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NONCONCAVE PENALIZED LIKELIHOOD WITH 
A DIVERGING NUMBER OF PARAMETERS 

BY JIANQING FAN1 AND HENG PENG 

Princeton University and The Chinese University of Hong Kong 

A class of variable selection procedures for parametric models via non- 
concave penalized likelihood was proposed by Fan and Li to simultaneously 
estimate parameters and select important variables. They demonstrated that 
this class of procedures has an oracle property when the number of para- 
meters is finite. However, in most model selection problems the number of 
parameters should be large and grow with the sample size. In this paper some 
asymptotic properties of the nonconcave penalized likelihood are established 
for situations in which the number of parameters tends to oo as the sam- 
ple size increases. Under regularity conditions we have established an oracle 
property and the asymptotic normality of the penalized likelihood estima- 
tors. Furthermore, the consistency of the sandwich formula of the covariance 
matrix is demonstrated. Nonconcave penalized likelihood ratio statistics are 
discussed, and their asymptotic distributions under the null hypothesis are 
obtained by imposing some mild conditions on the penalty functions. The 
asymptotic results are augmented by a simulation study, and the newly devel- 
oped methodology is illustrated by an analysis of a court case on the sexual 
discrimination of salary. 

1. Introduction. 

1.1. Background. The idea of penalization is very useful in statistical mod- 

eling, particularly in variable selection, which is fundamental to the field. Most 
traditional variable selection procedures, such as Akaike's information criterion 
AIC [Akaike (1973)], Mallows' Cp [Mallows (1973)] and the Bayesian informa- 
tion criterion BIC [Schwarz (1978)], use a fixed penalty on the size of a model. 
Some new variable selection procedures suggest the use of a data adaptive penalty 
to replace fixed penalties [i.e., Bai, Rao and Wu (1999) and Shen and Ye (2002)]. 
However, all these procedures follow stepwise and subset selection procedures to 
select variables. Stepwise and subset selection procedures make these procedures 
computationally intensive, hard to derive sampling properties, and unstable [see, 
e.g., Breiman (1996) and Fan and Li (2001)]. In contrast, most convex penalties, 
such as quadratic penalties, often produce shrinkage estimators of parameters that 
make trade-offs between bias and variance such as those in smoothing splines. 
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However, they can create unnecessary biases when the true parameters are large 
and parsimonious models cannot be produced. 

To overcome the inefficiency of traditional variable selection procedures, Fan 
and Li (2001) proposed a unified approach via nonconcave penalized least squares 
to automatically and simultaneously select variables and estimate the coefficients 
of variables. This method not only retains the good features of both subset 
selection and ridge regression, but also produces sparse solutions (many estimated 
coefficients are 0), ensures continuity of the selected models (for the stability of 
model selection) and has unbiased estimates for large coefficients. This is achieved 
by choosing suitable penalized nonconcave functions, such as the smoothly clipped 
absolute deviation (SCAD) penalty that was proposed by Fan (1997) (to be 
defined in Section 2). Other penalized least squares, such as the bridge regression 
proposed by Frank and Friedman (1993) and Lasso proposed by Tibshirani (1996, 
1997), can also be studied under this unified work. The nonconcave penalized 
least-squares approach also corresponds to a Bayesian model selection with an 
improper prior and can be easily extended to likelihood-based models in various 
statistical contexts, such as generalized linear modeling, nonparametric modeling 
and survival analysis. For example, Antoniadis and Fan (2001) used this approach 
in wavelet analysis, and Fan and Li (2002) applied the technique to the Cox 
proportional hazards model and the frailty model. 

1.2. Nonconcave penalized likelihood. One distinguishing feature of the 
nonconcave penalized likelihood approach is that it can simultaneously select 
variables and estimate coefficients of variables. This enables us to establish the 
sampling properties of the nonconcave penalized likelihood estimates. 

Let logf(V, /) be the underlying likelihood for a random vector V. This 
includes the likelihood of the form E(XTB, Y) of the generalized linear model 
[McCullagh and Nelder (1989)]. Let px(, (y I) be a nonconcave penalized function 
that is indexed by a regularization parameter .. The penalized likelihood estimator 
then maximizes 

n p 

(1.1) log f(Vi, ,8)- E Px(lj/I). 
i=l j=1 

The parameter X can be chosen by cross-validation [see Breiman (1996) and 
Tibshirani (1996)]. 

Various algorithms have been proposed to optimize such a high-dimensional 
nonconcave likelihood function. The modified Newton-Raphson algorithm was 
proposed by Fan and Li (2001). The idea of the graduated nonconvexity algorithm 
was proposed by Blake and Zisserman (1987) and Blake (1989), and was 
implemented by Nikolova, Idier and Mohammad-Djafari (1998). Tibshirani (1996, 
1997) and Fu (1998) proposed different algorithms for the Lp-penalty. One can 
also use a stochastic optimization method, such as simulated annealing. See 
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Geman and Geman (1984) and Gilks, Richardson and Spiegelhalter (1996) for 
more discussions. 

For the finite parameter case, Fan and Li (2001) established an "oracle property," 
to use the terminology of Donoho and Johnstone (1994). If there were an oracle 
assisting us in selecting variables, then we would select variables only with 
nonzero coefficients and apply the MLE to this submodel and estimate the 
remaining coefficients as 0. This ideal estimator is called an oracle estimator. Fan 
and Li (2001) demonstrated that penalized likelihood estimators are asymptotically 
as efficient as this ideal oracle estimator for certain penalty functions, such as 
SCAD and the hard thresholding penalty. Fan and Li (2001) also proposed a 
sandwich formula for estimating the standard error of the estimated nonzero 
coefficients and empirically verifying the consistency of the formula. Knight and 
Fu (2000) studied the asymptotic behavior of the Lasso type of estimator. Under 
some appropriate conditions, they showed that the limiting distributions have 
positive probability mass at 0 when the true value of the parameters is 0, and they 
established asymptotic normality for large parameters in some sense. 

1.3. Real issues in model selection. In practice, many variables are introduced 
to reduce possible modeling biases. The number of introduced variables depends 
on the sample size, which reflects the estimability of the parametric problem. 

An early reference on this kind of problem is the seminal paper of Neyman 
and Scott (1948). In the early years, from problems in X-ray crystallography, 
where the typical values for the number of parameters p and sample size n are 
in the ranges 10 to 500 and 100 to 10,000, respectively, Huber (1973) noted 
that in a variable selection context the number of parameters is often large and 
should be modeled as Pn, which tends to oo. Now, with the advancement of 
technology and huge investment in various forms of data gathering, as Donoho 
(2000) demonstrated with web term-document data, gene expression data and 
consumer financial history data, large sample sizes with high dimensions are 
important characteristics. He also observed that even in a classical setting such 
as the Framingham heart study, the sample size is as large as N = 25,000 and the 
dimension is p = 100, which can be modeled as p = O(n1/2) or p = 0(nl/3). 

