Lecture 20: Inverting acceptance regions of tests, UMA and UMAU confidence sets

Confidence sets and hypothesis tests

Another popular method of constructing confidence sets is to use a close relationship between confidence sets and hypothesis tests. For any test *T*, the set $\{x : T(x) \neq 1\}$ is called the *acceptance region*. This terminology is not precise when *T* is a randomized test.

Theorem 7.2

For each $\theta_0 \in \Theta$, let T_{θ_0} be a test for $H_0 : \theta = \theta_0$ (versus some H_1) with significance level α and acceptance region $A(\theta_0)$. For each *x* in the range of *X*, define

$$C(x) = \{\theta : x \in A(\theta)\}.$$

Then C(X) is a level $1 - \alpha$ confidence set for θ . If T_{θ_0} is nonrandomized and has size α for every θ_0 , then C(X) has

confidence coefficient $1 - \alpha$.

Proof

We prove the first assertion only. The proof for the second assertion is similar. Under the given condition,

$$\sup_{\theta=\theta_0} P(X \notin A(\theta_0)) = \sup_{\theta=\theta_0} P(T_{\theta_0} = 1) \le \alpha,$$

which is the same as

$$1-\alpha \leq \inf_{\theta=\theta_0} P\big(X \in A(\theta_0)\big) = \inf_{\theta=\theta_0} P\big(\theta_0 \in C(X)\big).$$

Since this holds for all θ_0 , the result follows from

$$\inf_{P\in\mathscr{P}} P(\theta \in C(X)) = \inf_{\theta_0 \in \Theta} \inf_{\theta = \theta_0} P(\theta_0 \in C(X)) \ge 1 - \alpha.$$

The converse of Theorem 7.2 is partially true.

Proposition 7.2

Let C(X) be a confidence set for θ with confidence level (or confidence coefficient) $1 - \alpha$. For any $\theta_0 \in \Theta$, define a region $A(\theta_0) = \{x : \theta_0 \in C(x)\}$.

Then the test $T(X) = 1 - I_{A(\theta_0)}(X)$ has significance level α for testing $H_0: \theta = \theta_0$ versus some H_1 .

Discussions

In general, C(X) in Theorem 7.2 can be determined numerically, if it does not have an explicit form.

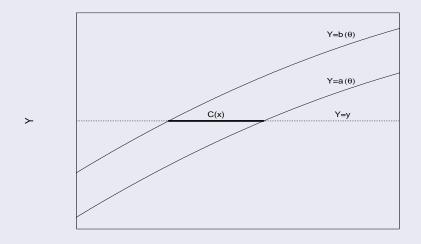
Suppose $A(\theta) = \{Y : a(\theta) \le Y \le b(\theta)\}$ for a real-valued θ and statistic Y(X) and some nondecreasing functions $a(\theta)$ and $b(\theta)$.

When we observe Y = y, C(X) is an interval with limits $\underline{\theta}$ and $\overline{\theta}$, which are the θ -values at which the horizontal line Y = y intersects the curves $Y = b(\theta)$ and $Y = a(\theta)$ (Figure 7.1), respectively.

If $y = b(\theta)$ (or $y = a(\theta)$) has no solution or more than one solution, $\underline{\theta} = \inf\{\theta : y \le b(\theta)\}$ (or $\overline{\theta} = \sup\{\theta : a(\theta) \le y\}$).

C(X) does not include $\underline{\theta}$ (or $\overline{\theta}$) if and only if at $\underline{\theta}$ (or $\overline{\theta}$), $b(\theta)$ (or $a(\theta)$) is only left-continuous (or right-continuous).

Figure 7.1. A confidence interval obtained by inverting $A(\theta) = [a(\theta), b(\theta)]$



Example 7.7

Suppose that X has the following p.d.f. in a one-parameter exponential family:

$$f_{\theta}(x) = \exp\{\eta(\theta) Y(x) - \xi(\theta)\}h(x),$$

where θ is real-valued and $\eta(\theta)$ is nondecreasing in θ . First, we apply Theorem 7.2 with $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$. By Theorem 6.2, the acceptance region of the UMP test of size α is

$$A(\theta_0) = \{x : Y(x) \le c(\theta_0)\},\$$

where $c(\theta_0) = c$ in Theorem 6.2. It can be shown that $c(\theta)$ is nondecreasing in θ . Inverting $A(\theta)$ according to Figure 7.1 with $b(\theta) = c(\theta)$ and $a(\theta)$ ignored, we obtain

$$C(X) = [\underline{\theta}(X), \infty)$$
 or $(\underline{\theta}(X), \infty)$,

a one-sided confidence interval for θ with confidence level $1 - \alpha$. $\underline{\theta}(X)$ is a called a lower confidence bound for θ in §2.4.3. When the c.d.f. of Y(X) is continuous, C(X) has confidence coefficient

<u>1 – α .</u>

If $H_0: \theta = \theta_0$ and $H_1: \theta < \theta_0$ are considered, then $C(X) = \{\theta : Y(X) \ge c(\theta)\}$ and is of the form

 $(-\infty,\overline{\theta}(X)]$ or $(-\infty,\overline{\theta}(X))$.

