We consider another example of asymptotic confidence sets based on likelihood discussed in the last lecture.

Example 7.24

Let $X_1, ..., X_n$ be i.i.d. from $N(\mu, \varphi)$ with unknown $\theta = (\mu, \varphi)$. Consider the problem of constructing a $1 - \alpha$ asymptotically correct confidence set for θ.

The log-likelihood function is

$$
\log \ell(\theta) = -\frac{1}{2\varphi} \sum_{i=1}^{n} (X_i - \mu)^2 - \frac{n}{2} \log \varphi - \frac{n}{2} \log (2\pi).
$$

Since $(\bar{X}, \hat{\varphi})$ is the MLE of θ, where $\hat{\varphi} = (n - 1)S^2/n$, the confidence set based on LR tests is

$$
C_1(X) = \left\{ \theta : \frac{1}{\varphi} \sum_{i=1}^{n} (X_i - \mu)^2 + n \log \varphi \leq \chi^2_{2, \alpha} + n + n \log \hat{\varphi} \right\}.
$$
We consider another example of asymptotic confidence sets based on likelihood discussed in the last lecture.

Example 7.24

Let X_1, \ldots, X_n be i.i.d. from $N(\mu, \varphi)$ with unknown $\theta = (\mu, \varphi)$. Consider the problem of constructing a $1 - \alpha$ asymptotically correct confidence set for θ.

The log-likelihood function is

$$\log \ell(\theta) = -\frac{1}{2 \varphi} \sum_{i=1}^{n} (X_i - \mu)^2 - \frac{n}{2} \log \varphi - \frac{n}{2} \log(2\pi).$$

Since $(\bar{X}, \hat{\varphi})$ is the MLE of θ, where $\hat{\varphi} = (n - 1)S^2/n$, the confidence set based on LR tests is

$$C_1(X) = \left\{ \theta : \frac{1}{\varphi} \sum_{i=1}^{n} (X_i - \mu)^2 + n \log \varphi \leq \chi^2_{2,\alpha} + n + n \log \hat{\varphi} \right\}.$$
Example 7.24 (continued)

Note that

\[s_n(\theta) = \left(\frac{n(\bar{X} - \mu)}{\phi}, \frac{1}{2\phi^2} \sum_{i=1}^{n} (X_i - \mu)^2 - \frac{n}{2\phi} \right) \quad I_n(\theta) = \begin{pmatrix} \frac{n}{\phi} & 0 \\ 0 & \frac{n}{2\phi^2} \end{pmatrix}. \]

Hence, the confidence set based on Wald’s tests is

\[C_2(X) = \left\{ \theta : \frac{(\bar{X} - \mu)^2}{\hat{\phi}} + \frac{(\hat{\phi} - \phi)^2}{2\hat{\phi}^2} \leq \frac{\chi^2_{2,\alpha}}{n} \right\}, \]

which is an ellipsoid in \(\mathbb{R}^2 \), and the confidence set based on Rao’s score tests is

\[C_3(X) = \left\{ \theta : \frac{(\bar{X} - \mu)^2}{\phi} + \frac{1}{2} \left[\frac{1}{n\phi} \sum_{i=1}^{n} (X_i - \mu)^2 - 1 \right]^2 \leq \frac{\chi^2_{2,\alpha}}{n} \right\}. \]

In general, \(C_j(X), j = 1,2,3, \) are different.
An example of these three confidence sets is given in Figure 7.2, where \(n=100, \mu=0, \) and \(\phi=1. \)
Figure 7.2. Confidence sets obtained by inverting LR, Wald’s, and Rao’s score tests in Example 7.24
Example 7.24 (continued)

Consider now the construction of a confidence set for \(\mu \).

The confidence set based on Wald’s tests is defined by \(C_2(X) \) with \(\phi \) replaced by \(\hat{\phi} \) and \(\chi^2_{2,\alpha} \) replaced by \(\chi^2_{1,\alpha} = z^2_{\alpha/2} \), which results in the confidence interval

\[
\{ \mu : n(\bar{X} - \mu)^2 \leq z^2_{\alpha/2}\hat{\phi} \} = [\bar{X} - z_{\alpha/2}\sqrt{\hat{\phi}/n}, \bar{X} + z_{\alpha/2}\sqrt{\hat{\phi}/n}]
\]

