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Lecture 18: Asymptotic chi-square tests
Testing in multinomial distributions
Consider n independent trials with k possible outcomes for each trial.
Let pj > 0 be the probability that the j th outcome occurs in a given trial
and Xj be the number of occurrences of the j th outcome in n trials.
Then X = (X1, ...,Xk ) has the multinomial distribution (Example 2.7)
with the parameter p = (p1, ...,pk ).
Let ξi = (0, ...,0,1,0, ...,0), where the single nonzero component 1 is
located in the j th position if the i th trial yields the j th outcome.
Then ξ1, ...,ξn are i.i.d. and X/n = ξ̄ = ∑

n
i=1 ξi/n.

X/n is an unbiased estimator of p and, by the CLT,

Zn(p) =
√

n
(X

n −p
)

=
√

n(ξ̄ −p)→d Nk (0,Σ),

where Σ = Var(X/
√

n) is a symmetric k ×k matrix whose i th diagonal
element is pi(1−pi) and (i , j)th off-diagonal element is −pipj .
We first consider the problem of testing

H0 : p = p0 versus H1 : p 6= p0,

where p0 = (p01, ...,p0k ) is a known vector of cell probabilities.
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χ2 tests
For testing H : p = p0 vs H1 : p 6= p0, a class of tests related to the
asymptotic tests described in §6.4.2 is the class of χ2-tests.
A popular test is based on the following χ2-statistic:

χ
2 =

k

∑
j=1

(Xj −np0j)
2

np0j
= ‖D(p0)Zn(p0)‖2,

where D(c) with c = (c1, ...,ck ) is the k ×k diagonal matrix whose j th
diagonal element is c−1/2

j .
Another popular test is based on the following modified χ2-statistic:

χ̃
2 =

k

∑
j=1

(Xj −np0j)
2

Xj
= ‖D(X/n)Zn(p0)‖2.

The next result shows that a test of asymptotic significance level α

rejects H0 : p = p0 when χ2 > χ2
k−1,α (or χ̃2 > χ2

k−1,α ), where χ2
k−1,α is

the (1−α)th quantile of χ2
k−1.

Thus, these tests are called (asymptotic) χ2-tests.
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Theorem 6.8
Let φ = (

√
p1, ...,

√
pk ) and Λ be a k ×k projection matrix.

(i) If Λφ = aφ , then

[Zn(p)]τD(p)ΛD(p)Zn(p)→d χ
2
r ,

where χ2
r has the chi-square distribution χ2

r with r = tr(Λ)−a.
(ii) The same result holds if D(p) in (i) is replaced by D(X/n).

Remark
The χ2-statistic and the modified χ2-statistic are special cases of the
statistics in Theorem 6.8(i) and (ii) with Λ = Ik satisfying Λφ = φ .

Proof
The result in (ii) follows from the result in (i) and X/n→p p.
To prove (i), let D = D(p), Zn = Zn(p), and Z = Nk (0, Ik ).
From the asymptotic normality of Zn and Theorem 1.10,

Z τ
n DΛDZn→d Z τAZ with A = Σ1/2DΛDΣ1/2.
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From Exercise 51 in §1.6, the result in (i) follows if we can show that
A2 = A (i.e., A is a projection matrix) and tr(A) = tr(Λ)−a.
Since Λ is a projection matrix and Λφ = aφ , a must be either 0 or 1.
Note that DΣD = Ik −φφ τ .
Then

A3 = Σ1/2DΛDΣDΛDΣDΛDΣ1/2

= Σ1/2D(Λ−aφφ
τ )(Λ−aφφ

τ )ΛDΣ1/2

= Σ1/2D(Λ−2aφφ
τ + a2

φφ
τ )ΛDΣ1/2

= Σ1/2D(Λ−aφφ
τ )ΛDΣ1/2

= Σ1/2DΛDΣDΛDΣ1/2

= A2,

which implies that the eigenvalues of A must be 0 or 1.
Therefore, A2 = A.
Also,

tr(A) = tr[Λ(DΣD)] = tr(Λ−aφφ
τ ) = tr(Λ)−a.
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Example 6.23 (Goodness of fit tests)
Let Y1, ...,Yn be i.i.d. from F . Consider the problem of testing

H0 : F = F0 versus H1 : F 6= F0,

where F0 is a known c.d.f. (For instance, F0 = N(0,1).)
One way to test H0 : F = F0 is to partition the range of Y1 into k disjoint
events A1, ...,Ak and test H0 : p = p0 with pj = PF (Aj) and
p0j = PF0(Aj), j = 1, ...,k .
Let Xj be the number of Yi ’s in Aj , j = 1, ...,k .
Based on Xj ’s, the χ2-tests discussed previously can be applied.
They are called goodness of fit tests.