 $\overline{\theta}(X)$ is called an upper confidence bound for θ .

Consider next $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$.

By Theorem 6.4, the acceptance region of the UMPU test of size α is given by $A(\theta_0) = \{x : c_1(\theta_0) \le Y(x) \le c_2(\theta_0)\}$, where $c_i(\theta)$ are nondecreasing (exercise).

A confidence interval can be obtained by inverting $A(\theta)$ according to Figure 7.1 with $a(\theta) = c_1(\theta)$ and $b(\theta) = c_2(\theta)$.

Let us consider a specific example in which $X_1, ..., X_n$ are i.i.d. binary random variables with $p = P(X_i = 1)$.

Note that
$$Y(X) = \sum_{i=1}^{n} X_i$$
.

Suppose that we need a lower confidence bound for *p* so that we consider $H_0: p = p_0$ and $H_1: p > p_0$.

< ロ > < 同 > < 回 > < 回 >

From Example 6.2, the acceptance region of a UMP test of size $\alpha \in (0,1)$ is $A(p_0) = \{y : y \le m(p_0)\}$, where $m(p_0)$ is an integer between 0 and *n* such that

$$\sum_{j=m(p_0)+1}^n \binom{n}{j} p_0^j (1-p_0)^{n-j} \leq \alpha < \sum_{j=m(p_0)}^n \binom{n}{j} p_0^j (1-p_0)^{n-j}.$$

Thus, m(p) is an integer-valued, left-continuous, nondecreasing step-function of p. Define

$$\underline{p} = \inf\{p: m(p) \ge y\} = \inf\left\{p: \sum_{j=y}^n \binom{n}{j} p^j (1-p)^{n-j} > \alpha\right\}.$$

We want to show that a level $1 - \alpha$ confidence interval for *p* is (\underline{p} , 1]. Inverting A(p) we obtain that

$$C(y) = \{p : y \le m(p)\}$$

We need to show that

$$\{p: y \le m(p)\} = \{p: \underline{p} < p\}$$

Suppose that p < p.

If m(p) < y, then, by the definition of \underline{p} , we must have $p \leq \underline{p}$, a contradiction.

Hence, we must have $y \leq m(p)$.

This shows

$$\{p: \underline{p} < p\} \subset \{p: y \le m(p)\}$$

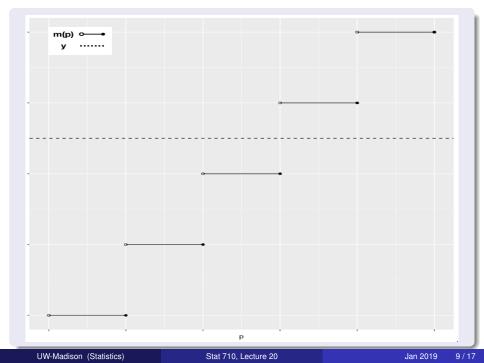
Suppose that $y \leq m(p)$.

By the definition of p, $p \le p$.

But we cannot have $\underline{p} = p$, because m(p) is left-continuous and flat, i.e., if $y \le m(\underline{p})$, then there is a $p < \underline{p}$ such that $y \le m(p)$. Thus, p < p and, hence,

$$\{p: y \leq m(p)\} \subset \{p: \underline{p} < p\}$$

One can compare this confidence interval with the one obtained by applying Theorem 7.1 (exercise). See also Example 7.16.



Example 7.8

Suppose that X has the following p.d.f. in a multiparameter exponential family:

$$f_{ heta, arphi}(x) = \exp\left\{ heta \, Y(x) + arphi^{ au} U(x) - \zeta(heta, arphi)
ight\}$$

By Theorem 6.4, the acceptance region of a UMPU test of size α for testing $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$ or $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ is

$$A(\theta_0) = \{(y, u) : y \leq c_2(u, \theta_0)\}$$

or

$$A(\theta_0) = \{(y, u) : c_1(u, \theta_0) \leq y \leq c_2(u, \theta_0)\},\$$

where $c_i(u, \theta)$, i = 1, 2, are nondecreasing functions of θ . Confidence intervals for θ can then be obtained by inverting $A(\theta)$ according to Figure 7.1 with $b(\theta) = c_2(u, \theta)$ and $a(\theta) = c_1(u, \theta)$ or $a(\theta) \equiv -\infty$, for any observed u.