The confidence set based on the LR tests is defined by \(C_1(X) \) with \(\chi^2_{2,\alpha} \) and \(\phi \) replaced by \(\chi^2_{1,\alpha} = z^2_{\alpha/2} \) and \(n^{-1}\sum_{i=1}^{n}(X_i - \mu)^2 = \hat{\phi} + (\bar{X} - \mu)^2 \), respectively, which leads to the confidence interval

\[
\{ \mu : n + n\log(\hat{\phi} + (\bar{X} - \mu)^2) \leq z^2_{\alpha/2} + n + n\log \hat{\phi} \}
\]

\[
= \{ \mu : \hat{\phi} + (\bar{X} - \mu)^2 \leq \exp(\log \hat{\phi} + z^2_{\alpha/2}/n) \}
\]

\[
= \{ \mu : (\bar{X} - \mu)^2 \leq \hat{\phi}[\exp(z^2_{\alpha/2}/n) - 1] \}
\]

\[
= [\bar{X} - \sqrt{\hat{\phi}}\sqrt{\exp(z^2_{\alpha/2}/n) - 1}, \bar{X} + \sqrt{\hat{\phi}}\sqrt{\exp(z^2_{\alpha/2}/n) - 1}]
\]
The confidence set based on Rao’s score tests is defined by $C_3(X)$ with $\chi^2_{2,\alpha}$ and φ replaced by $z^2_{\alpha/2}$ and $n^{-1} \sum_{i=1}^{n} (X_i - \mu)^2 = \hat{\varphi} + (\bar{X} - \mu)^2$, respectively, which results in the confidence interval

$$\{ \mu : n(\bar{X} - \mu)^2 \leq z^2_{\alpha/2}[\hat{\varphi} + (\bar{X} - \mu)^2] \}$$

$$= [\bar{X} - z_{\alpha/2} \sqrt{\hat{\varphi}/n} \sqrt{1 - z^2_{\alpha/2}/n}, \bar{X} + z_{\alpha/2} \sqrt{\hat{\varphi}/n} \sqrt{1 - z^2_{\alpha/2}/n}]$$

Confidence intervals for quantiles

Let X_1, \ldots, X_n be i.i.d. from a continuous c.d.f. F on \mathbb{R} and let $\theta = F^{-1}(p)$ be the pth quantile of F, $0 < p < 1$. The general methods we previously discussed can be applied to obtain a confidence set for θ, but we introduce here a method that works particularly for quantile problems.

In fact, for any given α, it is possible to derive a confidence interval (or bound) for θ with confidence coefficient $1 - \alpha$ (Exercise 84), but the computation of such a confidence interval may be cumbersome. We focus on asymptotic confidence intervals for θ.

Our result is based on the following result due to Bahadur (1966).
Example 7.24 (continued)

The confidence set based on Rao’s score tests is defined by $C_3(X)$ with $\chi^2_{2,\alpha}$ and ϕ replaced by $z^2_{\alpha/2}$ and $n^{-1} \sum_{i=1}^n (X_i - \mu)^2 = \hat{\phi} + (\bar{X} - \mu)^2$, respectively, which results in the confidence interval

$$\{\mu : n(\bar{X} - \mu)^2 \leq z^2_{\alpha/2}[\hat{\phi} + (\bar{X} - \mu)^2]\}$$

$$= [\bar{X} - z_{\alpha/2}\sqrt{\hat{\phi}/n}\sqrt{1 - z^2_{\alpha/2}/n}, \bar{X} + z_{\alpha/2}\sqrt{\hat{\phi}/n}\sqrt{1 - z^2_{\alpha/2}/n}]$$

Confidence intervals for quantiles

Let $X_1, ..., X_n$ be i.i.d. from a continuous c.d.f. F on \mathbb{R} and let $\theta = F^{-1}(p)$ be the pth quantile of F, $0 < p < 1$.

The general methods we previously discussed can be applied to obtain a confidence set for θ, but we introduce here a method that works particularly for quantile problems.

In fact, for any given α, it is possible to derive a confidence interval (or bound) for θ with confidence coefficient $1 - \alpha$ (Exercise 84), but the computation of such a confidence interval may be cumbersome.

We focus on asymptotic confidence intervals for θ.

Our result is based on the following result due to Bahadur (1966).
Theorem 7.8

Let \(X_1, \ldots, X_n \) be i.i.d. from a continuous c.d.f. \(F \) on \(\mathbb{R} \) that is twice differentiable at \(\theta = F^{-1}(p) \), \(0 < p < 1 \), with \(F'(\theta) > 0 \).

Let \(F_n \) be the empirical c.d.f.

Let \(\{k_n\} \) be a sequence of integers satisfying \(1 \leq k_n \leq n \) and \(k_n/n = p + o((\log n)^\delta / \sqrt{n}) \) for some \(\delta > 0 \).

Then

\[
X_{(k_n)} = \theta + \frac{(k_n/n) - F_n(\theta)}{F'(\theta)} + O \left(\frac{(\log n)^{(1+\delta)/2}}{n^{3/4}} \right) \quad \text{a.s.}
\]

Proof

Omitted.

