Lecture 12: L-estimators and M-estimators

L-functional and L-estimator
For a function J(t) on [0,1], define the L-functional as

T(G) = / XJ(G(x))dG(x), Ge.Z.

If Xi,...,Xnarei.i.d. from F and T(F) is the parameter of interest,
T(Fp) is called an L-estimator of T(F).
T(Fp) is a linear function of order statistics:

T(Fp) = / XJ(Fn(X))dF n(x) = ZJ 5%,

since Fp(X()) =i/n, i=1,..

Examples

@ When J(t) =1, T(F,) = X, the sample mean.

@ When J(t) = (1 —2a) 'g.1-¢)(t), T(Fn) = X is the a-trimmed
sample mean.
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Although the sample median is also a linear function of order statistics,
it is not of the form T(Fp) with an L-functional T

| A

Asymptotic normality of L-estimators

To establish the asymptotic normality for L-estimators T(F,), we follow
the following steps.

Step 1. For x € #, calculate

T(F+t(6x—F))—T(F)
t

97 (x) = lim

(if it exists), where Jy is the point mass at x.

The function ¢ is called the influence function of T at F.

The influence function is an important tool in the study of robuestness
of estimators

Also, verify that

Elgr (X)) = [ 9£(x)aF(x) =0
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Step 2. Verify that E[¢p£(X7)]? < = and obtain
0 — E[0<(X0)1? = [ [0r()PdF(x).

Step 3. Verify that

T(Fa) Z¢F +op<%>.
This holds when T is dlfferen’uable in some sense (§5.2.1).
Then VA(T(Fr)~ T(F)] —a N(.0P).
Step 3 is the most difficult part.

This approach can also be applied to other functionals (§5.2).

We now apply this approach to show the asymptotic normality of the
trimmed sample mean.
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Step 1: Derivation of the influence function ¢f

T(G) = [ x/(G(X)dG(x), GeF
For F and G in %,
T(G)—T(F) = / XJ(G(x))dG(x) — / XJ(F(x))dF(x)

_ /01[6‘1(1‘)—F‘1(t)]J(t)dt

_ / 1 /F G11t()t)de(t)dt
- / /G z: £)dltdx
- [ IF0- (x))ebx
~ [ Us(0IG() — FOM(F(x))ax.
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Step 1: Derivation of the influence function ¢f

j,__x J(t)dt

UG(X){ GO PomEry — 1 GX) # F(x),J(F(x)) #0

0 otherwise

and the fourth equality follows from Fubini’s theorem and the fact that
the region in %2 between curves F(x) and G(x) is the same as the
region in % between curves G '(t) and F~'(t).

Let G= F+t(6x — F), where dy is the degenerated distribution at x.
Since lim;_,o Ur14(s,—F)(¥) = 0, by the dominated convergence
theorem,

lim [~ Ur s m(0)18:0) — FM(F(y))dy =O.
Hence

T(Ft(6— F)~T(F) _
t—0 t

~ [ 180) - FOMFEW)Y.

which is ¢¢(x), the influence function of T.
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Step 1: Derivation of the influence function ¢¢

By Fubini’s theorem and the fact that [ ox(y)dF(x) = F(y),
[ oetare)=— [ | [(6-Piare)| sy —o,

Consider now J(t) = (B — &) fap)(1),

1 Fe)

0r) =g |y )~ FDl.

Assume that F is continuous at F~'(«) and F~'(B).
F(F '(a))=aand F(F'(B))=B
When x < F1(a),

F 1(
o) =~ [ - FUloy
_ Y[ -FW) - B4 Fe)
- B-a F1(a)_ﬁ—0‘/f:‘(a) )
_ F(e)(1-a)-F'(B)(1-B)
= 5o —T(F)
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Step 1: Derivation of the influence function ¢¢

Similarly, when x > F~1(B),
Or(x) =

Pr(x) =

L Y=F)]

B—a

FUB) 4
X ﬁ—Ot

B—o

F='(B)
/X ydF(y)

x—F{@)aF'B)1-B) pp
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Step 1: Derivation of the influence function ¢¢

Hence,

F'(a)(1—a)—F " (B)(1— -
(o)( aﬁ)—a (B)( ﬁ)_T(F) x<F 1(06)

or(x) = X—F’1(a)aﬁ—7’;1(ﬁ)(1—ﬁ) — T(F) Fq(a) <x<F-1 (B)

FIEE-F e _ 7(F) x> F1(B).

If F is symmetric about 6, J is symmetric about § (J(t) = J(1—t)), and
f01 J(t)dt =1, then F(x) = Fo(x — 0), where Fy is a c.d.f. that is
symmetric about 0, i.e., Fo(x) =1— Fy(—x), and

[ xIFa()aFo(x) = [ xJ(1 = Fo(—x))aFo(x)
= [ xI(Fo(=x))dFo(x)

_ _/yJ(Fo(y))dFo(y),

i.e., [ xJ(Fo(x))dFp(x)=0.
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Step 1: Derivation of the influence function ¢¢

Hence,
T(F) = / XJ(F(x))dF(x)
_ B/J ))dF (x +/x 8)J(Fo(x — 68))dFo(x — 6)

_ e/o J(t)dt+/yJ(Fo(y))dFo(y)
_ 9

Assume that F is continuous at F~"(a) and F~1(1 — ).
When =1 —a, J is symmetric about } and
=
Fffég) x < F'(a)
or(x) = 1X:2€x F(a@)<x<F'(1-a)

Fa'(1- =
009 x> F1(1-a),

where F~'(a)+F'(1 - a) =26, Fy '(a) = F'(a) — 6 and
Fill—a)=F'(1—a)—6.
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Step 2: Calculation of 62 = E[¢F(X1)]?