Consider more specifically the case where X_1 and X_2 are independently distributed as the Poisson distributions $P(\lambda_1)$ and $P(\lambda_2)$, respectively, and we need a lower confidence bound for the ratio $\rho = \lambda_2/\lambda_1$. From Example 6.11, a UMPU test of size α for testing $H_0: \rho = \rho_0$ versus $H_1: \rho > \rho_0$ has the acceptance region

$$A(\rho_0) = \{(y, u) : y \leq c(u, \rho_0)\},\$$

where $c(u, \rho_0)$ is determined by the conditional distribution of $Y = X_2$ given $U = X_1 + X_2 = u$.

Since the conditional distribution of *Y* given U = u is the binomial distribution $Bi(\rho/(1+\rho), u)$, we can use the result in Example 7.7, i.e., $c(u,\rho)$ is the same as $m(\rho)$ in Example 7.7 with n = u and $p = \rho/(1+\rho)$. Then a level 1 α lower confidence bound for n is n given by

Then a level $1 - \alpha$ lower confidence bound for *p* is *p* given by

$$\underline{p} = \inf\{p: m(p) \ge y\} = \inf\left\{p: \sum_{j=y}^{u} {u \choose j} p^{j} (1-p)^{u-j} \ge \alpha\right\}$$

Since $\rho = p/(1-p)$ is a strictly increasing function of p, a level $1-\alpha$ lower confidence bound for ρ is p/(1-p).

Confidence sets related to optimal tests

For a confidence set obtained by inverting the acceptance regions of some UMP or UMPU tests, it is expected that the confidence set inherits some optimality property.

Definition 7.2

Let $\theta \in \Theta$ be an unknown parameter and Θ' be a subset of Θ that does not contain the true parameter value θ .

A confidence set C(X) for θ with confidence coefficient $1 - \alpha$ is said to be Θ' -uniformly most accurate (UMA) iff for any other confidence set $C_1(X)$ with confidence level $1 - \alpha$,

$$P(\theta' \in C(X)) \leq P(\theta' \in C_1(X))$$
 for all $\theta' \in \Theta'$.

C(X) is UMA iff it is Θ' -UMA with $\Theta' = \{\theta\}^c$.

- Intuitively, confidence sets with small probabilities of covering wrong parameter values are preferred.
- If we consider a lower confidence bound for a real-valued θ, we only need to worry about covering values of θ that are too small, i.e., Θ' = {θ' ∈ Θ : θ' < θ}.

UW-Madison (Statistics)

Stat 710, Lecture 20

Theorem 7.4

Let C(X) be a confidence set for θ obtained by inverting the acceptance regions of nonrandomized tests T_{θ_0} for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \in \Theta_{\theta_0}$.

Suppose that for each θ_0 , T_{θ_0} is UMP of size α .

Then C(X) is Θ' -UMA with confidence coefficient $1 - \alpha$, where $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\}.$

Proof

The fact that C(X) has confidence coefficient $1 - \alpha$ follows from Theorem 7.2.

Let $C_1(X)$ be another confidence set with confidence level $1 - \alpha$. By Proposition 7.2, the test

$$T_{1\theta_0}(X) = 1 - I_{A_1(\theta_0)}(X)$$

with $A_1(\theta_0) = \{x : \theta_0 \in C_1(x)\}$ has significance level α for testing $H_0 : \theta = \theta_0$ versus $H_1 : \theta \in \Theta_{\theta_0}$.

ヘロン 人間 とくほど くほど

For any $\theta' \in \Theta'$, $\theta \in \Theta_{\theta'}$, i.e., *P* is in the family defined by $H_1 : \theta \in \Theta_{\theta'}$. Thus,

$$egin{aligned} & \mathcal{P}ig(heta'\in \mathcal{C}(X)ig) &=& 1-\mathcal{P}ig(au_{ heta'}(X)=1ig) \ &\leq& 1-\mathcal{P}ig(au_{1 heta'}(X)=1ig) \ &=& \mathcal{P}ig(heta'\in \mathcal{C}_1(X)ig), \end{aligned}$$

where the first equality follows from the fact that $T_{\theta'}$ is nonrandomized and the inequality follows from the fact that $T_{\theta'}$ is UMP.