Nonparametric regression is another class of examples that uses diverging 
parameters. In spline modeling an unknown function is frequently approximated 
by its finite series expansion with the number of parameters depending on 
the sample size. In regression splines, Stone, Hansen, Kooperberg and Truong 
(1997) regard nonparametric problems as large parametric problems and extend 
traditional variable selection techniques to select important terms. Smoothing 
splines can also be regarded as a large parametric problem [Green and Silverman 
(1994)]. To achieve the stability of the resulting estimate (e.g., smoothness), 
instead of selecting variables a quadratic penalty is frequently used to shrink the 
estimated parameters [Cox and O'Sullivan (1990)]. Thus, our formulation and 
results have applications to the problem of nonparametric estimation. 
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Fan and Li (2001) laid down important groundwork on variable selection prob- 
lems, but their theoretical results are limited to the finite-parameter setting. While 
their results are encouraging, the fundamental problems with a growing number of 
parameters have not been addressed. In fact, the full advantages of the penalized 
likelihood method in model selection have not been convincingly demonstrated. 
For example, for finite-parameter problems, owing to the root-n-consistency of 
estimated parameters, many naive and simple model selection procedures also 
possess the oracle property. To wit, a simple thresholding estimator such as 

jl(lI3jl > n-1/4), which completely ignores the correlation structure and the 
scale of the parameter, also possesses the oracle property. Thus, it is uncertain 
whether the oracle property of Fan and Li (2001) is genuine to the penalized like- 
lihood method or an artifact of the finite-parameter formulation. 

To this end, we consider the log-likelihood series log fn(Vn, Bn), where 
fn (Vn, in) is the density of the random variable Vn, all of which relate to the 
sample size n, and assume without loss of generality that, unknown to us, the 
first Sn components of fn, denoted by ,Bnl, do not vanish and the remaining 
Pn - Sn coefficients, denoted by Pn2, are 0. Our objectives in this paper are 
to investigate the following asymptotic properties of a nonconcave penalized 
likelihood estimator. 

1. (Oracle property.) Under certain conditions of the likelihood function and for 
certain penalty functions (e.g., SCAD), if p, does not grow too fast, then by 
the proper choice of An there exists a penalized likelihood estimator such that 
8n2 = 0 and 8In behaves the same as the case in which Bn2 = 0 is known in 
advance. 

2. (Asymptotic normality.) As the length of f,nl depends on n, we will consider 
its arbitrary linear combination AnSnl, where An is a q x Sn matrix for any 
finite q. We will show that this linear combination is asymptotically normal. 
Furthermore, let fi, be the oracle estimator, thus maximizing the likelihood 
of the ideal su l submodel log fn(Vi nl). We will show that An3? is also 

asymptotically normal. We will study the conditions under which the two 
covariance matrices are identical. This will demonstrate the oracle property 
mentioned above. 

3. (Consistency of the sandwich formula.) Let En be an estimated covariance ma- 
trix for Pn i, using the sandwich formula based on the penalized likelihood (1.1). 
We will show that the covariance matrix En is a consistent estimate in the sense 
that AT EnAn converges to the q x q asymptotic covariance matrix of An n1. 

4. (Likelihood ratio theory.) If one tests the linear hypothesis Ho: An fn =0 
and uses the twice-penalized likelihood ratio statistic, then this statistic 
asymptotically follows a X2 distribution. 

The asymptotic properties of any finite components of / are included in the 
above formulation by taking a special matrix An. Furthermore, the asymptotic 
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properties and variable selection of linear components in any partial linear model 
can be analyzed this way if we use a series such as a Fourier series or polynomial 
splines to estimate the nonparametric component. 

1.4. Outline of the paper. In Section 2 we briefly review the nonconcave 
penalized likelihood. The asymptotic results of penalized likelihood are presented 
in Section 3. We discuss the conditions that are imposed on the likelihood and 
penalty functions in Section 3.1 and present our main results in Sections 3.2-3.4. 
An application of the proposed methodology and a simulation study are presented 
in Section 4. The proofs of our results are given in Section 5. Technical details are 
relegated to the Appendix. 

2. Penalty function. Penalty functions largely determine the sampling prop- 
erties of the penalized likelihood estimators. To select a good penalty function, 
Fan and Li (2001) proposed three principles that a good penalty function should 
satisfy: unbiasedness, in which there is no overpenalization of large parameters to 
avoid unnecessary modeling biases; sparsity, as the resulting penalized likelihood 
estimators should follow a thresholding rule such that insignificant parameters are 
automatically set to 0 to reduce model complexity; and continuity to avoid in- 
stability in model prediction, whereby the penalty function should be chosen such 
that its corresponding penalized likelihood produces continuous estimators of data. 
More details can be found in the work of Fan and Li (2001) and Antoniadis and 
Fan (2001). 

To gain some insight into the choice of penalty functions, let us first consider a 
simple form of (1.1), that is, the penalized least-squares problem: 

(Z- 0)2 + px(01I). 

It is well known that the L2-penalty px(I101) = 1012 leads to a ridge regression. 
A generalization is the Lq-penalty px(101) = Al lq, q > 1. These penalties reduce 

variability via shrinking the solutions, but do not have the properties of sparsity. 
The L -penalty px (0 1) = 101 yields a soft thresholding rule 

0 = sgn(z)(lzl- X)+. 

Tibshirani (1996, 1997) applied the L1-penalty to a general least-squares and 
likelihood setting. Knight and Fu (2000) studied the Lq-penalty when q < 1. While 
the Lq-penalty (q < 1) functions result in sparse solutions, they cannot keep the 
resulting estimators unbiased for large parameters due to excessive penalty at large 
values of parameters. Another type of penalty function is the hard thresholding 
penalty function 

px (10) = -2 - (10- X)2I(10 1 < ), 

which results in the hard thresholding rule [see Antoniadis (1997) and Fan (1997)] 

0 = zl(Iz > X), 
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but the estimator is not continuous in the data z. 
As the penalty functions above cannot simultaneously satisfy the aforemen- 

tioned three principles, motivated by wavelet analysis, Fan (1997) proposed a 
continuous differentiable penalty function called the smoothly clipped absolute 
deviation (SCAD) penalty, which is defined by 

P(0) = A (0 ')+ ( + I(0 > X) for some a > 2 and 0 > 0. 
p)-.I (a - 1)X) 

The solution for this penalty function is given by 

sgn(z)(lz - X)+, when lzl < 2X, 
0= {(a - l)z - sgn(z)a)}/(a - 2), when 2X < Izl < aX, 

z, when lzl > aX. 

