/σ

+
F ), t > 0,

where σ
+
F =

√
p(1−p)/F ′(θp+).

(iv) If F ′(θp) exists and is positive, then

√
n(θ̂p−θp)→d N(0,σ2

F ),

where σF =
√

p(1−p)/F ′(θp).
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Proof
The proof of (i) is left as an exercise.
Part (iv) is a direct consequence of (i)-(iii) and the proofs of (ii) and (iii)
are similar.
Thus, we only give a proof for (iii).
Let t > 0, pnt = F (θp + tσ+

F n−1/2), cnt =
√

n(pnt −p)/
√

pnt (1−pnt ), and
Znt = [Bn(pnt )−npnt ]/

√
npnt (1−pnt ), where Bn(q) denotes a random

variable having the binomial distribution Bi(q,n).
Then

P
(
θ̂p ≤ θp + tσ+

F n−1/2) = P
(
p ≤ Fn(θp + tσ+

F n−1/2)
)

= P
(
Znt ≥−cnt

)
.

Under the assumed conditions on F , pnt → p and cnt → t .
Hence, the result follows from

P
(
Znt <−cnt

)
−Φ(−cnt )→ 0.

But this follows from the CLT (Example 1.33) and Pólya’s theorem
(Proposition 1.16).
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If F ′(θp−) and F ′(θp+) exist and are positive, but F ′(θp−) 6= F ′(θp+),
then the asymptotic distribution of

√
n(θ̂p−θp) has the c.d.f.

Φ(t/σ
−
F )I(−∞,0)(t) + Φ(t/σ

+
F )I[0,∞)(t),

a mixture of two normal distributions.
An example of such a case when p = 1/2 is

F (x) = xI[0, 1
2 )(x) + (2x − 1

2)I[ 1
2 ,

3
4 )(x) + I[ 3

4 ,∞)(x).

Bahadur’s representation
When F ′(θp−) = F ′(θp+) = F ′(θp) > 0, Theorem 5.9 shows that the
asymptotic distribution of

√
n(θ̂p−θp) is the same as that of√

n[Fn(θp)−F (θp)]/F ′(θp).
The next result reveals a stronger relationship between sample
quantiles and the empirical c.d.f.

Theorem 5.11 (Bahadur’s representation)
Let X1, ...,Xn be i.i.d. random variables from F .
If F ′(θp) exists and is positive, then

√
n(θ̂p−θp) =

√
n[Fn(θp)−F (θp)]/F ′(θp) + op(1).
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Proof
Let t ∈R, θnt = θp + tn−1/2, Zn(t) =

√
n[F (θnt )−Fn(θnt )]/F ′(θp), and

Un(t) =
√

n[F (θnt )−Fn(θ̂p)]/F ′(θp).
It can be shown (exercise) that

Zn(t)−Zn(0) = op(1).

Since |p−Fn(θ̂p)| ≤ n−1,

Un(t) =
√

n[F (θnt )−p + p−Fn(θ̂p)]/F ′(θp)

=
√

n[F (θnt )−p]/F ′(θp) + O(n−1/2)

→ t .

Let ξn =
√

n(θ̂p−θp).
Then, for any t ∈R and ε > 0,

P
(
ξn ≤ t ,Zn(0)≥ t + ε

)
= P

(
Zn(t)≤ Un(t),Zn(0)≥ t + ε

)
≤ P

(
|Zn(t)−Zn(0)| ≥ ε/2

)
+P

(
|Un(t)− t | ≥ ε/2

)
→ 0
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because, if Zn(t)≤ Un(t), Zn(0)≥ t + ε, and |Zn(t)−Zn(0)|< ε/2, then

−ε/2 < Zn(t)−Zn(0)≤ Un(t)−Zn(0)≤ Un(t)− (t + ε)

i.e., Un(t)− t > ε/2.
Similarly,

P
(
ξn ≥ t + ε,Zn(0)≤ t

)
→ 0.

It follows from the result in Exercise 128 of §1.6 that

ξn−Zn(0) = op(1),

which is what we need to prove.

Corollary 5.1
Let X1, ...,Xn be i.i.d. random variables from F having positive
derivatives at θpj , where 0 < p1 < · · ·< pm < 1 are fixed constants.
Then √

n[(θ̂p1 , ..., θ̂pm )− (θp1 , ...,θpm )]→d Nm(0,D),

where D is the m×m symmetric matrix whose (i , j)th element is

pi(1−pj)/[F ′(θpi )F
′(θpj )], i ≤ j .
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Robustness and efficiency: median vs mean
Let F be a c.d.f. on R symmetric about θ ∈R with F ′(θ) > 0.
Then θ = θ0.5 and is called the median of F .
If F has a finite mean, then θ is also equal to the mean.
We consider the estimation of θ based on i.i.d. Xi ’s from F .
If F is normal, it has been shown in previous chapters that the sample
mean X̄ is the UMVUE and MLE of θ and is asymptotically efficient.
On the other hand, if F is the c.d.f. of the Cauchy distribution C(θ ,1), it
follows from Exercise 78 in §1.6 that X̄ has the same distribution as
X1, i.e., X̄ is as variable as X1, and is inconsistent as an estimator of θ .
Why does X̄ perform so differently?
An important difference between the normal and Cauchy p.d.f.’s is that
the former tends to 0 at the rate e−x2/2 as |x | → ∞, whereas the latter
tends to 0 at the much slower rate x−2, which results in

∫
|x |dF (x) = ∞.

