
beamer-tu-logo

Lecture 22: Asymptotic confidence sets
Comparison of asymptotic confidence sets
Intuitively, if two asymptotic confidence sets are constructed using two
different estimators, θ̂1n and θ̂2n, and if θ̂1n is asymptotically more
efficient than θ̂2n (§4.5.1), then the confidence set based on θ̂1n should
be better than the one based on θ̂2n in some sense.

Proposition 7.4
Let

Cj(X ) = {θ : ‖V̂−1/2
jn (θ̂jn−θ)‖2 ≤ χ

2
k ,α}, j = 1,2,

be the confidence sets based on θ̂jn satisfying

V−1/2
jn (θ̂jn−θ)→d Nk (0, Ik ),

where V̂jn is consistent for Vjn, j = 1,2.
If Det(V1n) < Det(V2n) for sufficiently large n, where Det(A) is the
determinant of A, then

P
(
vol(C1(X )) < vol(C2(X ))

)
→ 1.
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Proof

The result follows from the consistency of V̂jn and the fact that the
volume of the ellipsoid Cj(X ) is equal to

vol(Cj(X )) =
πk/2(χ2

k ,α )k/2[Det(V̂jn)]1/2

Γ(1 + k/2)
.

Asymptotic efficiency

If θ̂1n is asymptotically more efficient than θ̂2n (§4.5.1), then
Det(V1n)≤ Det(V2n).
Hence, Proposition 7.4 indicates that a more efficient estimator of θ

results in a better confidence set in terms of volume.
If θ̂n is asymptotically efficient (optimal in the sense of having the
smallest asymptotic covariance matrix; see Definition 4.4), then the
corresponding confidence set C(X ) is asymptotically optimal (in terms
of volume) among the confidence sets of the same form as C(X ).
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Parametric likelihoods
In parametric problems, it is shown in §4.5 that MLE’s or RLE’s are
asymptotically efficient.
Thus, we study more closely the asymptotic confidence sets based on
MLE’s and RLE’s or, more generally, based on likelihoods.
Consider the case where P = {Pθ : θ ∈Θ} is a parametric family
dominated by a σ -finite measure, where Θ⊂Rk .
Consider θ = (ϑ ,ϕ) and confidence sets for ϑ with dimension r .
Let `(θ) be the likelihood function based on the observation X = x .
The acceptance region of the LR test defined in §6.4.1 with
Θ0 = {θ : ϑ = ϑ0} is

A(ϑ0) = {x : `(ϑ0, ϕ̂ϑ0)≥ e−cα/2`(θ̂)},

where `(θ̂) = supθ∈Θ `(θ), `(ϑ , ϕ̂ϑ ) = supϕ `(ϑ ,ϕ), and cα is a constant
related to the significance level α.
Under the conditions of Theorem 6.5, if cα is chosen to be χ2

r ,α , the
(1−α)th quantile of the chi-square distribution χ2

r , then

C(X ) = {ϑ : `(ϑ , ϕ̂ϑ )≥ e−cα/2`(θ̂)}
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is a 1−α asymptotically correct confidence set.
Note that this confidence set and the one given by

C(X ) = {θ : ‖V̂−1/2
n (θ̂n−θ)‖2 ≤ χ

2
k ,α}

are generally different.
In many cases −`(ϑ ,ϕ) is a convex function of ϑ and, therefore, C(X )
based on LR tests is a bounded set in Rk ; in particular, C(X ) is a
bounded interval when k = 1.
In §6.4.2 we discussed two asymptotic tests closely related to the LR
test: Wald’s test and Rao’s score test.
When Θ0 = {θ : ϑ = ϑ0}, Wald’s test has acceptance region

A(ϑ0) = {x : (ϑ̂ −ϑ0)τ{Cτ [In(θ̂)]−1C}−1(ϑ̂ −ϑ0)≤ χ
2
r ,α},

where θ̂ = (ϑ̂ , ϕ̂) is an MLE or RLE of θ = (ϑ ,ϕ), In(θ) is the Fisher
information matrix based on X , Cτ = ( Ir 0 ), and 0 is an r × (k − r)
matrix of 0’s.
By Theorem 4.17, the confidence set obtained by inverting A(ϑ) is