The solution satisfies the three properties that were proposed by Fan and Li (2001). 

3. Properties of penalized likelihood estimation. In this section we study 
the sampling properties of the penalized likelihood estimators proposed in 
Section 1 in the situation where the number of parameters tends to oo with 

increasing sample size. We discuss some conditions of the penalty and likelihood 
functions in Section 3.1 and show their differences from those under finite 

parameters. Though the imposed conditions are not the weakest possible, they 
make technical analysis easily understandable. Our main results are presented in 
Section 3.2. 

3.1. Regularity conditions. 

3.1.1. Regularity condition on penalty. Let an = maxi <pj,{p I(lnOj1l), 

P3nOj , 0} and bn = maxil<j<pn{p n (lI,nOjl), ftnOj 4 0). Then we need to place 
the following conditions on the penalty functions: 

(A) liminfn+oo liminf0o+ p (0)/An > 0; 

(B) an = O(n-1/2); 

(B') an =o(l/np); 

(C) bn - 0 as n -- +oo; 

(C') bn = op(/lpn ); 

(D) there are constants C and D such that, when 01,02 > CXn, IP (01) - 

P; (02)I < D 01 -02 . 

Condition (A) makes the penalty function singular at the origin so that the 

penalized likelihood estimators possess the sparsity property. Conditions (B) and 
(B') ensure the unbiasedness property for large parameters and the existence 
of the root-n-consistent penalized likelihood estimator. Conditions (C) and (C') 
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guarantee that the penalty function does not have much more influence than the 
likelihood function on the penalized likelihood estimators. Condition (D) is a 
smoothness condition that is imposed on the nonconcave penalty functions. Under 
the condition (H) all of these conditions are satisfied by the SCAD penalty and the 
hard thresholding penalty, as an = 0 and bn = 0 when n is large enough. 

3.1.2. Regularity conditions on likelihood functions. Due to the diverging 
number of parameters, we cannot assume that likelihood functions are invariant 
in our study. Some conditions have to be strengthened to keep uniform properties 
for the likelihood functions and sample series. A higher-order moment of the 
likelihood functions is a simple and direct method to keep uniform properties, 
as compared to the usual conditions in the asymptotic theory of the likelihood 
estimate under finite parameters [see, e.g., Lehmann (1983)]. The conditions that 
are imposed on the likelihood functions are as follows: 

(E) For every n the observations {Vni, i = 1,2,...,n} are independent and 

identically distributed with the probability density fn(Vnl,, n), which has 
a common support, and the model is identifiable. Furthermore, the first and 
second derivatives of the likelihood function satisfy the equations 

E 
a log fn (Vn 1, 

Pn) =0 for j = 1,2,..., P n 

aPni ..O.Pnj 

and 

E)& a) log fn (Vn l ,n) log f( ) 2 log n Vn l n)l 

EN l an;j BPnk I nj affnk 

(F) The Fisher information matrix 

)= E -{ 1?og fn(Vnl,1n)' {alog fn(Vnl, n)T 

satisfies conditions 

0 < Cl < min{In(An)} _< -max{(In(n)} < C2 < 00 for all n 

and, for j, k = 1, 2,..., n, 

Ena log fn (Vnl, n) 
a 

log fn(V, I,) 2 

En 1 < C3 < oo 
I Pni a9Pnk 

and 

a2 log fn (Vn, 1n)V 2 
Epn c< C4 < oo. 

MIlnj apnk 
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(G) There is a large enough open subset o,n of 2n E RPn which contains the true 

parameter point 8n, such that for almost all Vni the density admits all third 
derivatives afn(Vni, Pn)/8PnjPnkPfnl for all ,n E wn. Furthermore, there are 
functions Mnjkl such that 

a log fn (Vni, n) < Mnjkl ) _ Mnjkl(Vni) 
aBnj PnkPnl 

for all ,n E On, and 

E/n{M2njkl(Vni)} <C5 < 0o 

for all p, n and j, k, 1. 

(H) Let the values of PnOl, nO2, ..., BnOsn be nonzero and nO(s,+l), fn02, 

*.., fnOpn be zero. Then 8n01, 8n02, n O, nos,, satisfy 

min l,nOjlI/Xn as n -- oo. 
1 <j <Sn 

Under conditions (F) and (G), the second and fourth moments of the likelihood 
function are imposed. The information matrix of the likelihood function is assumed 
to be positive definite, and its eigenvalues are uniformly bounded. These conditions 
are stronger than those of the usual asymptotic likelihood theory, but they facilitate 
the technical derivations. 

Condition (H) seems artificial, but it is necessary for obtaining the oracle 

property. In a finite-parameter situation this condition is implicitly assumed, and 
is in fact stronger than that imposed here. Condition (H) explicitly shows the rate 
at which the penalized likelihood can distinguish nonvanishing parameters from 0. 
Its zero component can be relaxed as 

max InOjl/in 0 as n --+ x. 
sn+l<j<Pn 

3.2. Oracle properties. Recall that Vni, i = , ... ,n, are independent and 

identically distributed random variables with density fn (Vn, BnO). Let 

n 

Ln (n) = E log fn (Vni, n) 
i=1 

be the log-likelihood function and let 

Pn 

Qn (n) = Ln (n) - n E p, (lPnjil) 
j=1 

be the penalized likelihood function. 

THEOREM 1 (Existence of penalized likelihood estimator). Suppose that the 

density fn(Vn, inO) satisfies conditions (E)-(G), and the penalty function pXn (') 
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satisfies conditions (B)-(D). If p4/n - 0 as n -- o, then there is a local 

maximizer fBn of Q(Pn) such that I\ln - PnoII = Op{,pn(n-1/2 + an)}, where 

an is given in Section 3.1.1. 

It is easy to see that if an satisfies condition (B), that is, an = O(n-1/2), then 
there is a root-(n/pn)-consistent estimator. This consistent rate is the same as 
the result of the M-estimator that was studied by Huber (1973), in which the 
number of parameters diverges. The convergence rate of an for the usual convex 

penalties, such as the Lq-penalty with q > 1, largely depends on the convergence 
rate of An. As these penalties do not have an unbiasedness property, they require 
that A.n satisfy the condition An = O(n-1/2) in order to have a root-(n/pn)- 
consistent estimator for the penalized likelihood estimator. This requirement will 
make it difficult to choose An for penalized likelihood in practice. However, if 
the penalty function is a SCAD or hard thresholding penalty, and condition (H) is 
satisfied by the model, it is clear that an = 0 when n is large enough. The root- 

(n/pn)-consistent penalized likelihood estimator indeed exists with probability 
tending to 1, and no requirements are imposed on the convergence rate of ,n. 

