Mean vs median

Let F be a c.d.f. on \mathbb{R} symmetric about $\theta \in \mathbb{R}$ with $F'(\theta) > 0$. Then $\theta = \theta_{0.5}$ and is called the median of F. If F has a finite mean, then θ is also equal to the mean.

We consider the estimation of θ based on i.i.d. X_i's from F. If F is normal, it has been shown in previous chapters that the sample mean \bar{X} is the UMVUE and MLE of θ and is asymptotically efficient. On the other hand, if F is the c.d.f. of the Cauchy distribution $C(\theta, 1)$, it follows from Exercise 78 in §1.6 that \bar{X} has the same distribution as X_1, i.e., \bar{X} is as variable as X_1, and is inconsistent as an estimator of θ.

Why does \bar{X} perform so differently?

An important difference between the normal and Cauchy p.d.f.'s is that the former tends to 0 at the rate $e^{-x^2/2}$ as $|x| \to \infty$, whereas the latter tends to 0 at the much slower rate x^{-2}, which results in $\int |x|dF(x) = \infty$. The poor performance of \bar{X} in the Cauchy case is due to the high probability of getting extreme observations and the fact that \bar{X} is sensitive to large changes in a few of the X_i's.
Mean vs median

This suggests the use of a robust estimator that discards some extreme observations.

The *sample median*, which is defined to be the 50%th sample quantile \(\hat{\theta}_{0.5} \) described in §5.3.1, is insensitive to the behavior of \(F \) as \(|x| \to \infty \). Since both the sample mean and the sample median can be used to estimate \(\theta \), a natural question is when is one better than the other, using a criterion such as the amse (asymptotic efficiency).

Unfortunately, a general answer does not exist, since the asymptotic relative efficiency between these two estimators depends on the unknown distribution \(F \).

If \(F \) does not have a finite variance, then \(\text{Var}(\bar{X}) = \infty \) and \(\bar{X} \) may be inconsistent.

In such a case the sample median is certainly preferred, since \(\hat{\theta}_{0.5} \) is consistent and asymptotically normal as long as \(F'(\theta) > 0 \), and may have a finite variance (Exercise 60).

The following example, which compares the sample mean and median in some cases, shows that the sample median can be better even if \(\text{Var}(X_1) < \infty \).
Example 5.10 (asymptotic efficiency and robustness)

Suppose that $\text{Var}(X_1) < \infty$.
Then, by the CLT,

$$\sqrt{n}(\bar{X} - \theta) \to_d N(0, \text{Var}(X_1)).$$

By Theorem 5.10(iv),

$$\sqrt{n}(\hat{\theta}_{0.5} - \theta) \to_d N(0, [2F'(\theta)]^{-2}).$$

Hence, the asymptotic relative efficiency of $\hat{\theta}_{0.5}$ w.r.t. \bar{X} is

$$e(F) = 4[F'(\theta)]^2 \text{Var}(X_1).$$

- If F is the c.d.f. of $N(\theta, \sigma^2)$, then $\text{Var}(X_1) = \sigma^2$, $F'(\theta) = (\sqrt{2\pi}\sigma)^{-1}$, and $e(F) = 2/\pi = 0.637$.

- If F is the c.d.f. of the logistic distribution $LG(\theta, \sigma)$, then $\text{Var}(X_1) = \sigma^2\pi^2/3$, $F'(\theta) = (4\sigma)^{-1}$, and $e(F) = \pi^2/12 = 0.822$.

- If $F(x) = F_0(x - \theta)$ and F_0 is the c.d.f. of the t-distribution t_ν with $\nu \geq 3$, then $\text{Var}(X_1) = \nu/(\nu - 2)$, $F'(\theta) = \Gamma(\nu + 1)/[\sqrt{\nu\pi}\Gamma(\nu/2)]$, $e(F) = 1.62$ when $\nu = 3$, $e(F) = 1.12$ when $\nu = 4$, and $e(F) = 0.96$ when $\nu = 5$.

Example 5.10 (continued)

- If F is the c.d.f. of the double exponential distribution $DE(\theta, \sigma)$, then $F'(\theta) = (2\sigma)^{-1}$ and $e(F) = 2$.

