Empirical likelihoods

From Theorem 5.3, F_n maximizes the likelihood

$$\ell(G) = \prod_{i=1}^{n} p_i$$

over $p_i > 0, \ i = 1, \ldots, n,$ and $\sum_{i=1}^{n} p_i = 1,$ where $p_i = P_G(\{x_i\}).$

This method of deriving an estimator of F can be extended to various situations with some modifications of $\ell(G)$ and/or constraints on p_i's. Modifications of the likelihood $\ell(G)$ are called empirical likelihoods.

An estimator obtained by maximizing an empirical likelihood is then called a maximum empirical likelihood estimator (MELE).

We now discuss several applications of the method of empirical likelihoods.
Estimation of F with auxiliary information about F

In some cases we have some information about F. For instance, suppose that there is a known Borel function u from \mathbb{R}^d to \mathbb{R}^s such that

$$\int u(x) dF = 0$$

(e.g., some components of the mean of F are 0).

For example, let $X_i = (y_i, z_i)$, y_i is the income for the current year, and z_i is the income for the current year. From tax return, we know $E(z_i) = c$. Then $u(x) = z - c$.

It is reasonable to expect that any estimate \hat{F} of F has property

$$\int u(x) d\hat{F} = 0,$$ which is not true for the empirical c.d.f. F_n, since

$$\int u(x) dF_n = \frac{1}{n} \sum_{i=1}^{n} u(X_i) \neq 0$$

even if $E[u(X_1)] = 0$.

Estimation of F with auxiliary information about F

Using the method of empirical likelihoods, a natural solution is to put another constraint in the process of maximizing the likelihood. That is, we maximize $\ell(G)$ subject to

$$p_i > 0, \quad i = 1, \ldots, n, \quad \sum_{i=1}^{n} p_i = 1, \quad \text{and} \quad \sum_{i=1}^{n} p_i u(x_i) = 0,$$

where $p_i = P_G(\{x_i\})$.

Using the Lagrange multiplier method and an argument similar to the proof of Theorem 5.3, it can be shown that an MELE of F is

$$\hat{F}(t) = \sum_{i=1}^{n} \hat{p}_i I(-\infty, t](X_i),$$

where

$$\hat{p}_i = n^{-1}[1 + \lambda_n^\tau u(X_i)]^{-1}, \quad i = 1, \ldots, n,$$

and $\lambda_n \in \mathbb{R}^s$ is the Lagrange multiplier satisfying

$$\sum_{i=1}^{n} \hat{p}_i u(X_i) = \frac{1}{n} \sum_{i=1}^{n} \frac{u(X_i)}{1 + \lambda_n^\tau u(X_i)} = 0.$$
To see that the last equation has a solution asymptotically, note that
\[
\frac{\partial}{\partial \lambda} \left[\frac{1}{n} \sum_{i=1}^{n} \log (1 + \lambda \tau u(X_i)) \right] = \frac{1}{n} \sum_{i=1}^{n} \frac{u(X_i)}{1 + \lambda \tau u(X_i)}
\]
and
\[
\frac{\partial^2}{\partial \lambda \partial \lambda^\tau} \left[\frac{1}{n} \sum_{i=1}^{n} \log (1 + \lambda \tau u(X_i)) \right] = -\frac{1}{n} \sum_{i=1}^{n} \frac{u(X_i)[u(X_i)]^\tau}{[1 + \lambda \tau u(X_i)]^2},
\]
which is negative definite if \(\text{Var}(u(X_1)) \) is positive definite. Also,
\[
E \left\{ \frac{\partial}{\partial \lambda} \left[\frac{1}{n} \sum_{i=1}^{n} \log (1 + \lambda \tau u(X_i)) \right] \bigg| \lambda=0 \right\} = E[u(X_1)] = 0.
\]
Hence, using the same argument as in the proof of Theorem 4.17, we can show that there exists a unique sequence \(\{\lambda_n(X)\} \) such that
\[
P \left(\frac{1}{n} \sum_{i=1}^{n} \frac{u(X_i)}{1 + \lambda_n \tau u(X_i)} = 0 \right) \to 1 \quad \text{and} \quad \lambda_n \to_p 0.
\]
Theorem 5.4

Let u be a Borel function on \mathbb{R}^d satisfying $\int u(x)dF = 0$ and \hat{F} be the MELE of F.

Suppose that $U = \text{Var}(u(X_1))$ is positive definite.