Denote 

S;n = diag({ Pn (noi) ... P, (nos,n) ) 

and 

bn = (p,n (IS0 ) sgn(inol), .. .p (PnO,n0 )sgn(in0s) } 

THEOREM 2 (Oracle property). Under conditions (A)-(H), if ,n -- 0, 
/n/pnn --> oo and pn/n -- 0 as n -> oc, then, with probability tending to 1, 
the root-(n/pn)-consistent local maximizer Pn = ('1 ) in Theorem 1 must satisfy: 

(i) (Sparsity) 8n2 = 0. 
(ii) (Asymptotic normality) 

V/An In-/2 (/nOl){ In (PnOln) + En } 

x [Inl - -nol + ( In (tnOl) + C, }-lbn] (0, G), 

where An is a q x Sn matrix such that AnAT -> G, and G is a q x q nonegative 
symmetric matrix. 

By Theorem 2 the sparsity and the asymptotic normality are still valid when the 
number of parameters diverges. In fact, the oracle property holds for the SCAD 
and the hard thresholding penalty function. When n is large enough, SEX = 0 and 
bn = 0 for the SCAD and the hard thresholding penalty. Hence, Theorem 2(ii) 
becomes 

/An In /2 (inOl )(n i - jnOl) * N (0, G), 
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which has the same efficiency as the maximum likelihood estimator of 8n0I 
based on the submodel with Bn02 = 0 known in advance. This demonstrates that 
the nonconcave penalized likelihood estimator is as efficient as the oracle one. 
Intrinsically, unbiasedness and singularity at the origin of the SCAD and the hard 
thresholding penalty functions guarantee this sampling property. 

The Lq-penalty, q > 1, cannot simultaneously satisfy the conditions An = 

Op(n-1/2) and /n/pn0 -> o0 as n - oc. These penalty functions cannot 

produce estimators with the oracle property. The Lq-penalty, q < 1, may satisfy 
these two conditions at same time. As shown by Knight and Fu (2000) in a finite- 
parameter setting, it might also have sampling properties that are similar to the 
oracle property when the number of parameters diverges. However, the bias term 
in Theorem 2(ii) cannot be ignored. 

The condition p4/n --> 0 or pn/n --> 0 as n -> oo seems somewhat strong. By 
refining the structure of the log-likelihood function, such as the generalized linear 
model E(XT ,, Y) or the M-estimator from En =l p(Yi - XTf), the condition can 
be weakened to pn3/n -- 0 as n - oo. This condition is in line with that of 
Huber (1973). 

3.3. Estimation of covariance matrix. As in Fan and Li (2001), by the 
sandwich formula let 

^n = n{V2Ln (ln)- SAn(ln)}-} 

x cov{VLn(nl)}{V2Ln(Bnl) - n (nl)}- 

be the estimated covariance matrix of ,n 1, where 

cov{VLn(/,3n)}- (= 1 jI aLni (nl ) aLn(}nl1) 

i fE aL(nni(Bnl) l aL,ni (nl1) 

ni=1 fj ln i a Ik 

Denote by 

En = {In (nOl) + En (Bnol)}1 In (Pno) { In (nOl ) + CEn (n0zOl) }1 

the asymptotic variance of Bn I in Theorem 2(ii). 

THEOREM 3 (Consistency of the sandwich formula). If conditions (A)-(H) 
are satisfied and p5/n -> 0 as n -- oo, then we have 

(3.1) AnEnAT - AnEnA,T P 0 as n --- oo 

for any q x Sn matrix An such that AnAT = G, where q is any fixed integer. 
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Theorem 3 not only proves a conjecture of Fan and Li (2001) about the 
consistency of the sandwich formula for the standard error matrix, but also extends 
the result to the situation with a growing number of parameters. The consistent 
result also offers a way to construct a confidence interval for the estimates of 
parameters. For a review of sandwich covariance matrix estimation, see the paper 
of Kauermann and Carroll (2001). 

3.4. Likelihood ratio test. One of the most celebrated methods in statistics is 
the likelihood ratio test. Can it also be applied to the penalized likelihood context 
with a diverging number of parameters? To answer this question, consider the 
problem of testing linear hypotheses: 

Ho:Annoi = 0 vs. HI : An1noi 0, 

where An is a q x Sn matrix and AnAT = Iq for a fixed q. This problem includes 
testing simultaneously the significance of a few covariate variables. 

In the penalized likelihood context a natural likelihood ratio test for the 
problem is 

Tn=2 supQ(ln I V) - sup Q(/n IV) . 
Qn Qn,An n l =0 

The following theorem drives the asymptotic null distribution of the test statistic. 
It shows that the classical likelihood theory continues to hold for the problem with 
a growing number of parameters in the penalized likelihood context. It enables 
one to apply the traditional likelihood ratio method for testing linear hypotheses. 
In particular, it allows one to simultaneously test whether a few variables are 
statistically significant by taking some specific matrix An. 

THEOREM 4. When conditions (A)-(H), (B') and (C') are satisfied, under Ho 
we have 

2 
(3.2) Tn Xq, 

provided that p5 /n -- 0 as n -- o. 

For the usual likelihood without penalization, Portnoy (1988) and Murphy 
(1993) showed that the Wilks type of result continues to hold for specific problems. 
Our results can be regarded as a further generalization of theirs. 

4. Numerical examples. In this section we illustrate the techniques of our 
method via an analysis of a data set in a lawsuit and verify the finite-sample 
performance via a simulation experiment. 
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4.1. A real data example. The Fifth National Bank of Springfield faced a 
gender discrimination suit. [This example and the accompanying data set are 
based on a real case. Only the bank's name has been changed, according to 
Example 11.3 of Albright, Winston and Zappe (1999).] The charge was that its 
female employees received substantially smaller salaries than its male employees. 
The bank's employee database (based on 1995 data) is listed in Albright, Winston 
and Zappe (1999). For each of its 208 employees the data set includes the following 
variables: 

* EduLev: education level, a categorical variable with categories 1 (finished high 
school), 2 (finished some college courses), 3 (obtained a bachelor's degree), 
4 (took some graduate courses), 5 (obtained a graduate degree). 

* JobGrade: a categorical variable indicating the current job level, the possible 
levels being 1-6 (6 highest). 