C(X ) = {θ : ‖V̂−1/2
n (ϑ̂ −ϑ)‖2 ≤ χ

2
k ,α}
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with V̂n = Cτ [In(θ̂)]−1C.
When Θ0 = {θ : ϑ = ϑ0}, Rao’s score test has acceptance region

A(ϑ0) = {x : [sn(ϑ0, ϕ̂ϑ0)]τ [In(ϑ0, ϕ̂ϑ0)]−1sn(ϑ0, ϕ̂ϑ0)≤ χ
2
r ,α},

where sn(θ) = ∂ log`(θ)/∂θ .
The confidence set obtained by inverting A(ϑ) is also 1−α

asymptotically correct.

Example 7.23
Let X1, ...,Xn be i.i.d. binary random variables with p = P(Xi = 1).
Since confidence sets for p with a given confidence coefficient are
usually randomized (§7.2.3), asymptotically correct confidence sets
may be considered when n is large.
The likelihood ratio for testing H0 : p = p0 versus H1 : p 6= p0 is

λ (Y ) = pY
0 (1−p0)n−Y/p̂Y (1− p̂)n−Y ,

where Y = ∑
n
i=1 Xi and p̂ = Y/n is the MLE of p.
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The confidence set based on LR tests is equal to

C1(X ) = {p : pY (1−p)n−Y ≥ e−cα/2p̂Y (1− p̂)n−Y}.

When 0 < Y < n, −pY (1−p)n−Y is strictly convex and equals 0 if p = 0
or 1 and, hence, C1(X ) = [p,p] with 0 < p < p < 1.
When Y = 0, (1−p)n is strictly decreasing and, therefore,
C1(X ) = (0,p] with 0 < p < 1.
Similarly, when Y = n, C1(X ) = [p,1) with 0 < p < 1.

The confidence set obtained by inverting acceptance regions of Wald’s
tests is simply

C2(X ) = [ p̂−z1−α/2

√
p̂(1− p̂)/n, p̂ + z1−α/2

√
p̂(1− p̂)/n ],

since In(p) = n/[p(1−p)] and (χ2
1,α )1/2 = z1−α/2, the (1−α/2)th

quantile of N(0,1).
Note that

sn(p) =
Y
p
− n−Y

1−p
=

Y −pn
p(1−p)
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and
[sn(p)]2[In(p)]−1 =

(Y −pn)2

p2(1−p)2
p(1−p)

n
=

n(p̂−p)2

p(1−p)
.

Hence, the confidence set obtained by inverting acceptance regions of
Rao’s score tests is

C3(X ) = {p : n(p̂−p)2 ≤ p(1−p)χ
2
1,α}.

It can be shown (exercise) that C3(X ) = [p−,p+] with

p± =
2Y + χ2

1,α ±
√

χ2
1,α [4np̂(1− p̂) + χ2

1,α ]

2(n + χ2
1,α )

.

Example 7.24
Let X1, ...,Xn be i.i.d. from N(µ,ϕ) with unknown θ = (µ,ϕ).
Consider the problem of constructing a 1−α asymptotically correct
confidence set for θ .
The log-likelihood function is

log`(θ) =− 1
2ϕ

n

∑
i=1

(Xi −µ)2− n
2

logϕ− n
2

log(2π).
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Since (X̄ , ϕ̂) is the MLE of θ , where ϕ̂ = (n−1)S2/n, the confidence
set based on LR tests is

C1(X ) =

{
θ :

1
ϕ

n

∑
i=1

(Xi −µ)2 + n logϕ ≤ χ
2
2,α + n + n log ϕ̂

}
.

Note that

sn(θ) =

(
n(X̄ −µ)

ϕ
,

1
2ϕ2

n

∑
i=1

(Xi −µ)2− n
2ϕ

)
In(θ) =

( n
ϕ

0

0 n
2ϕ2

)
.