The result in Theorem 7.8 is a refinement of the Bahadur representation in Theorem 5.11.

The following corollary of Theorem 7.8 is useful in statistics.
Let \(\hat{\theta}_n = F_n^{-1}(p) \) be the sample \(p \)th quantile.
Theorem 7.8

Let X_1, \ldots, X_n be i.i.d. from a continuous c.d.f. F on \mathbb{R} that is twice differentiable at $\theta = F^{-1}(p)$, $0 < p < 1$, with $F'(\theta) > 0$.
Let F_n be the empirical c.d.f.
Let $\{k_n\}$ be a sequence of integers satisfying $1 \leq k_n \leq n$ and $k_n/n = p + o\left((\log n)^\delta/\sqrt{n}\right)$ for some $\delta > 0$.
Then

$$X_{(k_n)} = \theta + \frac{(k_n/n) - F_n(\theta)}{F'(\theta)} + O\left(\frac{\log n^{(1+\delta)/2}}{n^{3/4}}\right) \quad \text{a.s.}$$

Proof

Omitted.

The result in Theorem 7.8 is a refinement of the Bahadur representation in Theorem 5.11.
The following corollary of Theorem 7.8 is useful in statistics.
Let $\hat{\theta}_n = F_n^{-1}(p)$ be the sample pth quantile.
Theorem 7.8

Let X_1, \ldots, X_n be i.i.d. from a continuous c.d.f. F on \mathbb{R} that is twice differentiable at $\theta = F^{-1}(p)$, $0 < p < 1$, with $F'(\theta) > 0$. Let F_n be the empirical c.d.f. Let $\{k_n\}$ be a sequence of integers satisfying $1 \leq k_n \leq n$ and $k_n/n = p + o((\log n)^\delta/\sqrt{n})$ for some $\delta > 0$. Then

$$X_{(k_n)} = \theta + \frac{(k_n/n) - F_n(\theta)}{F'(\theta)} + O\left(\frac{(\log n)^{(1+\delta)/2}}{n^{3/4}}\right) \text{ a.s.}$$

Proof

Omitted.

The result in Theorem 7.8 is a refinement of the Bahadur representation in Theorem 5.11.

The following corollary of Theorem 7.8 is useful in statistics. Let $\hat{\theta}_n = F_n^{-1}(p)$ be the sample pth quantile.
Corollary 7.1

Assume the conditions in Theorem 7.8 and \(k_n/n = p + cn^{-1/2} + o(n^{-1/2}) \) with a constant \(c \).

Then

\[
\sqrt{n}(X(\mathcal{I}_n) - \hat{\theta}_n) \to_{a.s.} c/F'(\theta).
\]

Proof

Left as an exercise.

Using Corollary 7.1, we can obtain a confidence interval for \(\theta \) with limiting confidence coefficient \(1 - \alpha \) (Definition 2.14) for any given \(\alpha \in (0, 1/2) \).

This is stated and proved in the next result.
Corollary 7.1
Assume the conditions in Theorem 7.8 and $k_n/n = p + cn^{-1/2} + o(n^{-1/2})$ with a constant c. Then

$$\sqrt{n}(X_{(k_n)} - \hat{\theta}_n) \to_{a.s.} c/F'(\theta).$$

Proof
Left as an exercise.

Using Corollary 7.1, we can obtain a confidence interval for θ with limiting confidence coefficient $1 - \alpha$ (Definition 2.14) for any given $\alpha \in (0, \frac{1}{2})$. This is stated and proved in the next result.
Corollary 7.1

Assume the conditions in Theorem 7.8 and

\[\frac{k_n}{n} = p + cn^{-1/2} + o(n^{-1/2}) \]

with a constant \(c \).

Then

\[\sqrt{n}(X(k_n) - \hat{\theta}_n) \xrightarrow{a.s.} c/F'(\theta). \]

Proof

Left as an exercise.

Using Corollary 7.1, we can obtain a confidence interval for \(\theta \) with limiting confidence coefficient \(1 - \alpha \) (Definition 2.14) for any given \(\alpha \in (0, \frac{1}{2}) \).