* YrHired: year that an employee was hired. 
* YrBor: year that an employee was born. 
* Gender: a categorical variable with values "Female" and "Male." 
* YrsPrior: number of years of work experience at another bank prior to working 

at the Fifth National Bank. 
* PCJob: a dummy variable with value 1 if the empolyee's current job is computer 

related and value 0 otherwise. 
* Salary: current (1995) annual salary in thousands of dollars. 

A naive comparison of the average salaries of males and females will not work, 
since there are many confounding factors that affect salary. Since our main interest 
is to provide, after adjusting contributions from confounding factors, a good 
estimate for the average salary difference between male and female employees, it 
is very reasonable to build a large statistical model to reduce possible modeling 
biases. In building such a model the estimability of parameters is a factor in 
choosing the number of parameters, which depends on the sample size. 

Two models arise naturally: the linear model 
4 

Salary = Ao + /iFemale + B2PCJob + 3 f2+iEdui 

(4.1) = 

+ f6+iJobGrdi + PlI2YrsExp + PIl3Age + E 
i=l 

and the semiparametric model 
4 

Salary = 3o + P3Female + 32PCJob + E ,2+iEdui 

(4.2) i 

+ l6+iJobGrdi + fl (YrsExp) + f2(Age) + , 
i=1 
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where the variable YrsExp is the years of working experience, computed from the 
variables YrHired and YrsPrior, and fi and f2 are two continuous functions to be 
parameterized. Figure 1 shows the distributions of the years of working experience 
and age. To take into account the estimability, the number of parameters used in 
modeling fi and f2 depends on the sample size. This falls within the framework 
of our study. In our analysis we employ quadratic spline models: 

(4.3) fi(X) iX 2(x) = ol-Xi_+X 1)2+ *+i (X-i , i = 1,2, 

where xil,..., xi are, respectively, the 2/7, 3/7,...,6/7 sample quantiles of 
the variables YrsExp (i = 1) and Age (i = 2). In other words, the knots for 
YrsExp are 6, 8, 10, 12 and 15, and for Age are 32, 35, 37, 42 and 46. The 
total number of parameters for the classical linear model (4.1) is 14, and for the 
semiparametric model (4.2) is 26. Clearly, model (4.2) incurs smaller modeling 
biases than model (4.1). Since the number of parameters in both models is large, we 
apply the penalized likelihood method to select significant variables. Similarly to 
Fan and Li (2001), a modified GCV has been applied to choose the regularization 
parameter A. Find X to minimize 

1 Il - X8(X) 112 
GCV(k) = - 

n { 1 - ye(X)/n}2' 

where /(X) is the penalized least-squares estimate for a given X and e(X) is the 
effective number of parameters defined in Section 4.2 of Fan and Li (2001). The 
values y = 1 and y = 2.5 are applied in model (4.1) and model (4.2), respectively. 

There are a few cases that do not appear typical. We deleted the samples 
with age over 60 or working experience over 30. They correspond mainly to the 
company executives who earned handsome salaries. [Two of them are females 
who were over age 60, employed at ages 54 and 58 with no prior experience 
and at the lowest grade, and with just a high school education. While these two 
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FIG. 1. Distributions of years of working experience and age. 
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female employees had relatively low salaries, they should not be regarded as 
being discriminated against. Further, they have high leverages for model (4.1), 
particularly in the direction of age. Deleting these two cases is reasonable, either 
from a statistical or a practical point of view.] As a result of this deletion, a sample 
of size 199 remains for our analysis. 

We first applied the ordinary least-squares fit. The estimated coefficients and 
their associated standard errors are summarized in Table 1. To apply the penalized 
likelihood method (1.1), we need to take care of the scale problem for each 
covariate. We normalized each covariate variable by the estimated standard error 
from the ordinary least squares and then estimated the coefficients and transformed 
the coefficients back to the original scale. This is equivalent to applying the 

penalized parameter ij = X SE(/j) for covariate Xj, where SE(/j) is the standard 
error of Bj for the ordinary least squares estimate. The SCAD penalty function is 
used throughout our numerical implementation. 

The penalized least-squares estimates are also presented in Table 1. For the 
semiparametric model (4.2) the regression components for the variables YrsExp 
and Age are shown in Figure 2. The residual plots against the variables YrsExp 
and Age are shown in Figure 3. They do not exhibit any systematic patterns. 

The three models all have high multiple R2-over 80% of the salary variation 
can be explained by the variables that we use. None of the results shows statistical 
evidence of discrimination. The coefficients in front of the indicator of Female are 
negative, but statistically insignificant. 

We now apply the likelihood ratio test to examine whether there is any 
discrimination against female employees. This leads to the following null 

TABLE I 
Estimates and standard errors for Fifth National Bank data 

Method Least squares SCAD PLS SCAD PLS 

Intercept 54.238 (2.067) 55.835 (1.527) 52.470 (2.890) 
Female -0.556 (0.637) -0.624 (0.639) -0.933 (0.708) 
PcJob 3.982 (0.908) 4.151 (0.909) 2.851 (0.640) 
Edl -1.739 (1.049) 0 (-) 0 ( 
Ed2 -2.866 (0.999) -1.074 (0.522) -0.542 (0.265) 
Ed3 -2.145 (0.753) -0.914 (0.421) 0 ( 
Ed4 -1.484 (1.369) 0 ( ) 0 ( 
Jobi -22.954 (1.734) -24.643 (1.535) -22.841 (1.332) 
Job2 -21.388 (1.686) -22.818 (1.546) -20.591 (1.370) 
Job3 -17.642 (1.634) -18.803 (1.562) -16.719 (1.391) 
Job4 -13.046 (1.578) -13.859 (1.529) -11.807 (1.359) 
Job5 -7.462 (1.551) -7.770 (1.539) -5.235 (1.150) 

YrsExp 0.215 (0.065) 0.193 (0.046) () () 

Age 0.030 (0.039) 0 ( ) (-) () 

R2 0.8221 0.8176 0.8123 
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FIG. 2. Regression components fl and f2 for the semiparametric model (4.2). 

hypothesis: 

Ho:/31 =0. 

Even in the presence of a large number of parameters, according to Theorem 4, 
the likelihood ratio theory continues to apply. Table 2 summarizes the test results 
under both models (4.1) and (4.2), using both penalized and unpenalized versions 
of the likelihood ratio test. The results are consistent with the regression analyses 
depicted in Table 1. 

One can apply the logarithmic transformation to the salary variable and analyze 
the transformed data. This would make the transformed data more normally 
distributed. We opted for the original scale for the sake of interpretability. 
Furthermore, the conclusion does not change much. 

