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Lecture 12: L-estimators and M-estimators
L-functional and L-estimator
For a function J(t) on [0,1], define the L-functional as

T (G) =
∫

xJ(G(x))dG(x), G ∈F .

If X1, ...,Xn are i.i.d. from F and T (F ) is the parameter of interest,
T (Fn) is called an L-estimator of T (F ).
T (Fn) is a linear function of order statistics:

T (Fn) =
∫

xJ(Fn(x))dFn(x) =
1
n

n

∑
i=1

J
( i

n

)
X(i),

since Fn(X(i)) = i/n, i = 1, ...,n.

Examples

When J(t)≡ 1, T (Fn) = X̄ , the sample mean.
When J(t) = (1−2α)−1I(α,1−α)(t), T (Fn) = X̄α is the α-trimmed
sample mean.
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Although the sample median is also a linear function of order statistics,
it is not of the form T (Fn) with an L-functional T

Asymptotic normality of L-estimators
To establish the asymptotic normality for L-estimators T (Fn), we follow
the following steps.

Step 1. For x ∈R, calculate

φF (x) = lim
t→0

T (F + t(δx −F ))−T (F )

t

(if it exists), where δx is the point mass at x .
The function φF is called the influence function of T at F .
The influence function is an important tool in the study of robuestness
of estimators

Also, verify that

E [φF (X1)] =
∫

φF (x)dF (x) = 0
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Step 2. Verify that E [φF (X1)]2 < ∞ and obtain

σ
2
F = E [φF (X1)]2 =

∫
[φF (x)]2dF (x).

Step 3. Verify that

T (Fn)−T (F ) =
1
n

n

∑
i=1

φF (Xi) + op

(
1√
n

)
.

This holds when T is differentiable in some sense (§5.2.1).
Then √

n[T (Fn)−T (F )]→d N(0,σ2
F ).

Step 3 is the most difficult part.

This approach can also be applied to other functionals (§5.2).

We now apply this approach to show the asymptotic normality of the
trimmed sample mean.
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Step 1: Derivation of the influence function φF

T (G) =
∫

xJ(G(x))dG(x), G ∈F

For F and G in F ,

T (G)−T (F ) =
∫

xJ(G(x))dG(x)−
∫

xJ(F (x))dF (x)

=
∫ 1

0
[G−1(t)−F−1(t)]J(t)dt

=
∫ 1

0

∫ G−1(t)

F−1(t)
dxJ(t)dt

=
∫

∞

−∞

∫ F (x)

G(x)
J(t)dtdx

=
∫

∞

−∞

[F (x)−G(x)]J(F (x))dx

−
∫

∞

−∞

UG(x)[G(x)−F (x)]J(F (x))dx ,
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Step 1: Derivation of the influence function φF

where

UG(x) =


∫G(x)

F (x) J(t)dt
[G(x)−F (x)]J(F (x)) −1 G(x) 6= F (x),J(F (x)) 6= 0

0 otherwise

and the fourth equality follows from Fubini’s theorem and the fact that
the region in R2 between curves F (x) and G(x) is the same as the
region in R2 between curves G−1(t) and F−1(t).
Let G = F + t(δx −F ), where δx is the degenerated distribution at x .
Since limt→0 UF+t(δx−F )(y) = 0, by the dominated convergence
theorem,

lim
t→0

∫
∞

−∞

UF+t(δx−F )(y)[δx (y)−F (y)]J(F (y))dy = 0.

Hence

lim
t→0

T (F + t(δx −F ))−T (F )

t
=−

∫
∞

−∞

[δx (y)−F (y)]J(F (y))dy ,

which is φF (x), the influence function of T .
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Step 1: Derivation of the influence function φF

By Fubini’s theorem and the fact that
∫

δx (y)dF (x) = F (y),∫
φF (x)dF (x) =−

∫
∞

−∞

[∫
(δx −F )(y)dF (x)

]
J(F (y))dy = 0,

Consider now J(t) = (β −α)−1I(α,β)(t),

φF (x) =− 1
β −α

∫ F−1(β)

F−1(α)
[δx (y)−F (y)]dy .