In the goodness of fit tests discussed in Example 6.23, F0 in H0 is
known so that p0j ’s can be computed.
In some cases, we need to test the following hypotheses:

H0 : F = Fθ versus H1 : F 6= Fθ ,

where θ is an unknown parameter in Θ⊂Rs.
For example, Fθ = N(µ,σ2), θ = (µ,σ2).
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If we still try to test H0 : p = p0 with pj = PFθ
(Aj), j = 1, ...,k , the result

in Example 6.23 is not applicable since p is unknown under H0.
A generalized χ2-test can be obtained using the following result.
Let p(θ) = (p1(θ), ...,pk (θ)) be a k -vector of known functions of
θ ∈Θ⊂Rs, where s < k .
Consider the testing problem

H0 : p = p(θ) versus H1 : p 6= p(θ).

Note that H0 : p = p0 is the special case of H0 : p = p(θ) with s = 0.
Let θ̂ be an MLE of θ under H0.
By Theorem 6.5, the LR test that rejects H0 when −2logλn > χ2

k−s−1,α
has asymptotic significance level α, where χ2

k−s−1,α is the (1−α)th
quantile of χ2

k−s−1 and

λn =
k

∏
j=1

[pj(θ̂)]Xj

/
(Xj/n)Xj .

Using the fact that pj(θ̂)/(Xj/n)→p 1 under H0 and

log(1 + x) = x −x2/2 + o(|x |2) as |x | → 0,
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we obtain that

−2logλn = −2
k

∑
j=1

Xj log

(
1 +

pj(θ̂)

Xj/n
−1

)

= −2
k

∑
j=1

Xj

(
pj(θ̂)

Xj/n
−1

)
+

k

∑
j=1

Xj

(
pj(θ̂)

Xj/n
−1

)2

+ op(1)

=
k

∑
j=1

[Xj −npj(θ̂)]2

Xj
+ op(1)

=
k

∑
j=1

[Xj −npj(θ̂)]2

npj(θ̂)
+ op(1),

where the third equality follows from ∑
k
j=1 pj(θ̂) = ∑

k
j=1 Xj/n = 1.

Generalized χ2-statistics

The generalized χ2-statistics χ2 and χ̃2 are defined to be the
previously defined χ2-statistics with p0j ’s replaced by pj(θ̂)’s.
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Theorem 6.9
Under H0 : p = p(θ), the generalized χ2-statistics converge in
distribution to χ2

k−s−1.

The χ2-test with rejection region χ2 > χ2
k−s−1,α (or χ̃2 > χ2

k−s−1,α ) has
asymptotic significance level α, where χ2

k−s−1,α is the (1−α)th
quantile of χ2

k−s−1.

Discussion
Theorem 6.9 can be applied to derive a goodness of fit test for
H0 : p = p(θ) vs H1 : p = p(θ).
However, one has to compute an MLE of θ under H0 : p = p(θ), which
is different from an MLE under H0 : F = Fθ unless F = Fθ and p = p(θ)
are the same; see Moore and Spruill (1975).
Many elementary textbooks, however, use an MLE under H0 : F = Fθ ,
which is wrong.
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MLE under p = p(θ )

From the multinomial distribution, the MLE θ̂ in the generalized χ2 test
should maximize the likelihood

`(θ) =
n!

x1! · · ·xk !
[p1(θ)]x1 · · · [pk (θ)]xk Ix1+···+xk=1

This MLE θ̂ is different from the MLE maximizing the likelihood based
on the family {Fθ}

For testing H0 : F = N(µ,σ2), for example,

pj(θ) = Φ

(
aj+1−µ

σ

)
−Φ

(
aj −µ

σ

)
, j = 1, ...,k

where −∞ = a1 < a2 < · · ·< ak < ak+1 = ∞ and aj ’s are fixed constants.