While there is no significant statistical evidence for discrimination based on the 
above analyses, the arguments can still go on. For example, as intuitively expected, 
the job grade is a very important variable that determines the salary. For this data 
set, it explains 77.29% of the salary variation. Now the question arises naturally 
whether it was harder for females employees to be promoted, after adjusting for 
variables such as working experience, age and education level. We do not pursue 
this issue further. 

Residuals versus YrsExp Residuals versus Age 
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FIG. 3. Residuals after fitting the semiparametric model (4.2). 

942 



NONCONCAVE PENALIZED LIKELIHOOD 

TABLE 2 
SCAD penalized likelihood ratio test 

Likelihood ratio test Penalized likelihood ratio test 

X2-statistic P-value X2-statistic P-value 

Model (1.) 0.7607 0.3831 1.0131 0.3142 
Model (1.2) 1.8329 0.1758 1.4311 0.2316 

4.2. A simulation study. In this section we use a simulation study to augment 
our theoretical results. To present a situation in which the number of parameters 
depends on n, to show the applicability of our results is wider than what we have 
presented and to create dependence between covariates, we consider the following 
autoregressive model: 

(4.4) Xi = PlXi_l + 32Xi-2 + -+ pXi-_pn + , i = 1, 2, . . ., n, 

where B = (11/4, -23/6, 37/12, -13/9, 1/3, 0 .... O)T and e is white noise with 
variance a2. The number of parameters depends naturally on n, as time series 
analysts naturally wish to explore the order of fit to reduce possible modeling 
biases. This time series model is stationary since its associated polynomial 

?D(B)-I - - 4 
8 (,-4)(, 3 

has no zero inside the unit circle. 
In our simulation experiments 400 samples of sizes 100, 200, 400 and 800 with 

Pn = [4n1/4] - 5 are drawn from model (4.4). The penalized least-squares method 
with the SCAD penalty is employed. The algorithm of Fan and Li (2001) is used. 
The medians of relative model errors (MRMEs) (/ - p)TEXTX(B3 - 8), among 
the least-squares (LS) estimator, the penalized least-squares (PLS) estimator and 
the oracle estimator, measure the effectiveness of the methods. The results are 
summarized in Table 3. As expected, the oracle estimator performs the best and 
the PLS performs comparably with the oracle estimator for all sample sizes. 

TABLE 3 
Simulation resultsfor the time series model 

Average number of 
MRME (%) zero coeficients 

n Pn Oracle/LS PLS/LS Oracle/PLS Correct Incorrect 

100 7 75.33 89.21 80.17 1.34 [67%] 0.49 
200 10 50.61 69.64 73.27 3.91 [78%] 0.39 
400 12 40.03 59.57 73.06 5.78 [83%] 0.22 
800 16 31.75 49.05 70.08 9.49 [86%] 0.10 
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TABLE 4 
Median of estimators for coefficients of time series model 

n pn PI P2 P3 P4 P5 

100 7 2.678 -3.616 2.739 -1.096 0 
200 10 2.711 -3.696 2.856 -1.240 0.242 
400 12 2.729 -3.769 2.959 -1.333 0.293 
800 16 2.737 -3.792 3.023 -1.383 0.306 
True - 2.750 -3.833 3.083 -1.444 0.333 

The LS estimator performs the worst and its relative performance deteriorates as 
n increases. The average number of zero coefficients is also reported in Table 3, in 
which the column labeled "Correct" presents the average number restricted only to 
the true zero coefficients, and the column labeled "Incorrect" depicts the average 
number of coefficients erroneously set to 0. For example, for n = 400, among 
seven nonzero coefficients, on average 5.78 coefficients, or 83%, were correctly 
estimated as 0, and among five nonzero coefficients, on average 0.22 coefficient 
was incorrectly estimated as 0. The medians of the estimated coefficients over 400 
simulated data sets are presented in Table 4. The biases are quite small, except 
for estimated s5, which is difficult to estimate. The variances of the estimated 
coefficients across 400 simulations are presented in Table 5. 

To test the accuracy of the standard error formula, the standard deviations 
of the estimated coefficients are computed among 400 simulations. These can 
be regarded as the true standard errors (columns labeled SD in Table 5) and 
compared with 400 estimated standard errors. The 400 estimated standard errors 
are summarized by their median (columns SDm) and interquartile range divided 
by 1.349 (columns SDmad), which is a robust estimate of the standard deviation. 
The results are presented in Table 5. The accuracy gets better when n increases. 
Further, the accuracy is better for the first two coefficients than for the last two 
coefficients, which have lower signal-to-noise ratios. 

TABLE 5 
Standard deviations (multiplied by 1000) of estimators for time series model 

SD 

SDm 
i2 

SDm SD 
SDm 

f4 

SDm 

1s SDm 

SDm 

n SD (SDmad) SD (SDmad) SD (SDmad) SD (SDmad) SD (SDmad) 

100 120 91(5.1) 337 230 (29.8) 525 285 (66.6) 451 177 (87.2) 249 79 (66.7) 
200 76 66(2.8) 221 174 (15.2) 340 231 (58) 348 170(87.2) 243 64(49.5) 
400 50 47(1.2) 149 126(4.5) 222 169(8.8) 204 125 (9.0) 129 47 (3.90) 
800 35 34(0.7) 99 90(3.1) 145 121 (8.5) 132 90(14.1) 63 34(12.5) 
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FIG. 4. Estimated densities of the likelihood ratio statistics for n = 100 (dot-dash) and n = 400 

(long-dash) along with the density of the X2 distribution (solid). 

We now apply the penalized likelihood ratio test to the following null 

hypothesis: 

Ho: f6 = 7 = 0. 

The likelihood ratio statistic is computed for each simulation. The distribution 
of these statistics among 400 simulations can be regarded as the true null 
distribution and can be compared with the asymptotic distribution. Figure 4 depicts 
the estimated densities of the likelihood ratio statistics among 400 simulations 
for n = 100 and 400. 

5. Proofs of theorems. In this section, we give rigorous proofs of Theo- 
rems 1-4. 

PROOF OF THEOREM 1. Let an = pn (n-1/2 + an) and set Ilull = C, where 
C is a large enough constant. Our aim is to show that for any given E there is a 

large constant C such that, for large n we have 

(5.1) P sup Qn(6nO +anu)< Qn( no)} > 1 -. 
l|u||=C 

This implies that with probability tending to 1 there is a local maximum n in the 
ball {in0 + anu: llull < C) such that ll,n - Pn0ll = Op(an). 

