Lecture 11: Sample quantiles, robustness, and

asymptotic efficiency

Estimation of quantiles (percentiles)

Suppose that Xi,..., X, are i.i.d. random variables from an unknown
nonparametric F
For pe(0,1),
G '(p) =inf{x: G(x) > p}
is the pth quantile for any c.d.f. G on Z.
Quantiles of F are often the parameters of interest.
8, = F~'(p) = pth quantile of F
Fn= emplrlcal c.d.f. based on Xj,..., X,
8, = F;'(p) = the pth sample quantile.

Gp = Can(mp) +(1— Cnp)X(mp+1)a

where X(;) is the jth order statistic, m is the integer part of np,
cnp = 1if npis an integer, and ¢, = 0 if Np is not an integer.
Thus, 6, is a linear function of order statistics.
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F(Op*) = |imxﬁ9p7x<9p F(X)

F(Gp) = |imX4)9p)X>9p F(X)

F(6p—) <p < F(6p)

F is not flat in a neighborhood of 6y if and only if p < F(6, + €) for any
e>0.

Theorem 5.9
Let Xi,..., X, be i.i.d. random variables from a c.d.f. F satisfying
p < F(6p+¢) forany e > 0. Then, forevery e >0and n=1,2,...,

P(|6p— 6p| > £) <2Ce 2%

where & is the smaller of F(6,+¢)—pand p— F(6p—¢) and C is the
same constant in Lemma 5.1(i).

|

REINELE
@ Theorem 5.9 implies that §p is strongly consistent for 6, (exercise)

@ Theorem 5.9 implies that 6, is \/n-consistent for 6, if F'(6,—) and
F'(6p+) (the left and right derivatives of F at 6)) exist (exercise).

v
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Proof of Theorem 5.9

Let € > 0 be fixed.
Note that, for any c.d.f. G on Z,

G(x) > tifand only if x > G~'(t)

(exercise).
Hence

P(6p>0p+€) = P(p>Fu(6p+¢))
— P(F 9p+g Fr(6p+€) > F(6p+€) —p)
( Fn, > 58)

2
S Ce—2n5 ,

IA

where the last inequality follows from DKW’s inequality (Lemma 5.1(i)).
Similarly,
P(6, < 6,—€) < Ce 2%

This completes the proof.

v
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The distribution of a sample quantile

|

The exact distribution of 6, can be obtained as follows.
Since nF,(t) has the binomial distribution Bi( F(t),n) for any t € %,
P(6p<t) = P(Fa(t)>p)

n

— ¥ (7)rFenn - Far

i=lp

where |, = np if np is an integer and |, = 1+ the integer part of np if np
is not an integer. R
If F has a Lebesgue p.d.f. f, then 6, has the Lebesgue p.d.f.

n—

on(t)=n(, _JIF(O)]P (1= F(6)]"PA(1).
A 1

This can be shown by differentiating P(F,(t) > p) term by term, which
leads to
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n

onlt) = Z(ﬁywaw1nFUW”ﬂo

i=lp

—Z<>nfw)m—HmM4m>

i=lp

= () ulFen - Frbro
Ip
n Y ( >F)PW FOIrf(e)

i=lp+1

-n % (" Eorn - For-io

i=lp

_ n—1 Ip—1 n—1p
= n([ 7 IFI 0~ FCO1 b

The following result provides an asymptotic distribution for /n(8, — Gp).J
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Theorem 5.10

Let Xj,...,X, be i.i.d. random variables from F.

(i) If F(8p) = p, then P(+/n(8p — 6p) < 0) — &(0) = §, where & is the
c.d.f. of the standard normal.

(ii) If F is continuous at 6, and there exists F'(6p—) > 0, then

P(Vn(8p— 6p) < t) — &(t/oF),  t<O,

where o = /p(1—p)/F'(6p—).

(iii) If Fis continuous at 6, and there exists F'(6,+) > 0, then
P(V/N(Bp— 6p) < t) = ®(t/cf),  t>0,

where ot = \/p(1—p)/F'(6p+).

(iv) If F’(6p) exists and is positive, then
V(8 — 6p) = N(0, 0F),
where or = \/p(1—p)/F'(6p).
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Proof

The proof of (i) is left as an exercise.

Part (iv) is a direct consequence of (i)-(iii) and the proofs of (ii) and (iii)
are similar.

Thus, we only give a proof for (iii).