Then, for any m fixed distinct t_1, \ldots, t_m in \mathbb{R}^d,

$$\sqrt{n}[(\hat{F}(t_1), \ldots, \hat{F}(t_m)) - (F(t_1), \ldots, F(t_m))] \to_d N_m(0, \Sigma_u),$$

where

$$\Sigma_u = \Sigma - W^\tau U^{-1} W,$$

Σ is the covariance matrix of $\sqrt{n}[(F_n(t_1), \ldots, F_n(t_m)) - (F(t_1), \ldots, F(t_m))]$, $W = (W(t_1), \ldots, W(t_m))$, and $W(t_j) = E[u(X_1)I_{(-\infty, t_j]}(X_1)]$.

Remark

\hat{F} is asymptotically more efficient than F_n, because of the use of the information $\int u(x)dF = 0$.
Theorem 5.4

Let u be a Borel function on \mathbb{R}^d satisfying $\int u(x)dF = 0$ and \hat{F} be the MELE of F.

Suppose that $U = \text{Var}(u(X_1))$ is positive definite.

Then, for any m fixed distinct $t_1, ..., t_m$ in \mathbb{R}^d,

$$\sqrt{n}[\hat{F}(t_1), ..., \hat{F}(t_m)] - (F(t_1), ..., F(t_m)) \xrightarrow{d} N_m(0, \Sigma_u),$$

where

$$\Sigma_u = \Sigma - W^\tau U^{-1} W,$$

Σ is the covariance matrix of $\sqrt{n}[(F_n(t_1), ..., F_n(t_m)) - (F(t_1), ..., F(t_m))]$, $W = (W(t_1), ..., W(t_m))$, and $W(t_j) = E[u(X_1)I_{(-\infty, t_j]}(X_1)].$

Remark

\hat{F} is asymptotically more efficient than F_n, because of the use of the information $\int u(x)dF = 0.$
Proof of Theorem 5.4

We prove the case of $m = 1$ only.

Let $\bar{u} = n^{-1} \sum_{i=1}^{n} u(X_i)$.

It follows from the estimation equations and Taylor’s expansion that

$$
\bar{u} = \frac{1}{n} \sum_{i=1}^{n} u(X_i)[u(X_i)]^{\tau} \lambda_n[1 + o_p(1)].
$$

By the SLLN and CLT,

$$
U^{-1} \bar{u} = \lambda_n + o_p(n^{-1/2}).
$$

Using Taylor’s expansion and the SLLN again, we have

$$
\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,t]}(X_i)(n\hat{p}_i - 1) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,t]}(X_i) \left[\frac{1}{1 + \lambda_n^{\tau} u(X_i)} - 1 \right]
$$

$$
= -\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,t]}(X_i) \lambda_n^{\tau} u(X_i) + o_p(n^{-1/2})
$$

$$
= -\lambda_n^{\tau} W(t) + o_p(n^{-1/2})
$$

$$
= -\bar{u}^{\tau} U^{-1} W(t) + o_p(n^{-1/2}).
$$
Proof of Theorem 5.4 (continued)

Thus,

\[
\begin{align*}
\hat{F}(t) - F(t) &= F_n(t) - F(t) + \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,t]}(X_i)(n\hat{p}_i - 1) \\
&= F_n(t) - F(t) - \bar{u}^\tau U^{-1} W(t) + o_p(n^{-1/2}) \\
&= \frac{1}{n} \sum_{i=1}^{n} \left\{ I_{(-\infty,t]}(X_i) - F(t) - [u(X_i)]^\tau U^{-1} W(t) \right\} + o_p(n^{-1/2}).
\end{align*}
\]

The result follows from the CLT and the fact that

\[
\text{Var}([W(t)]^\tau U^{-1} u(X_i)) = [W(t)]^\tau U^{-1} U U^{-1} W(t) \\
= [W(t)]^\tau U^{-1} W(t) \\
= E\{[W(t)]^\tau U^{-1} u(X_i) I_{(-\infty,t]}(X_i)\} \\
= \text{Cov}(I_{(-\infty,t]}(X_i), [W(t)]^\tau U^{-1} u(X_i)).
\]
Example 5.2 (Biased sampling)

Biased sampling is often used in applications. Suppose that \(n = n_1 + \cdots + n_k, \ k \geq 2; \)
\(X_i \)'s are independent random variables;
\(X_1, \ldots, X_{n_1} \) are i.i.d. with \(F; \)
and \(X_{n_1} + \cdots + n_j + 1, \ldots, X_{n_1} + \cdots + n_j + 1 \) are i.i.d. with the c.d.f.
\[
\frac{\int_{-\infty}^{t} w_{j+1}(s) dF(s)}{\int_{-\infty}^{\infty} w_{j+1}(s) dF(s)},
\]
\(j = 1, \ldots, k - 1, \) where \(w_j \)'s are some nonnegative Borel functions.