This is stated and proved in the next result.
Corollary 7.2

Assume the conditions in Theorem 7.8.
Let \(\{k_{1n}\} \) and \(\{k_{2n}\} \) be two sequences of integers satisfying
\[
1 \leq k_{1n} < k_{2n} \leq n,
\]

\[
k_{1n}/n = p - z_{1-\alpha/2} \sqrt{p(1-p)/n} + o(n^{-1/2}),
\]

and
\[
k_{2n}/n = p + z_{1-\alpha/2} \sqrt{p(1-p)/n} + o(n^{-1/2}),
\]

where \(z_a = \Phi^{-1}(a) \). Then the confidence interval \(C(X) = [X(k_{1n}), X(k_{2n})] \) has the property that \(P(\theta \in C(X)) \) does not depend on \(P \) and

\[
\lim_{n \to \infty} \inf_{P \in \mathcal{P}} P(\theta \in C(X)) = \lim_{n \to \infty} P(\theta \in C(X)) = 1 - \alpha.
\]

Furthermore,

\[
\text{the length of } C(X) = \frac{2z_{1-\alpha/2} \sqrt{p(1-p)}}{F'(\theta) \sqrt{n}} + o \left(\frac{1}{\sqrt{n}}\right) \text{ a.s.}
\]
Proof

Note that $P(\theta \in C(X)) = P(X_{(k_1n)} \leq \theta \leq X_{(k_2n)}) = P(U_{(k_1n)} \leq \rho \leq U_{(k_2n)})$, where $U_{(k)}$ is the kth order statistic based on a sample $U_1, ..., U_n$ i.i.d. from the uniform distribution $U(0, 1)$ (Exercise 84). Hence, $P(\theta \in C(X))$ does not depend on P and
\[
\lim_{n \to \infty} P(\theta \in C(X)) = \lim_{n \to \infty} \inf_{\mathcal{P}} P(\theta \in C(X)).
\]
By Corollary 7.1, Theorem 5.10, and Slutsky’s theorem,
\[
P(X_{(k_1n)} > \theta) = P\left(\sqrt{n}(\hat{\theta}_n - \theta) \sqrt{p(1-p)}/F'(\theta) + o_p(n^{-1/2}) > \theta\right)
= P\left(\sqrt{n}(\hat{\theta}_n - \theta) \sqrt{p(1-p)/F'(\theta)} + o_p(1) > z_{1-\alpha/2}\right)
\to 1 - \Phi(z_{1-\alpha/2})
= \alpha/2.
\]

The first result follows, since similarly $P(X_{(k_2n)} < \theta) \to \alpha/2$. The result for the length of $C(X)$ follows directly from Corollary 7.1.
The confidence interval $[X_{(k_1 n)}, X_{(k_2 n)}]$ given in Corollary 7.2 is called Woodruff’s (1952) interval. It has limiting confidence coefficient $1 - \alpha$, a property that is stronger than the $1 - \alpha$ asymptotic correctness. The length of Woodruff’s interval is $X_{(k_2 n)} - X_{(k_1 n)}$. By the result in Corollary 7.2,

$$X_{(k_2 n)} - X_{(k_1 n)} = \frac{2z_{\alpha/2}\sqrt{p(1-p)}}{\sqrt{nF'(\theta)}} + o\left(\frac{1}{\sqrt{n}}\right) \text{ a.s.},$$

This means

$$\frac{[X_{(k_2 n)} - X_{(k_1 n)}]^2}{4z_{\alpha/2}^2} = \frac{p(1-p)}{n[F'(\theta)]^2} + o\left(\frac{1}{n}\right) \text{ a.s.}$$

Therefore, $[X_{(k_2 n)} - X_{(k_1 n)}]^2/(4z_{\alpha/2}^2)$ is a consistent estimator of the asymptotic variance of the sample pth quantile.
From Theorem 5.10, if $F'(\theta)$ exists and is positive, then
\[
\sqrt{n}(\hat{\theta}_n - \theta) \rightarrow_d N\left(0, \frac{p(1-p)}{[F'(\theta)]^2}\right).
\]

If the derivative $F'(\theta)$ has a consistent estimator \hat{d}_n obtained using some method such as one of those introduced in §5.1.3, then $\hat{V}_n = p(1-p)/\hat{d}_n^2$ is a consistent estimator of $p(1-p)/[F'(\theta)]^2$ and the method introduced in §7.3.1 can be applied to derive the following $1 - \alpha$ asymptotically correct confidence interval:

\[
C_1(X) = \left[\hat{\theta}_n - z_{1-\alpha/2} \frac{\sqrt{p(1-p)}}{\hat{d}_n \sqrt{n}}, \hat{\theta}_n + z_{1-\alpha/2} \frac{\sqrt{p(1-p)}}{\hat{d}_n \sqrt{n}}\right].
\]

The length of $C_1(X)$ is asymptotically almost the same as Woodruff’s interval. However, $C_1(X)$ depends on the estimated derivative \hat{d}_n and it is usually difficult to obtain a precise estimator \hat{d}_n.