Using PA1 (0) = 0, we have 

Dn(U) = Qn (nO + annU)- Qn(BnO) 

< Ln (PnO + anU) - Ln (8nO) 

Sn 

-n { Px. (lanO + onUi 1) - Pn (l8nOj1) } 
j=l 
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Then by Taylor's expansion we obtain 

(I) =a O VT Ln (nO) + U I UT V2Ln (j nO)u2 + I 
VT{UTV2Ln (fn*)U}Ua3 

I1 + 12 + 3, 

where the vector * lies between finO and ,fnO + o nU, and 

Sn 

(II) = - [noanPn (IlfnOj1) sgn(1nOj)uj + nanpn (nO) 1 + o(l)}] 
j=1 

14 + 15. 

By condition (F), 

I III = l[nVT Ln(fno)Ul a< ln II VLn(8nnO)l lIII 
(5.2) 

(5) = n(a /npn)lUlII = O(a 2n)I|u|I. 

Next we consider I2. An application of Lemma 8 in the Appendix yields that 

12 -- 1 {V2Ln(no)- EV2Ln(PnO)} u nn 
2 nn 

1_ In 2Sn0)u.n4 
2 

2 
-nUT In (8no)U + Op(l)). na ||u||2 

By the Cauchy-Schwarz inequality and condition (G), we have 

1 Pn aLn(fn*) 3 

1 E (Mnij k( k(Vnl ) Ilull 3 33 

Since p4/n - 0 and Pnan - 0 as n -- :, we have 

T~1 2 3 3~ ~n 

= Op(pn 2an)nanlu112 = op(naio2) alu2 

Thus, 

(5.4) 13 = op(na42) 1lul2. 
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The terms 14 and 15 can be dealt with as follows. First, 
Sn 

(5.5) 1/41 < E incOnP\n(f,nOjl) sgn(PnOj)Uj l < sn n Onan\ IIUI 
< 

nuan2Iull 
j=1 

and 
Sn 

(5.6) 15 = E nanPA (lno oyl)I)u{l +o(l)} < 2 max P, (Inoj) naonllU112 
j=1 

By (5.2)-(5.6) and condition (C), and allowing Ilull to be large enough, all terms 
I1, 13, I4 and 15 are dominated by I2, which is negative. This proves (5.1). D 

To prove Theorem 2, we first show that the nonconcave penalized estimator 
possesses the sparsity property fn2 = 0 by the following lemma. 

LEMMA 5. Assume that conditions (A) and (E)-(H) are satisfied. If n -- 0, 
/n/pnpn - o and pn /n -- 0 as n -> oo, then with probability tending to 1,for 

any given filn satisfying 11 n I - BnOi II = Op(V/Pn /n ) and any constant C, 

Q { (Tnl , )} = max Q { (n )T } 
I\Bn21 <C(pn/n)l/2 

PROOF. Let ?n = CV/pn/n. It is sufficient to show that 

tending to 1 as n - oc, for any ,nl satisfying Bnl - fnOl = 

have, for j = Sn + 1, ...Pn, 

(5.7) <O for O < Bnj < En, 
OPnj 

a o Qn (n) 
(5.8) > for - En < Pnj < 0. 

Opnj 

By Taylor expansion, 

a Qn (fn) a Ln (n) ) 
a-n 

- 
n 

- np~, (nj l) sgn(fnj) 
Olnj olnj 

Ln (ifnO) 

afnj 

with probability 
Op(/pn/n) we 

p 
a2Ln(fn? ) 

(nl - n0nl) 

1=1 alnj afnl 1=1 

Pn 3 

+ P a3 Ln( f) (Pnl - fPnOl) (Pnk - PnOk) 
-l OPnj aOPlnIOl ank 

- np}n (l Bnj I) sgn(Pnj) 
= I + 12 + 13 + 14, 
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where pn* lies between pn and /n0. Next, we consider I1, 12 and I3. 
By a standard argument, we have 

(5.9) 11 Op (V) Op(npn). 

The term 12 can be written as 

Pn 
O2LnnO a2Ln(nO) _a n( B) E 

12 E 
n a t (nl a j afnl 

nl) 

+ n 
2Ln (fo) - nO) 

+ E aPnl (tnl- PnO 

K1 + K2. 

Using the Cauchy-Schwarz inequality and IPn - /Bno I = Op(/pn/n), we have 

Pn 

IK21 = n In ( nO)(i, l)(fPnl - nOl) 
1=1 

/ O P Pn \ i p 71/2 

As the eigenvalues of the information matrix are bounded according to condi- 
tion (F), we have 

Pn 

E I2(fonO)(j, 1) = 0(1). 
I=1 

This entails that 

(5.10) K2 = Op( nn). 

As for the term K1, by the Cauchy-Schwarz inequality we have 

K n\\ 
Pn 

a2Ln(P2no) a2Ln(nO) 2-1/2 
JKjj<11P-Pno1 

a3n af3Pni 
- 

EafPnafPni {=, ahny agl a,nj a,nlI 

Then from condition (F), it is easy to show that 

-"P a2Ln(Bno) Ea2Ln(8no)}2 = 1/2 

Y' 
fnj 3 

-E 
Op= 

( p? n--n). 

By IIpn - PnOll = Op(Vpn/n) it follows that K1 = Op(/ npn). This, together 
with (5.10), yields 

948 

(5.11) 12= Op(-/npn) 



NONCONCAVE PENALIZED LIKELIHOOD 

Next we consider 13. We can write 13 as follows: 

13 = j 3L( 
E [3Ln( *n jj - 

/jnOj)(flnk - PnOk) 

1,k=- aP nljnk fnj1iPnk 

+ -3 E a (flnj - [nOj)(fink - SnOk) 
1,k=l a nj fnl nk 

K3 + K4. 

By condition (G), 
1/2 

(5.12) IK41 C5/2 npn Iln -Bnoll2 = Op(pn2) op(npn). 

However, by the Cauchy-Schwarz inequality, 

K~32 < m n( * - E ( a Wn, P .n nO114 3 - y I 
a3fnj al3nk af3nl af3nj a3fnk a[fnl n --/8n0[I4 

1,k=l 

Under conditions (G) and (H), we have 

(5.13) K3= Op n2Pn oP( nn) 

From (5.9) and (5.11)-(5.13) we have 

II + 12 + I3 = Op( npn). 