- Consider the Tukey model

$$F(x) = (1 - \varepsilon)\Phi\left(\frac{x - \theta}{\sigma}\right) + \varepsilon\Phi\left(\frac{x - \theta}{\tau\sigma}\right),$$

where $\sigma > 0$, $\tau > 0$, and $0 < \varepsilon < 1$. Then

$\text{Var}(X_1) = (1 - \varepsilon)\sigma^2 + \varepsilon\tau^2\sigma^2$, $F'(\theta) = (1 - \varepsilon + \varepsilon/\tau)/(\sqrt{2\pi}\sigma)$, and

$e(F) = 2(1 - \varepsilon + \varepsilon\tau^2)(1 - \varepsilon + \varepsilon/\tau)^2/\pi$. Note that $\lim_{\varepsilon \to 0} e(F) = 2/\pi$ and $\lim_{\tau \to \infty} e(F) = \infty$.

Trimmed sample mean

Since the sample median uses at most two actual values of x_i’s, it may go too far in discarding observations, which results in a possible loss of efficiency.

The trimmed sample mean is a natural compromise between the sample mean and median.
Example 5.10 (continued)

- If \(F \) is the c.d.f. of the double exponential distribution \(DE(\theta, \sigma) \), then \(F'(\theta) = (2\sigma)^{-1} \) and \(e(F) = 2 \).

- Consider the Tukey model

\[
F(x) = (1 - \varepsilon)\Phi \left(\frac{x-\theta}{\sigma} \right) + \varepsilon \Phi \left(\frac{x-\theta}{\tau\sigma} \right),
\]

where \(\sigma > 0, \tau > 0, \) and \(0 < \varepsilon < 1 \). Then

\[
\text{Var}(X_1) = (1 - \varepsilon)\sigma^2 + \varepsilon\tau^2\sigma^2,
\]

\[
F'(\theta) = (1 - \varepsilon + \varepsilon/\tau)/(\sqrt{2\pi}\sigma),
\]

and

\[
e(F) = 2(1 - \varepsilon + \varepsilon\tau^2)(1 - \varepsilon + \varepsilon/\tau)^2/\pi.
\]

Note that \(\lim_{\varepsilon \to 0} e(F) = 2/\pi \) and \(\lim_{\tau \to \infty} e(F) = \infty \).

Trimmed sample mean

Since the sample median uses at most two actual values of \(x_i \)'s, it may go too far in discarding observations, which results in a possible loss of efficiency.

The trimmed sample mean is a natural compromise between the sample mean and median.
The α-trimmed sample mean and its properties

The α-trimmed sample mean is defined as

$$\bar{X}_\alpha = \frac{1}{(1-2\alpha)n} \sum_{j=m_\alpha+1}^{n-m_\alpha} X(j),$$

where m_α is the integer part of $n\alpha$ and $\alpha \in (0, \frac{1}{2})$. It discards the m_α smallest and m_α largest observations.

The sample mean and median can be viewed as two extreme cases of \bar{X}_α as $\alpha \to 0$ and $\frac{1}{2}$, respectively.

If $F(x) = F_0(x - \theta)$, where F_0 is symmetric about 0 and has a Lebesgue p.d.f. positive in the range of X_1, then

$$\sqrt{n}(\bar{X}_\alpha - \theta) \xrightarrow{d} N(0, \sigma^2_\alpha),$$

where

$$\sigma^2_\alpha = \frac{2}{(1-2\alpha)^2} \left\{ \int_0^{F_0^{-1}(1-\alpha)} x^2 dF_0(x) + \alpha[F_0^{-1}(1-\alpha)]^2 \right\}.$$

(These will be further discussed in the next lecture.)
Comparisons

From the asymptotic normality of \bar{X}_α, the asymptotic relative efficiency between \bar{X}_α and the sample mean \bar{X} is

$$e_{\bar{X}_\alpha, \bar{X}}(F) = \frac{\text{Var}(X_1)}{\sigma_\alpha^2}.$$

Lehmann (1983, §5.4) provides various values of the asymptotic relative efficiency $e_{\bar{X}_\alpha, \bar{X}}(F)$.