Assume that F is continuous at F−1(α) and F−1(β ).
F (F−1(α)) = α and F (F−1(β )) = β .
When x < F−1(α),

φF (x) = − 1
β −α

∫ F−1(β)

F−1(α)
[1−F (y)]dy

= −y [1−F (y)]

β −α

∣∣∣∣F−1(β)

F−1(α)

− 1
β −α

∫ F−1(β)

F−1(α)
ydF (y)

=
F−1(α)(1−α)−F−1(β )(1−β )

β −α
−T (F )
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Step 1: Derivation of the influence function φF

Similarly, when x > F−1(β ),

φF (x) =
1

β −α

∫ F−1(β)

F−1(α)
F (y)]dy

=
F−1(β )β −F−1(α)α

β −α
−T (F ).

Finally, when F−1(α)≤ x ≤ F−1(β ),

φF (x) =
1

β −α

∫ x

F−1(α)
F (y)dy − 1

β −α

∫ F−1(β)

x
[1−F (y)]dy

=
yF (y)

β −α

∣∣∣∣x
F−1(α)

− 1
β −α

∫ x

F−1(α)
ydF (y)

+
y [1−F (y)]

β −α

∣∣∣∣F−1(β)

x
− 1

β −α

∫ F−1(β)

x
ydF (y)

=
x−F−1(α)α−F−1(β )(1−β )

β −α
−T (F ).
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Step 1: Derivation of the influence function φF

Hence,

φF (x) =


F−1(α)(1−α)−F−1(β)(1−β)

β−α
−T (F ) x < F−1(α)

x−F−1(α)α−F−1(β)(1−β)
β−α

−T (F ) F−1(α)≤ x ≤ F−1(β )

F−1(β)β−F−1(α)α

β−α
−T (F ) x > F−1(β ).

If F is symmetric about θ , J is symmetric about 1
2 (J(t) = J(1− t)), and∫ 1

0 J(t)dt = 1, then F (x) = F0(x −θ), where F0 is a c.d.f. that is
symmetric about 0, i.e., F0(x) = 1−F0(−x), and∫

xJ(F0(x))dF0(x) =
∫

xJ(1−F0(−x))dF0(x)

=
∫

xJ(F0(−x))dF0(x)

= −
∫

yJ(F0(y))dF0(y),

i.e.,
∫

xJ(F0(x))dF0(x) = 0.
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Step 1: Derivation of the influence function φF

Hence,

T (F ) =
∫

xJ(F (x))dF (x)

= θ

∫
J(F (x))dF (x) +

∫
(x−θ)J(F0(x−θ))dF0(x −θ)

= θ

∫ 1

0
J(t)dt +

∫
yJ(F0(y))dF0(y)

= θ .

Assume that F is continuous at F−1(α) and F−1(1−α).
When β = 1−α, J is symmetric about 1

2 and

φF (x) =


F−1

0 (α)
1−2α

x < F−1(α)

x−θ

1−2α
F−1(α)≤ x ≤ F−1(1−α)

F−1
0 (1−α)
1−2α

x > F−1(1−α),

where F−1(α) + F−1(1−α) = 2θ , F−1
0 (α) = F−1(α)−θ and

F−1
0 (1−α) = F−1(1−α)−θ .
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Step 2: Calculation of σ2
F = E [φF (X1)]

2

Because F−1
0 (α) =−F−1

0 (1−α), we obtain that

∫
[φF (x)]2dF (x) =

[F−1
0 (α)]2

(1−2α)2 α +
[F−1

0 (1−α)]2

(1−2α)2 α

+
∫ F−1(1−α)

F−1(α)

(x −θ)2

(1−2α)2 dF (x)

=
2α[F−1

0 (1−α)]2

(1−2α)2 +
∫ F−1

0 (1−α)

F−1
0 (α)

x2

(1−2α)2 dF0(x)

= σ
2
α .

Step 3: Asymptotic normality of the trimmed sample mean
It can be shown that the L-functional T (G) is differentiable in some
sense (see the textbook).
Hence, for the α-trimmed sample mean X̄α ,

√
n(X̄α −θ)→d N(0,σ2

α ).
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M-estimators
Note that the sample mean X̄ satisfies

1
n

n

∑
i=1

(Xi − X̄ )2 = min
t∈Θ

1
n

n

∑
i=1

(Xi − t)2 = min
t∈Θ

∫
(x − t)2dFn

This idea can be generalized to get a class of estimators obtained by
minimizing some functions.