Let t >0, ppt = F(8p+ tog n=1/2), cor = /(Pnt — P)/+/Prt(1 — pnt), and
Znt = [Bn(pnt) — npnt]//nPnt(1 — pnt), Where Bp(q) denotes a random
variable having the binomial distribution Bi(q, n).

Then

P(6p < 8p+tofn ") = P(p< Fn(Bp+tofn'/?))
= P(Znt > _Cnt)-

Under the assumed conditions on F, py — p and ¢y — t.
Hence, the result follows from

P(Zat < —cnt) — ®(—Cnt) — 0.

But this follows from the CLT (Example 1.33) and Pdlya’s theorem
(Proposition 1.16).
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If F'(6p—) and F'(6p+) exist and are positive, but F'(6p—) # F'(6p+),
then the asymptotic distribution of \/n(6, — 6p) has the c.d.f.
O(t/0F )~ 0) () + (t/0F ) o ) (1),
a mixture of two normal distributions.
An example of such a case when p=1/2is

Bahadur’s representation

When F'(6p—) = F'(6p+) = F'(6p) > 0, Theorem 5.9 shows that the
asymptotic distribution of /n(6, — 6p) is the same as that of
VN[Fn(8p) — F(6p)]/F'(6p).

The next result reveals a stronger relationship between sample
quantiles and the empirical c.d.f.

Theorem 5.11 (Bahadur’s representation)

Let Xi,..., X, be i.i.d. random variables from F.

If F'(6p) exists and is positive, then

Vn(8p — 8p) = VN[Fa(8p) — F(6p)]/F'(8p) + 0p(1).
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Proof
Let t € %, Opt = Op+tn~"/2, Zy(t) = \/N[F(6nt) — Fn(6nt)]/ F'(6p), and

Un(t) = /NlF(8nt) — Fa(Bp)]/ F'(6p).
It can be shown (exercise) that

Zo(t) = Zn(0) = 0,(1).
Since |p— Fa(8p)| < n",
Un(t) = Vn[F () = p+p—Fa(8p)]/F'(65)
= V/n[F(6nt) —pl/F'(6p) + O(n /%)
— L.
Let & = /(6 — 6p).
Then, forany t € #Z and € > 0,
P(én<t,Z,(0) > t+e)

P(Zn(t) < Un(t),Zn(O) > t+8)
< P(|Zn(t) - 2(0)| > £/2)
+P(|Un(t)—t] > £/2)

— 0
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because, if Z,(t) < Un(t), Zn(0) > t+¢, and |Z,(t) — Z,(0)| < €/2, then
—€/2 < Zp(t) = Zn(0) < Un(t) = Zn(0) < Un(t) — (t+ &)

i.e., Un(t)—t>¢g/2.
Similarly,
P(&n>t+e,Z,(0) < t) —0.

It follows from the result in Exercise 128 of §1.6 that
&n—2Zn(0) = 0p(1),
which is what we need to prove.

Corollary 5.1

Let Xj,..., X, be i.i.d. random variables from F having positive
derivatives at Op» where 0 < p; < --- < pm < 1 are fixed constants.
Then N N

ﬁ[(em LAY me) - (6P1 LAY epm)] —d Nm(o’ D)’

where D is the m x m symmetric matrix whose (i,j)th element is
pi(1—p)/IF (6p)F' (65)], i<
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Robustness and efficiency: median vs mean

Let F be a c.d.f. on #Z symmetric about 6 € % with F'(6) > 0.

Then 6 = 6y 5 and is called the median of F.

If F has a finite mean, then 6 is also equal to the mean.

We consider the estimation of 6 based on i.i.d. X;’'s from F.

If £ is normal, it has been shown in previous chapters that the sample
mean X is the UMVUE and MLE of 6 and is asymptotically efficient.
On the other hand, if F is the c.d.f. of the Cauchy distribution C(0,1), it
follows from Exercise 78 in §1.6 that X has the same distribution as
X1, i.e., X is as variable as Xj, and is inconsistent as an estimator of 6.
Why does X perform so differently?

An important difference between the normal and Cauchy p.d.f’s is that
the former tends to 0 at the rate e *°/2 as |x| — oo, whereas the latter
tends to 0 at the much slower rate x—2, which results in [ |x|dF(x) = co.
The poor performance of X in the Cauchy case is due to the high
probability of getting extreme observations and the fact that X is
sensitive to large changes in a few of the Xj’s.
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This suggests the use of a robust estimator that discards some
extreme observations.