Hence, the confidence set based on Wald’s tests is

C2(X ) =

{
θ :

(X̄ −µ)2

ϕ̂
+

(ϕ̂−ϕ)2

2ϕ̂2 ≤
χ2

2,α

n

}
,

which is an ellipsoid in R2, and the confidence set based on Rao’s
score tests is

C3(X ) =

θ :
(X̄ −µ)2

ϕ
+

1
2

[
1

nϕ

n

∑
i=1

(Xi −µ)2−1

]2

≤
χ2

2,α

n

 .

In general, Cj(X ), j = 1,2,3, are different.
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Figure 7.2. Confidence sets obtained by inverting LR, Wald’s,
and Rao’s score tests in Example 7.24
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Example 7.24 (continued)
Consider now the construction of a confidence set for µ.
The confidence set based on Wald’s tests is defined by C2(X ) with ϕ

replaced by ϕ̂ and χ2
2,α replaced by χ2

1,α = z2
α/2, which results in the

confidence interval

{µ : n(X̄ −µ)2 ≤ z2
α/2ϕ̂}= [ X̄ −zα/2

√
ϕ̂/n, X̄ + zα/2

√
ϕ̂/n ]

The confidence set based on the LR tests is defined by C1(X ) with χ2
2,α

and ϕ replaced by χ2
1,α = z2

α/2 and n−1
∑

n
i=1(Xi −µ)2 = ϕ̂ + (X̄ −µ)2,

respectively, which leads to the confidence interval
{µ : n + n log(ϕ̂ + (X̄ −µ)2)≤ z2

α/2+n+n log ϕ̂}

= {µ : ϕ̂ + (X̄ −µ)2 ≤ exp(log ϕ̂ + z2
α/2/n)}

= {µ : (X̄ −µ)2 ≤ ϕ̂[exp(z2
α/2/n)−1]}

= [ X̄ −
√

ϕ̂

√
exp(z2

α/2/n)−1, X̄ +
√

ϕ̂

√
exp(z2

α/2/n)−1 ]
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The confidence set based on Rao’s score tests is defined by C3(X )
with χ2

2,α and ϕ replaced by z2
α/2 and n−1

∑
n
i=1(Xi −µ)2 = ϕ̂ + (X̄ −µ)2,

respectively, which results in the confidence interval

{µ : n(X̄ −µ)2 ≤ z2
α/2[ϕ̂ + (X̄ −µ)2]}

= [ X̄ −zα/2

√
ϕ̂/n

√
1−z2

α/2/n, X̄ + zα/2

√
ϕ̂/n

√
1−z2

α/2/n ]

Confidence intervals for quantiles
Let X1, ...,Xn be i.i.d. from a continuous c.d.f. F on R and let
θ = F−1(p) be the pth quantile of F , 0 < p < 1.
The general methods we previously discussed can be applied to obtain
a confidence set for θ , but we introduce here a method that works
particularly for quantile problems.
In fact, for any given α, it is possible to derive a confidence interval (or
bound) for θ with confidence coefficient 1−α (Exercise 84), but the
computation of such a confidence interval may be cumbersome.
We focus on asymptotic confidence intervals for θ .
Our result is based on the following result due to Bahadur (1966).
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Theorem 7.8 (refinement of Bahadur’s representation)
Let X1, ...,Xn be i.i.d. from a continuous c.d.f. F on R that is twice
differentiable at θ = F−1(p), 0 < p < 1, with F ′(θ) > 0.
Let Fn be the empirical c.d.f.
Let {kn} be a sequence of integers satisfying 1≤ kn ≤ n and
kn/n = p + o

(
(logn)δ/

√
n
)

for some δ > 0.
Then

X(kn) = θ +
(kn/n)−Fn(θ)

F ′(θ)
+ O

(
(logn)(1+δ)/2

n3/4

)
a.s.