This MLE θ̂ = (µ̂, σ̂2) is certainly different from µ̂ = the sample mean
and σ̂2 = (n−1)/n times the sample variance, which is the MLE under
the normal model N(µ,σ2).
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Example 6.24 (r ×c contingency tables)
The following r ×c contingency table is a natural extension of the 2×2
contingency table considered in Example 6.12:

A1 A2 · · · Ac Total
B1 X11 X12 · · · X1c n1
B2 X21 X22 · · · X2c n2
· · · · · · · · · · · · · · · · · ·
Br Xr1 Xr2 · · · Xrc nr

Total m1 m2 · · · mc n

where Ai ’s are disjoint events with A1∪·· ·∪Ac = Ω (the sample space
of a random experiment), Bi ’s are disjoint events with B1∪·· ·∪Br = Ω,
and Xij is the observed frequency of the outcomes in Aj ∩Bi .

There are two important applications in this problem.
testing independence of {Aj : j = 1, ...,c} and {Bi : i = 1, ..., r};
testing equality of multinomial distributions.
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Testing independence
Testing independence of {Aj : j = 1, ...,c} and {Bi : i = 1, ..., r} is
equivalent to testing hypotheses

H0 : pij = pi ·p·j for all i , j versus H1 : pij 6= pi ·p·j for some i , j ,

where pij = P(Aj ∩Bi) = E(Xij)/n, pi · = P(Bi), and p·j = P(Aj),
i = 1, ..., r , j = 1, ...,c.
In this case, X = (Xij , i = 1, ..., r , j = 1, ...,c) has the multinomial
distribution with parameters pij , i = 1, ..., r , j = 1, ...,c.
Under H0, MLE’s of pi · and p·j are X̄i · = ni/n and X̄·j = mj/n,
respectively, i = 1, ..., r , j = 1, ...,c (exercise).
The number of free parameters is rc−1.
Under H0, the number of free parameters is r −1 + c−1 = r + c−2.
The difference of the two is rc− r −c + 1 = (r −1)(c−1).
By Theorem 6.9, the χ2-test rejects H0 when χ2 > χ2

(r−1)(c−1),α , where

χ
2 =

r

∑
i=1

c

∑
j=1

(Xij −nX̄i ·X̄·j)2

nX̄i ·X̄·j
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Testing independence

and χ2
(r−1)(c−1),α is the (1−α)th quantile of the chi-square distribution

χ2
(r−1)(c−1).

One can also obtain the modified χ2-test by replacing nX̄i ·X̄·j by Xij in
the denominator of each term of the sum in χ2.

Testing equality of multinomial distributions
Suppose that (X1j , ...,Xrj), j = 1, ...,c, are c independent random
vectors having the multinomial distributions with parameters
(p1j , ...,prj), j = 1, ...,c, respectively.
Consider the problem of testing whether c multinomial distributions are
the same, i.e.,

H0 : pij = pi1 for all i , j versus H1 : pij 6= pi1 for some i , j .

Since (X1j , ...,Xrj) has the multinomial distribution with size nj and
probability vector (p1j , ...,prj), the MLE of pij is Xij/n.
Let Yi =∑

c
j=1 Xij .
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Testing equality of multinomial distributions
Under H0, (Y1, ...,Yr ) has the multinomial distribution with size n and
probability vector (p11, ...,pr1).
Hence, the MLE of pi1 under H0 is X̄i · = Yi/n.
Note that mj = nX̄·j , j = 1, ...,c.
Hence, under H0, the MLE of the expected (i , j)th frequency is nX̄i ·X̄·j .
The number of free parameters in this case is c(r −1).
Under H0, the number of free parameters is r −1.
The difference of the two is c(r −1)− (r −1) = (r −1)(c−1).
Hence, by Theorem 6.9, χ2→d χ2

(r−1)(c−1) under H0, where χ2 is the
same as that in testing independence.
The rejection region of the χ2-test is still χ2 > χ2

(r−1)(c−1),α .