Because F, (&) = —F, (1 — o), we obtain that

[Fo ()P [F'(1-a)
0207 (1—2ap
F(1-a) (x—0)?
+ ! e (o2
3 2a[F71(1—a)]? Fo'(l—a)  x2
= a2 hw ozl

0
= o2

J1oe(RaF(x)

|

Step 3: Asymptotic normality of the trimmed sample mean

It can be shown that the L-functional T(G) is differentiable in some
sense (see the textbook). _
Hence, for the a-trimmed sample mean X,

VN(Xy — 0) =4 N(0,52).

v
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M-estimators
Note that the sample mean X satisfies

n

:-’i()(l_)_()z — minIZ()(i_t)z — min/(x_t)Zan

teo N =1 te©
This idea can be generalized to get a class of estimators obtained by
minimizing some functions.

Let p(x,t) be a Borel function on 29 x % and © C % be an open set.
An M-functional is defined to be a solution of

[Pt T(@)dG(X) = min [ p(x.DdG(x),  GeF
For Xi,...,Xpi.i.d. from F € %, T(F,) is called an M-estimator of T(F).
[ px T(F)aFa(x) = min [ p(x.OaFa(x)

i 4

1
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Assume that y(x,t) = dp(x,t)/dt exists a.e. and
/l[/(Xt at/pxz‘dG(x)
Then Ag(T(G)) =0 and T(Fy) is a solution of
n
Y w(X;,t)=0.

=

Il

4
A

Example 5.7

The following are some examples of M-estimators.
(i) If p(x,1) = (x — t)2/2, then T(F,) = X is the sample mean.
(ii) If p(x,t) = |x —t|P/p, where p € [1,2), then
o x—tP! x<t
yix.1) = { Cx =t x>t

When p=1, T(F;) is the sample median. When 1 < p <2, T(Fp) is
called the pth least absolute deviations estimator or the minimum L,
distance estimator.

v
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(iii) Let .%o = {fy : 6 € ©} be a parametric family of p.d.f’s with © C Z
and p(x,t) = —log fy(x).

Then T(F,) is an MLE.

Thus, M-estimators are extensions of MLE’s in parametric models.
(iv) Let C > 0 be a constant.

Huber (1964) considers

1 2
Ix—12  |x—t[<C
=3 7
pix.1) {;@ Xx—t|>C

with t-x |x—t|<C

l”(X’“:{o x—t> C.

The corresponding T(F,) is a type of trimmed sample mean.
(v) Let C > 0 be a constant.

Huber (1964) considers

1 2
-t x—t|<C
”*”_{cu—u—yﬁ Xx—t|>C
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ith
W C t—x>C
y(x,t)=«¢ t—x x—t<C
-C t—x<—-C.
The corresponding T(Fp) is a type of Winsorized sample mean.

(vi) Hampel (1974) considers y(x, t) = yo(t — x) with yp(s) = —yp(—5)

and
S 0<s<a
a a<s<b
Vo(S) = a(Cc:;) b<s<c
0 s> c,

where 0 < a < b < ¢ are constants.
A smoothed version of yy is

[ sin(as) 0<s<m/a
1//1(3)_{ 0 s>n/a
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Theorem 5.7

Let Xi,...,X, be i.i.d. from F and T be an M-functional.
Assume that v is a bounded and continuous function on %Z9 x % and
that A#(t) is continuously differentiable at T(F) and A(T(F)) # 0.

Then VA[T(Fa)— T(F)] —a N(0,02)

52 _ JY(x T(F))PdF(x)
] Ae(TF)Z

with

Example 5.13

Consider Huber’s y given in Example 5.7(v).
Assume that F is continuous at 6 — C and 6 - C.
Then

f;’jcc(e — x)?dF(x)+ C?F(6 — C)+ C?[1 — F(6 + C)]
[F(6+C)—F(6-C)?

Asymptotic relative efficiency between Huber’s M-estimator and the

sample mean can be obtained.

o2 —

v
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A sketched proof of Theorem 5.7
Let 6 = T(F) and 6 = T(Fp).
By the definition of M-estimator 0,

/y/(x, 0)dF,(x) =0

Hence
= [ W 8)0Fo() = 5 | [ wix.6)0Fo()] B )+ opt 172
P) - .
= [/ w(x,G)dF(x)] (6—6)+0,(n/2)
= AE(6)(8 — 8)+ 0p(n"/?)
Then 10

- ,221 (X, 0)/AE(8) = (6 —6)+ 0op(n~"7?)

The result follows from the CLT since E[y(X;,0)] =0 and

ar(w(X) = [ w(x,0)PaF (x)
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