The sample median, which is defined to be the 50%th sample quantile
6.5 described in §5.3.1, is insensitive to the behavior of F as |x| — oo
Since both the sample mean and the sample median can be used to
estimate 6, a natural question is when is one better than the other,
using a criterion such as the amse (asymptotic efficiency).
Unfortunately, a general answer does not exist, since the asymptotic
relative efficiency between these two estimators depends on the
unknown distribution F.

If F does not have a finite variance, then Var(X) = and X may be
inconsistent.

In such a case the sample median is certainly preferred, since 50.5 is
consistent and asymptotically normal as long as F’(6) > 0, and may
have a finite variance (Exercise 60).

The following example, which compares the sample mean and median
in some cases, shows that the sample median can be better even if
Var(Xj) < eo.
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Example 5.10 (asymptotic efficiency and robustness)

Suppose that Var(Xj) < eo.
Then, by the CLT,

Vn(X —8) —4 N(0, Var(Xy)).
By Theorem 5.10(iv),
V(85— 8) —+q N(0,[2F'(6)] ).
Hence, the asymptotic relative efficiency of 50,5 w.rt. X is
e(F) = 4[F'(0)]? Var(X;).
e If Fis the c.d.f. of N(8,5?), then Var(X;) = o2,
F'(6) = (v2ro)~ ', and e(F) =2/x = 0.637.
@ If Fis the c.d.f. of the logistic distribution LG(6,0), then
Var(X;) = 6272 /3, F'(8) = (40)~ ', and e(F) = n?/12 = 0.822.
@ If F(x) = Fo(x—0) and Fy is the c.d.f. of the t-distribution ¢, with
v >3, then Var(Xq) =v/(v—2), F/(8) = T(X)/[VVval($)],
e(F)=1.62whenv =3, e(F)=1.12 when v =4, and
e(F)=0.96 when v =5.

UW-Madison (Statistics) Stat 710, Lecture 11 Jan 2019 13/16




@ If Fis the c.d.f. of the double exponential distribution DE(6, o),
then F'(0) = (20)~" and e(F) = 2.
@ Consider the Tukey model
F(x)=(1-8)0 (%3%) +£0 (%),
where o >0,7>0,and0<e < 1.

Then
Var(Xy) = (1 —€)o? +et202, F'(0)=(1 —e+¢/1)/(V2n0),
and

e(F)=2(1—e+et®)(1 —e+¢/1)%/x.
Note that lim_,pe(F) =2/ and lim;_,.. e(F) = oco.

Trimmed sample mean

Since the sample median uses at most two actual values of x;’s, it may
go too far in discarding observations, which results in a possible loss of
efficiency.

The trimmed sample mean is a natural compromise between the
sample mean and median.
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The a-trimmed sample mean and its properties

The a-trimmed sample mean is defined as

n—mq

X,
(1—2a j,;+1 v)

Xo =

where my, is the integer part of na and « € (0, 3).

It discards the m,, smallest and m,, largest observations.

The sample mean and median can be viewed as two extreme cases of
Xy as a — 0 and }, respectively.

If F(x)= Fo(x—0), where F is symmetric about 0 and has a
Lebesgue p.d.f. positive in the range of Xj, then

VN(Xy — 0) =4 N(0,0%),
where

o (1—a)
"52(1—2205)2{[ | deFo(x)+a[Fo1(1‘“)]2}'

(These will be further discussed in the next lecture.)
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Comparisons

From the asymptotic normality of X, the asymptotic relative efficiency
between X, and the sample mean X is

ex, x(F) = Var(X;)/0?

Lehmann (1983, §5.4) provides various values of the asymptotic
relative efficiency eg x(F).
For instance, when F( )= Fo(x—0) and Fy is the c.d.f. of the
t-distribution t3, ex_x(F)=1.70, 1.91, and 1.97 for a = 0.05, 0.125,
and 0.25, respectivély,
when

F(x)=(1—-¢€)®(2) +ed (£2)
with 7 =3 and € = 0.05, e)—(a)—((F) =1.20, 1.19, and 1.09 for a = 0.05,
0.125, and 0.25, respectively;
when 7 =3 and € =0.01, ex, %(F)=1.04,0.98, and 0.89 for oc = 0.05,
0.125, and 0.25, respectively.’
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