LR tests
One can also obtain the LR test in this problem.
When r = c = 2, the LR test is equivalent to Fisher’s exact test given in
Example 6.12, which is a UMPU test.
When r > 2 or c > 2, however, a UMPU test does not exist.

UW-Madison (Statistics) Stat 710, Lecture 18 Jan 2019 13 / 17



beamer-tu-logo

Construction of asymptotic tests
A simple method of constructing asymptotic tests (for almost all
problems, parametric or nonparametric) for testing

H0 : θ = θ0 versus H1 : θ 6= θ0,

where θ is a vector of parameters, is to use an asymptotically normally
distributed estimator of θ .
Let θ̂n be an estimator of θ based on a sample of size n from P.
Suppose that under H0,

V−1/2
n (θ̂n−θ)→d Nk (0, Ik ),

where Vn is the asymptotic covariance matrix of θ̂n.
If Vn is known when θ = θ0, then we define a test with rejection region

(θ̂n−θ0)τV−1
n (θ̂n−θ0) > χ

2
k ,α

where χ2
k ,α is the (1−α)th quantile of the chi-squared distribution χ2

k .
This test has asymptotic significance level α.
If Vn depends on the unknown population P even if H0 is true (θ = θ0),
then we have to replace Vn by an estimator V̂n.
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If V̂n is consistent, then the resulting test still has asymptotic
significance level α.
Although the following result shows that this test is asymptotically
correct (§2.5.3), this test may not be the best or even nearly best
solution to the problem.

Theorem 6.12
Assume that

V−1/2
n (θ̂n−θ)→d Nk (0, Ik ),

holds for any P.
Assume also that λ+[Vn]→ 0, where λ+[Vn] is the largest eigenvalue
of Vn.
(i) The test having rejection region

(θ̂n−θ0)τV−1
n (θ̂n−θ0) > χ

2
k ,α

with a known Vn (or with Vn replaced by a consistent estimator V̂n) is
consistent.
(ii) If we choose α = αn→ 0 as n→ ∞ and χ2

k ,1−αn
λ+[Vn] = o(1), then

the test in (i) is Chernoff-consistent.
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Example 6.27
Let X1, ...,Xn be i.i.d. random variables from a symmetric c.d.f. F
having finite variance and positive F ′.
Consider the problem of testing H0 : F is symmetric about 0 versus
H1 : F is not symmetric about 0.
Under H0, there are many estimators that are asymptotically normal.
We consider the following three estimators:
(1) θ̂n = X̄ and θ = E(X1);
(2) θ̂n = θ̂0.5 (the sample median) and θ = F−1(1

2) (the median of F );
(3) θ̂n = X̄a (the a-trimmed sample mean) and θ =

∫
xJ(F (x))dF (x)

with J(t) = (1−2a)−1I(a,1−a)(t), a ∈ (0, 1
2).

Although the θ ’s in (1)-(3) are different in general, in all cases θ = 0 is
equivalent to that H0 holds.
For X̄ , it follows from the CLT that

V−1/2
n (X̄ −θ)→d N(0,1)

with Vn = σ2/n for any F , where σ2 = Var(X1).
From the SLLN, S2/n is a consistent estimator of Vn for any F .
Thus, Theorem 6.12 applies with θ̂n = X̄ and Vn replaced by S2/n.
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This test is asymptotically equivalent to the one-sample t-test derived
in §6.2.3.
From Theorem 5.10, θ̂0.5 satisfies

V−1/2
n (θ̂ −θ)→d N(0,1)

with Vn = 4−1[F ′(θ)]−2n−1 for any F .
A consistent estimator of Vn can be obtained using the bootstrap
method considered in §5.5.3.
Another consistent estimator of Vn can be obtained using Woodruff’s
interval introduced in §7.4 (see Exercise 86 in §7.6).
Thus, Theorem 6.12 applies with θ̂n = θ̂0.5 and Vn replaced by a
consistent estimator.
It follows from the discussion in §5.3.2 that X̄a satisfies

V−1/2
n (X̄a−θ)→d N(0,1)

A consistent estimator of Vn can be obtained using the formula for σ2
a .

Thus, Theorem 6.12 applies with θ̂n = X̄a and Vn replaced by a
consistent estimator is asymptotically correct.
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