A simple example is that \(X_1, \ldots, X_{n_1} \) are sampled from \(F \) and \(X_{n_1 + 1}, \ldots, X_{n_1 + n_2} \) are sampled from \(F \) but conditional on the fact that each sampled value exceeds a given value \(x_0 \) (i.e., \(w_2(s) = I_{(x_0, \infty)}(s) \)).

For instance, \(X_i \)'s are blood pressure measurements;
\(X_1, \ldots, X_{n_1} \) are sampled from ordinary people
and \(X_{n_1 + 1}, \ldots, X_{n_1 + n_2} \) are sampled from patients whose blood pressures are higher than \(x_0 \).

The name biased sampling comes from the fact that there is a bias in the selection of samples.
Example 5.2 (continued)

For simplicity we consider the case of $k = 2$, ($w_2 = w$). An empirical likelihood with $p_i = P_G(\{x_i\})$ is

$$
\ell(G) = \prod_{i=1}^{n_1} P_G(\{x_i\}) \prod_{i=n_1+1}^{n} \frac{w(x_i)P_G(\{x_i\})}{\int w(s)dG(s)}
$$

$$
= \left[\sum_{i=1}^{n} p_i w(x_i) \right]^{-n_2} \prod_{i=1}^{n} p_i \prod_{i=n_1+1}^{n} w(x_i),
$$

An MELE of F can be obtained by maximizing this empirical likelihood subject to $p_i > 0$, $i = 1, \ldots, n$, and $\sum_{i=1}^{n} p_i = 1$. Using the Lagrange multiplier method we can show that an MELE \hat{F} is as previously given with

$$
\hat{p}_i = \left[n_1 + n_2 w(X_i)/\hat{w} \right]^{-1}, \quad i = 1, \ldots, n,
$$

where \hat{w} satisfies

$$
\hat{w} = \sum_{i=1}^{n} \frac{w(X_i)}{n_1 + n_2 w(X_i)/\hat{w}}.
$$

An asymptotic result similar to that in Theorem 5.4 can be established.
Example 5.3 (Censored data)

Let T_1, \ldots, T_n be survival times that are i.i.d. nonnegative random variables from a c.d.f. F, and C_1, \ldots, C_n be i.i.d. nonnegative random variables independent of T_i’s.

In a variety of applications in biostatistics and life-time testing, we are only able to observe the smaller of T_i and C_i and an indicator of which variable is smaller:

$$X_i = \min\{T_i, C_i\}, \quad \delta_i = I_{(0,C_i)}(T_i), \quad i = 1, \ldots, n.$$

This is called a random censorship model and C_i’s are called censoring times.

We consider the estimation of the survival distribution F.

A maximum empirical likelihood estimator (MELE) of F can be derived as follows. Let $x_{(1)} \leq \cdots \leq x_{(n)}$ be ordered values of X_i’s and $\delta_{(i)}$ be the δ-value associated with $x_{(i)}$. Consider a c.d.f. G that assigns its mass to the points $x_{(1)}, \ldots, x_{(n)}$ and the interval $(x_{(n)}, \infty)$.

Let $p_i = P_G(\{x_{(i)}\}), \ i = 1, \ldots, n$, and $p_{n+1} = 1 - G(x_{(n)})$.

An MELE of F is then obtained by maximizing
Example 5.3 (continued)

\[\ell(G) = \prod_{i=1}^{n} p_i^{\delta(i)} \left(\sum_{j=i+1}^{n+1} p_j \right)^{1-\delta(i)} \]

subject to \(p_i \geq 0, \ i = 1, \ldots, n+1, \sum_{i=1}^{n+1} p_i = 1 \).

It can be shown (exercise) that an MELE is

\[\hat{F}(t) = \sum_{i=1}^{n+1} \hat{p}_i I_{(0,t]}(X(i)), \]

where \(X(0) = 0, \ X(n+1) = \infty, \ X(1) \leq \cdots \leq X(n) \) are order statistics, and

\[\hat{p}_i = \frac{\delta(i)}{n-i+1} \prod_{j=1}^{i-1} \left(1 - \frac{\delta(j)}{n-j+1} \right), \quad i = 1, \ldots, n, \quad \hat{p}_{n+1} = 1 - \sum_{j=1}^{n} \hat{p}_j. \]

The \(\hat{F} \) can also be written as (exercise)

\[\hat{F}(t) = 1 - \prod_{X(i) \leq t} \left(1 - \frac{\delta(i)}{n-i+1} \right), \]

which is the well-known Kaplan-Meier product-limit estimator.

Asymptotic results for \(\hat{F} \) can be found in Shorack and Wellner (1986).