Corollary 7.1
Assume the conditions in Theorem 7.8 and
kn/n = p + cn−1/2 + o(n−1/2) with a constant c.
Then √

n(X(kn)−F−1
n (p))→a.s. c/F ′(θ).

Using Corollary 7.1, we can obtain a confidence interval for θ with
limiting confidence coefficient 1−α (Definition 2.14) for any given α.
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Corollary 7.2
Assume the conditions in Theorem 7.8.
Let {k1n} and {k2n} be two sequences of integers satisfying
1≤ k1n < k2n ≤ n,

k1n/n = p−z1−α/2
√

p(1−p)/n + o(n−1/2),

and
k2n/n = p + z1−α/2

√
p(1−p)/n + o(n−1/2),

where za = Φ−1(a). Then the confidence interval C(X ) = [X(k1n),X(k2n)]
has the property that P(θ ∈ C(X )) does not depend on P and

lim
n→∞

inf
P∈P

P
(
θ ∈ C(X )

)
= lim

n→∞
P
(
θ ∈ C(X )

)
= 1−α.

Furthermore,

the length of C(X ) =
2z1−α/2

√
p(1−p)

F ′(θ)
√

n
+ o

(
1√
n

)
a.s.
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Proof
Note that P(θ ∈ C(X )) = P(X(k1n) ≤ θ ≤ X(k2n)) = P(U(k1n) ≤ p ≤ U(k2n)),
where U(k) is the k th order statistic based on a sample U1, ...,Un i.i.d.
from the uniform distribution U(0,1) (Exercise 84).
Hence, P(θ ∈ C(X )) does not depend on P and
limn→∞ P

(
θ ∈ C(X )

)
= limn→∞ infP∈P P

(
θ ∈ C(X )

)
.

By Corollary 7.1, Theorem 5.10, and Slutsky’s theorem,

P(X(k1n) > θ) = P

(
F−1

n (p)−z1−α/2

√
p(1−p)

F ′(θ)
√

n
+ op(n−1/2) > θ

)

= P

( √
n(F−1

n (p)−θ)√
p(1−p)/F ′(θ)

+ op(1) > z1−α/2

)
→ 1−Φ(z1−α/2)

= α/2.

The first result follows, since similarly P(X(k2n) < θ)→ α/2.
The result for the length of C(X ) follows directly from Corollary 7.1.
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Remarks
The confidence interval [X(k1n),X(k2n)] given in Corollary 7.2 is
called Woodruff’s (1952) interval.
It has limiting confidence coefficient 1−α, a property that is
stronger than the 1−α asymptotic correctness.
The length of Woodruff’s interval is X(k2n)−X(k1n).
By the result in Corollary 7.2,

X(k2n)−X(k1n) =
2zα/2

√
p(1−p)

√
nF ′(θ)

+ o
(

1√
n

)
a.s.,

This means

[X(k2n)−X(k1n)]2

4z2
α/2

=
p(1−p)

n[F ′(θ)]2
+ o

(
1
n

)
a.s.

Therefore, [X(k2n)−X(k1n)]2/(4z2
α/2) is a consistent estimator of the

asymptotic variance of the sample pth quantile.
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Remarks
From Theorem 5.10, if F ′(θ) exists and is positive, then

√
n(θ̂n−θ)→d N

(
0, p(1−p)

[F ′(θ)]2

)
.

If the derivative F ′(θ) has a consistent estimator d̂n obtained using
some method such as one of those introduced in §5.1.3, then
V̂n = p(1−p)/d̂2

n is a consistent estimator of p(1−p)/[F ′(θ)]2 and
the method introduced in §7.3.1 can be applied to derive the
following 1−α asymptotically correct confidence interval:

C1(X ) =

[
θ̂n−z1−α/2

√
p(1−p)

d̂n
√

n
, θ̂n + z1−α/2

√
p(1−p)

d̂n
√

n

]
.

The length of C1(X ) is asymptotically almost the same as
Woodruff’s interval.
However, C1(X ) depends on the estimated derivative d̂n and it is
usually difficult to obtain a precise estimator d̂n.
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