For instance, when $F(x) = F_0(x - \theta)$ and F_0 is the c.d.f. of the t-distribution t_3, $e_{\bar{X}_\alpha, \bar{X}}(F) = 1.70, 1.91, \text{ and } 1.97$ for $\alpha = 0.05, 0.125, \text{ and } 0.25$, respectively;

when

$$F(x) = (1 - \varepsilon)\Phi\left(\frac{x - \theta}{\sigma}\right) + \varepsilon\Phi\left(\frac{x - \theta}{\tau\sigma}\right)$$

with $\tau = 3$ and $\varepsilon = 0.05$, $e_{\bar{X}_\alpha, \bar{X}}(F) = 1.20, 1.19, \text{ and } 1.09$ for $\alpha = 0.05, 0.125, \text{ and } 0.25$, respectively;

when $\tau = 3$ and $\varepsilon = 0.01$, $e_{\bar{X}_\alpha, \bar{X}}(F) = 1.04, 0.98, \text{ and } 0.89$ for $\alpha = 0.05, 0.125, \text{ and } 0.25$, respectively.
M-estimators

Note that the sample mean \bar{X} satisfies

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \min_{t \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (X_i - t)^2 = \min_{t \in \Theta} \int (x - t)^2 dF_n$$

This idea can be generalized to get a class of estimators obtained by minimizing some functions.

Let $\rho(x, t)$ be a Borel function on $\mathbb{R}^d \times \mathbb{R}$ and $\Theta \subset \mathbb{R}$ be an open set. An **M-functional** is defined to be a solution of

$$\int \rho(x, T(G))dG(x) = \min_{t \in \Theta} \int \rho(x, t)dG(x), \quad G \in \mathcal{F}$$

For $X_1, ..., X_n$ i.i.d. from $F \in \mathcal{F}$, $T(F_n)$ is called an **M-estimator** of $T(F)$.

$$\int \rho(x, T(F_n))dF_n(x) = \min_{t \in \Theta} \int \rho(x, t)dF_n(x)$$

i.e.,

$$\frac{1}{n} \sum_{i=1}^{n} \rho(X_i, T(F_n)) = \min_{t \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \rho(X_i, t)$$
Assume that $\psi(x, t) = \partial \rho(x, t) / \partial t$ exists a.e. and

$$\lambda_G(t) = \int \psi(x, t) dG(x) = \frac{\partial}{\partial t} \int \rho(x, t) dG(x).$$

Then $\lambda_G(T(G)) = 0$ and $T(F_n)$ is a solution of

$$\sum_{i=1}^{n} \psi(X_i, t) = 0.$$

Example 5.7

The following are some examples of M-estimators.

(i) If $\rho(x, t) = (x - t)^2 / 2$, then $T(F_n) = \bar{X}$ is the sample mean.

(ii) If $\rho(x, t) = |x - t|^p / p$, where $p \in [1, 2)$, then

$$\psi(x, t) = \begin{cases} |x - t|^{p-1} & x \leq t \\ -|x - t|^{p-1} & x > t. \end{cases}$$

When $p = 1$, $T(F_n)$ is the sample median. When $1 < p < 2$, $T(F_n)$ is called the pth least absolute deviations estimator or the minimum L_p distance estimator.
M-estimators

Assume that $\psi(x, t) = \frac{\partial \rho(x, t)}{\partial t}$ exists a.e. and

$$\lambda_G(t) = \int \psi(x, t) \, dG(x) = \frac{\partial}{\partial t} \int \rho(x, t) \, dG(x).$$

Then $\lambda_G(T(G)) = 0$ and $T(F_n)$ is a solution of

$$\sum_{i=1}^{n} \psi(X_i, t) = 0.$$

Example 5.7

The following are some examples of M-estimators.

(i) If $\rho(x, t) = \frac{(x - t)^2}{2}$, then $T(F_n) = \bar{X}$ is the sample mean.

(ii) If $\rho(x, t) = |x - t|^p / p$, where $p \in [1, 2)$, then

$$\psi(x, t) = \begin{cases}
|x - t|^{p-1} & x \leq t \\
-(x - t)^{p-1} & x > t.
\end{cases}$$

When $p = 1$, $T(F_n)$ is the sample median. When $1 < p < 2$, $T(F_n)$ is called the pth least absolute deviations estimator or the minimum L_p distance estimator.
Example 5.7 (continued)