The poor performance of X̄ in the Cauchy case is due to the high
probability of getting extreme observations and the fact that X̄ is
sensitive to large changes in a few of the Xi ’s.
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This suggests the use of a robust estimator that discards some
extreme observations.
The sample median, which is defined to be the 50%th sample quantile
θ̂0.5 described in §5.3.1, is insensitive to the behavior of F as |x | → ∞.
Since both the sample mean and the sample median can be used to
estimate θ , a natural question is when is one better than the other,
using a criterion such as the amse (asymptotic efficiency).
Unfortunately, a general answer does not exist, since the asymptotic
relative efficiency between these two estimators depends on the
unknown distribution F .
If F does not have a finite variance, then Var(X̄ ) = ∞ and X̄ may be
inconsistent.
In such a case the sample median is certainly preferred, since θ̂0.5 is
consistent and asymptotically normal as long as F ′(θ) > 0, and may
have a finite variance (Exercise 60).
The following example, which compares the sample mean and median
in some cases, shows that the sample median can be better even if
Var(X1) < ∞.
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Example 5.10 (asymptotic efficiency and robustness)
Suppose that Var(X1) < ∞.
Then, by the CLT, √

n(X̄ −θ)→d N(0, Var(X1)).

By Theorem 5.10(iv),
√

n(θ̂0.5−θ)→d N(0, [2F ′(θ)]−2).

Hence, the asymptotic relative efficiency of θ̂0.5 w.r.t. X̄ is

e(F ) = 4[F ′(θ)]2 Var(X1).

If F is the c.d.f. of N(θ ,σ2), then Var(X1) = σ2,
F ′(θ) = (

√
2πσ)−1, and e(F ) = 2/π = 0.637.

If F is the c.d.f. of the logistic distribution LG(θ ,σ), then
Var(X1) = σ2π2/3, F ′(θ) = (4σ)−1, and e(F ) = π2/12 = 0.822.
If F (x) = F0(x −θ) and F0 is the c.d.f. of the t-distribution tν with
ν ≥ 3, then Var(X1) = ν/(ν−2), F ′(θ) = Γ( ν+1

2 )/[
√

νπΓ( ν

2 )],
e(F ) = 1.62 when ν = 3, e(F ) = 1.12 when ν = 4, and
e(F ) = 0.96 when ν = 5.
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If F is the c.d.f. of the double exponential distribution DE(θ ,σ),
then F ′(θ) = (2σ)−1 and e(F ) = 2.
Consider the Tukey model

F (x) = (1− ε)Φ
(x−θ

σ

)
+ εΦ

(x−θ

τσ

)
,

where σ > 0, τ > 0, and 0 < ε < 1.
Then

Var(X1) = (1− ε)σ
2 + ετ

2
σ

2, F ′(θ) = (1− ε + ε/τ)/(
√

2πσ),

and
e(F ) = 2(1− ε + ετ

2)(1− ε + ε/τ)2/π.

Note that limε→0 e(F ) = 2/π and limτ→∞ e(F ) = ∞.

Trimmed sample mean
Since the sample median uses at most two actual values of xi ’s, it may
go too far in discarding observations, which results in a possible loss of
efficiency.
The trimmed sample mean is a natural compromise between the
sample mean and median.
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The α-trimmed sample mean and its properties
The α-trimmed sample mean is defined as

X̄α =
1

(1−2α)n

n−mα

∑
j=mα +1

X(j),

where mα is the integer part of nα and α ∈ (0, 1
2).

It discards the mα smallest and mα largest observations.
The sample mean and median can be viewed as two extreme cases of
X̄α as α → 0 and 1

2 , respectively.
If F (x) = F0(x−θ), where F0 is symmetric about 0 and has a
Lebesgue p.d.f. positive in the range of X1, then

√
n(X̄α −θ)→d N(0,σ2

α ),

where

σ
2
α =

2
(1−2α)2

{∫ F−1
0 (1−α)

0
x2dF0(x) + α[F−1

0 (1−α)]2

}
.

(These will be further discussed in the next lecture.)
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Comparisons

From the asymptotic normality of X̄α , the asymptotic relative efficiency
between X̄α and the sample mean X̄ is

eX̄α ,X̄ (F ) = Var(X1)/σ
2
α .

Lehmann (1983, §5.4) provides various values of the asymptotic
relative efficiency eX̄α ,X̄ (F ).
For instance, when F (x) = F0(x−θ) and F0 is the c.d.f. of the
t-distribution t3, eX̄α ,X̄ (F ) = 1.70, 1.91, and 1.97 for α = 0.05, 0.125,
and 0.25, respectively;
when

F (x) = (1− ε)Φ
(x−θ

σ

)
+ εΦ

(x−θ

τσ

)
with τ = 3 and ε = 0.05, eX̄α ,X̄ (F ) = 1.20, 1.19, and 1.09 for α = 0.05,
0.125, and 0.25, respectively;
when τ = 3 and ε = 0.01, eX̄α ,X̄ (F ) = 1.04, 0.98, and 0.89 for α = 0.05,
0.125, and 0.25, respectively.
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