Discussions

Theorem 7.4 can be applied to construct UMA confidence bounds in problems where the population is in a one-parameter parametric family with monotone likelihood ratio so that UMP tests exist (Theorem 6.2).

It can also be applied to a few cases to construct two-sided UMA confidence intervals.

For example, $[X_{(n)}, \alpha^{-1/n}X_{(n)}]$ in Example 7.13 is UMA.

・ロト ・ 四ト ・ ヨト ・ ヨト

As we discussed in §6.2, in many problems there are UMPU tests but not UMP tests.

Definition 7.3

Let $\theta \in \Theta$ be an unknown parameter, Θ' be a subset of Θ that does not contain the true parameter value θ , and $1 - \alpha$ be a given confidence level.

(i) A level $1 - \alpha$ confidence set C(X) is said to be Θ' -unbiased (unbiased when $\Theta' = \{\theta\}^c$) iff

$$P(\theta' \in C(X)) \leq 1 - \alpha$$

for all $\theta' \in \Theta'$.

(ii) Let C(X) be a Θ' -unbiased confidence set with confidence coefficient $1 - \alpha$. If

$$P(\theta' \in C(X)) \le P(\theta' \in C_1(X))$$
 for all $\theta' \in \Theta'$.

holds for any other Θ' -unbiased confidence set $C_1(X)$ with confidence level $1 - \alpha$, then C(X) is Θ' -uniformly most accurate unbiased (UMAU). C(X) is UMAU if and only if it is Θ' -UMAU with $\Theta' = \{\theta\}^c$.

Theorem 7.5

Let C(X) be a confidence set for θ obtained by inverting the acceptance regions of nonrandomized tests T_{θ_0} for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \in \Theta_{\theta_0}$.

If T_{θ_0} is unbiased of size α for each θ_0 , then C(X) is Θ' -unbiased with confidence coefficient $1 - \alpha$, where $\Theta' = \{\theta' : \theta \in \Theta_{\theta'}\}.$

If T_{θ_0} is also UMPU for each θ_0 , then C(X) is Θ' -UMAU.

Examples 7.9 and 7.15.

Consider the normal linear model $X = N_n(Z\beta, \sigma^2 I_n)$ and the problem of constructing a confidence set for $\theta = L\beta$, where *L* is an $s \times p$ matrix of rank *s* and all rows of *L* are in $\Re(Z)$.

The LR test of size α for $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ has the acceptance region

$$A(\theta_0) = \{X : W(X, \theta_0) \le c_{\alpha}\},\$$

where c_{α} is the $(1 - \alpha)$ th quantile of the F-distribution $F_{s,n-r}$,

$$W(X,\theta) = \frac{[\|X - Z\widehat{\beta}(\theta)\|^2 - \|X - Z\widehat{\beta}\|^2]/s}{\|X - Z\widehat{\beta}\|^2/(n-r)}$$

r is the rank of *Z*, $r \ge s$, $\hat{\beta}$ is the LSE of β and, for each fixed θ , $\hat{\beta}(\theta)$ is a solution of

$$\|X-Z\widehat{\beta}(\theta)\|^{2} = \min_{\beta:L\beta=\theta} \|X-Z\beta\|^{2}.$$

Inverting $A(\theta)$, we obtain the following confidence set for θ with confidence coefficient $1 - \alpha$: $C(X) = \{\theta : W(X, \theta) \le c_{\alpha}\}$, which forms a closed ellipsoid in \mathscr{R}^{s} .

Consider the special case of s = 1, $\theta = I^{\tau}\beta$, where $I \in \mathscr{R}(Z)$. From §6.2.3, the nonrandomized test with acceptance region

$$A(\theta_0) = \left\{ X : I^{\tau} \widehat{\beta} - \theta_0 > t_{n-r,\alpha} \sqrt{I^{\tau} (Z^{\tau} Z)^{-} ISSR/(n-r)} \right\}$$

is UMPU with size α for testing $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$, where $t_{n-r,\alpha}$ is the $(1 - \alpha)$ th quantile of the t-distribution t_{n-r} . Inverting $A(\theta)$ we obtain the following Θ' -UMAU upper confidence bound with confidence coefficient $1 - \alpha$ and $\Theta' = (\theta, \infty)$:

$$\overline{\theta} = l^{\tau} \widehat{\beta} - t_{n-r,\alpha} \sqrt{l^{\tau} (Z^{\tau} Z)^{-} lSSR/(n-r)}.$$

A UMAU confidence interval for θ can be similarly obtained.