(iii) Let \(\mathcal{F}_0 = \{ f_\theta : \theta \in \Theta \} \) be a parametric family of p.d.f.'s with \(\Theta \subset \mathbb{R} \) and \(\rho(x, t) = -\log f_t(x) \).
Then \(T(F_n) \) is an MLE.
Thus, M-estimators are extensions of MLE’s in parametric models.
(iv) Let \(C > 0 \) be a constant.
Huber (1964) considers
\[
\rho(x, t) = \begin{cases}
\frac{1}{2} (x - t)^2 & |x - t| \leq C \\
\frac{1}{2} C^2 & |x - t| > C
\end{cases}
\]
with
\[
\psi(x, t) = \begin{cases}
t - x & |x - t| \leq C \\
0 & |x - t| > C.
\end{cases}
\]
The corresponding \(T(F_n) \) is a type of trimmed sample mean.
(v) Let \(C > 0 \) be a constant.
Huber (1964) considers
\[
\rho(x, t) = \begin{cases}
\frac{1}{2} (x - t)^2 & |x - t| \leq C \\
C |x - t| - \frac{1}{2} C^2 & |x - t| > C
\end{cases}
\]
Example 5.7 (continued)

with

\[\psi(x, t) = \begin{cases}
 C & t - x > C \\
 t - x & |x - t| \leq C \\
 -C & t - x < -C.
\end{cases} \]

The corresponding \(T(F_n) \) is a type of Winsorized sample mean.

(vi) Hampel (1974) considers \(\psi(x, t) = \psi_0(t - x) \) with \(\psi_0(s) = -\psi_0(-s) \) and

\[\psi_0(s) = \begin{cases}
 s & 0 \leq s \leq a \\
 a & a < s \leq b \\
 \frac{a(c-s)}{c-b} & b < s \leq c \\
 0 & s > c,
\end{cases} \]

where \(0 < a < b < c \) are constants.

A smoothed version of \(\psi_0 \) is

\[\psi_1(s) = \begin{cases}
 \sin(as) & 0 \leq s < \pi/a \\
 0 & s > \pi/a.
\end{cases} \]
Theorem 5.7

Let $X_1, ..., X_n$ be i.i.d. from F and T be an M-functional.

Assume that ψ is a bounded and continuous function on $\mathbb{R}^d \times \mathbb{R}$ and that $\lambda_F(t)$ is continuously differentiable at $T(F)$ and $\lambda'_F(T(F)) \neq 0$.

Then

$$\sqrt{n}[T(F_n) - T(F)] \to_d N(0, \sigma_F^2)$$

with

$$\sigma_F^2 = \frac{\int [\psi(x, T(F))]^2 dF(x)}{[\lambda'_F(T(F))]^2}.$$

Example 5.13

Consider Huber’s ψ given in Example 5.7(v).

Assume that F is continuous at $\theta - C$ and $\theta + C$.

Then

$$\sigma_F^2 = \frac{\int_{\theta-C}^{\theta+C} (\theta - x)^2 dF(x) + C^2 F(\theta - C) + C^2 [1 - F(\theta + C)]}{[F(\theta + C) - F(\theta - C)]^2}.$$

Asymptotic relative efficiency between Huber’s M-estimator and the sample mean can be obtained.
Theorem 5.7

Let \(X_1, \ldots, X_n\) be i.i.d. from \(F\) and \(T\) be an M-functional. Assume that \(\psi\) is a bounded and continuous function on \(\mathbb{R}^d \times \mathbb{R}\) and that \(\lambda_F(t)\) is continuously differentiable at \(T(F)\) and \(\lambda'_F(T(F)) \neq 0\). Then

\[
\sqrt{n}[T(F_n) - T(F)] \rightarrow_d N(0, \sigma^2_F)
\]

with

\[
\sigma^2_F = \frac{\int [\psi(x, T(F))]^2 dF(x)}{[\lambda'_F(T(F))]^2}.
\]

Example 5.13

Consider Huber’s \(\psi\) given in Example 5.7(v). Assume that \(F\) is continuous at \(\theta - C\) and \(\theta + C\). Then

\[
\sigma^2_F = \frac{\int_{\theta-C}^{\theta+C} (\theta - x)^2 dF(x) + C^2 F(\theta - C) + C^2 [1 - F(\theta + C)]}{[F(\theta + C) - F(\theta - C)]^2}
\]

Asymptotic relative efficiency between Huber’s M-estimator and the sample mean can be obtained.