Let ρ(x , t) be a Borel function on Rd ×R and Θ⊂R be an open set.
An M-functional is defined to be a solution of∫

ρ(x ,T (G))dG(x) = min
t∈Θ

∫
ρ(x , t)dG(x), G ∈F

For X1, ...,Xn i.i.d. from F ∈F , T (Fn) is called an M-estimator of T (F ).∫
ρ(x ,T (Fn))dFn(x) = min

t∈Θ

∫
ρ(x , t)dFn(x)

i.e., 1
n

n

∑
i=1

ρ(Xi ,T (Fn)) = min
t∈Θ

1
n

n

∑
i=1

ρ(Xi , t)
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Assume that ψ(x , t) = ∂ρ(x , t)/∂ t exists a.e. and

λG(t) =
∫

ψ(x , t)dG(x) =
∂

∂ t

∫
ρ(x , t)dG(x).

Then λG(T (G)) = 0 and T (Fn) is a solution of
n

∑
i=1

ψ(Xi , t) = 0.

Example 5.7
The following are some examples of M-estimators.
(i) If ρ(x , t) = (x − t)2/2, then T (Fn) = X̄ is the sample mean.
(ii) If ρ(x , t) = |x − t |p/p, where p ∈ [1,2), then

ψ(x , t) =

{
|x− t |p−1 x ≤ t
−|x− t |p−1 x > t .

When p = 1, T (Fn) is the sample median. When 1 < p < 2, T (Fn) is
called the pth least absolute deviations estimator or the minimum Lp
distance estimator.
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(iii) Let F0 = {fθ : θ ∈Θ} be a parametric family of p.d.f.’s with Θ⊂R
and ρ(x , t) =− log ft (x).
Then T (Fn) is an MLE.
Thus, M-estimators are extensions of MLE’s in parametric models.
(iv) Let C > 0 be a constant.
Huber (1964) considers

ρ(x , t) =

{
1
2(x− t)2 |x − t | ≤ C
1
2C2 |x − t |> C

with
ψ(x , t) =

{
t−x |x − t | ≤ C
0 |x − t |> C.

The corresponding T (Fn) is a type of trimmed sample mean.
(v) Let C > 0 be a constant.
Huber (1964) considers

ρ(x , t) =

{ 1
2(x − t)2 |x − t | ≤ C
C|x − t |− 1

2C2 |x − t |> C
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with

ψ(x , t) =


C t−x > C
t−x |x− t | ≤ C
−C t−x <−C.

The corresponding T (Fn) is a type of Winsorized sample mean.
(vi) Hampel (1974) considers ψ(x , t) = ψ0(t−x) with ψ0(s) =−ψ0(−s)
and

ψ0(s) =


s 0≤ s ≤ a
a a < s ≤ b
a(c−s)

c−b b < s ≤ c
0 s > c,

where 0 < a < b < c are constants.
A smoothed version of ψ0 is

ψ1(s) =

{
sin(as) 0≤ s < π/a
0 s > π/a.
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Theorem 5.7
Let X1, ...,Xn be i.i.d. from F and T be an M-functional.
Assume that ψ is a bounded and continuous function on Rd ×R and
that λF (t) is continuously differentiable at T (F ) and λ ′F (T (F )) 6= 0.
Then √

n[T (Fn)−T (F )]→d N(0,σ2
F )

with

σ
2
F =

∫
[ψ(x ,T (F ))]2dF (x)

[λ ′F (T (F ))]2
.

Example 5.13
Consider Huber’s ψ given in Example 5.7(v).
Assume that F is continuous at θ −C and θ + C.
Then

σ
2
F =

∫
θ+C
θ−C (θ −x)2dF (x) + C2F (θ −C) + C2[1−F (θ + C)]

[F (θ + C)−F (θ −C)]2

Asymptotic relative efficiency between Huber’s M-estimator and the
sample mean can be obtained.
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A sketched proof of Theorem 5.7:

Let θ = T (F ) and θ̂ = T (Fn).
By the definition of M-estimator θ̂ ,∫

ψ(x , θ̂)dFn(x) = 0

Hence

−
∫

ψ(x ,θ)dFn(x) =
∂

∂θ

[∫
ψ(x ,θ)dFn(x)

]
(θ̂ −θ) + op(n−1/2)

=
∂

∂θ

[∫
ψ(x ,θ)dF (x)

]
(θ̂ −θ) + op(n−1/2)

= λ
′
F (θ)(θ̂ −θ) + op(n−1/2)

Then
−1

n

n

∑
i=1

ψ(Xi ,θ)/λ
′
F (θ) = (θ̂ −θ) + op(n−1/2)

The result follows from the CLT since E [ψ(Xi ,θ)] = 0 and

Var(ψ(Xi)) =
∫

[ψ(x ,θ)]2dF (x)
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