Because /p,n/ln/n -* 0 and liminfn,,, info,o+ pn (O)/Xn > 0, from 

a Qn(On) { PIC3 (I njl ) n/ )*n } {- nA n sgn(,nj) + Op ( n/x) | 
a]nj Xn n 

it is easy to see that the sign of Jnj completely determines the sign of 
aQn(Pn)/aPnj. Hence, (5.7) and (5.8) follow. [] 

PROOF OF THEOREM 2. As shown in Theorem 1, there is a root-(n/pn)- 
consistent local maximizer Pn of Qn (t3n). By Lemma 5, part (i) holds that P, has 
the form (/Bnl, 0)T. We need only prove part (ii), the asymptotic normality of the 
penalized nonconcave likelihood estimator ,n i. 

If we can show that 

{In (PnOl) -+ EAn } (]nl -PnOO) + bn --VLn (BnOl) + o p (n- /2), 

then 

VAn An In l/2(3nol) In(,3nol) + E, }[Bnl - IBnOl + {ln(i8nOl) -+ EnI }-lbn] 

1 
2In2 =- IAnIn 2(tnol)VLn(8noi) + Op{Anln /2(PnOl)}. vini 
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By the conditions of Theorem 2, we have the last term of op(l). Let 

1 
Yni = AnIn /2 (nO1)VLni (Pnl), i = 1, 2,..., n. 

It follows that, for any 8, 

n 

Ell Yni l21{ ll Yni > e} = nEllYnl l2{llYnl l > ?} 
i=1 

<n{EIIYnl 14}1/2{P(llYnIII > E)}1/2 

By condition (F) and An A ->* G, we obtain 

Ellgl n/l)Vml- (1/201)1I2 
P(lYnlYI ) > 

EIIAnIn / (no)vLn l) 
(n-1) 

ne 

and 

Ell Yn1 ill4 = -EIIAnIn /2(fnol)VLnl (tnol)l4 n2 

< 
I 
2max (A An )imax{In (PnOl )E}E V TLn l (nOl )VLn l(no l) 12 

1 2 
=0 4).n n O 2n ) 

Thus, we have 

1121 11yn,11 .FjPn EIllYni l2l{ lYniII > } = o(1n)= ). 

On the other hand, as AnAT - G, we have 

n 

cov(Yni) = n cov(Yn ) = cov{AnIn 1/2(,nOl)VLn(nol))} > G. 
i=l 

Thus, Yni satisfies the conditions of the Lindeberg-Feller central limit theorem 

[see van der Vaart (1998)]. This also means that l//nAnIn(nol)-ll2VLn(Pnol) 
has an asymptotic multivariate normal distribution. 

With a slight abuse of notation, let Qn (Pn 1) = Qn (Pn i, 0). As fn 1 must satisfy 
the penalized likelihood equation V Qn (Pn 1) = 0, using the Taylor expansion on 
V Qn(n i) at point fnOl, we have 

1, 2 
-[{V2Ln (noi) - V2PA (t)In 1 - nnl301) - VPn (/ l l)] 

=-- VL,n(Bnol) + -(8n1 - fnol)TV2{VLn( n1)}(nI - ,nol) ) 
n ) 22 
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where n*l and f*6 lie betweenn ,ni and finOl Now we define 

? _ V2Ln (fin01) - V2 P (t3nt) 

and 

C 2 l(fnl - Ol)V2{TVLn (fi*)}(nl - I BnO ) 

Under conditions (G) and (H) and by the Cauchy-Schwarz inequality, we have 

1 2 1 n Sn 
- CO \ 1noll -n -21 En2 finI -in0I11 Mnjkl(Vni) 

i=l j,k,l=\ 
(5.14) 2 

=o, P )o (P3) = Op(1 ) 

At the same time, by Lemma 8 in the Appendix and because of condition (H), it is 
easy to show that 

Xi --- + In(fnOl) + En =Op i = 1,2, ..., Sn 

where Xi(A) is the ith eigenvalue of a symmetric matrix A. As /8nl - /n01 = 

Op(/pn/n), 

(5.15) {-X? + In(f8noi) + Exn }(in - fin) = Op(\ n 

Finally, from (5.14) and (5.15) we have 

(5.16) {In (fnol) + Sn }(/nl - ]nol) + bn= -VLn(fnoI) + O?p - 
n (Sn! 

Following (5.16), Theorem 2 follows. D 

PROOF OF THEOREM 3. Let An = -n-1V2Ln(fnil) + E.n (nl), ?n = 

co?v{VLn (inl )}, A = In(Bnol) + Exn and 2 = In (fnol). Then we have 

En - E = n- ( n ) 
n - )A + (A)n 

1 + 4-1 (O4 -- ) 

= II + 12 + 13 

and 

An1 - A- 1= An(A -- An)A-1) 

Let Xi(A) be the ith eigenvalue of a symmetric matrix A. If we can show that 
Xi(A - An) = Op(l) and Xi(,n - 2) = op(l), then from the fact that IXi(2)l 
and IAi (A) I are uniformly bounded away from 0 and infinite, we have 

Xi (En -En) = Op(1). 
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This means that En is a weakly consistent estimator of En. 
First, let us consider A - An and decompose it as follows: 

A - An = In(3nO) + -V2Ln(,nl) + E-n(,nOI) - En (Pn n) =K + K2. 
n 

It is obvious that 

Xmin(K1) + Xmin(K2) < Xmin(KI + K2) 

< max((Kj + K2) < .max(Kl) + Xmax(K2)- 

Thus, we need only consider .i (Ki) and .j (K2) separately. The term Kl can be 

expressed as 

K1 = In (nOl) + -V2 Ln(8nl) ) - -V 2Ln(nl)+ -V2Ln(n). n n n 

According to Lemma 8 in the Appendix, we have 

(5.17) In(nOl) +- V2Ln(fnol) = Op(l). 
n 

As shown in Lemma 9, 

v2L(]i>n ) V2L(nol) 
2 

(4 (5.18) V2Ln(,) =V2 ) 
Pn =O p(1) 

nn n 

Thus, it follows from (5.17) and (5.18) that IIKl11 = Op(l). This also means that 
we have 

(5.19) )i(Kl)= Op(l), i = 1,2, ... sn. 

As llPnl - 8nOl II = Op(^/pn/n), by condition (D), pA (<nj) 
- 

P, (nOj) = 

Op(l), that is, 

(5.20) .i (K2)= Op(1), i = 1,2 ...,Sn. 

Hence, from (5.19) and (5.20) we have shown that 

(5.21) .i(A - An) = op(1), i = 1, 2,.,Sn. 

Next we consider Xi(J3n - 2). First we express Sn - B as the sum of 
K3 and K4, where 

K3 
A 

- In (inol) 
ni=, 1 p, afk 

and 

l1 " Lni (1nl ) I n 
iaLni(Bnl) K4 ' : 

a J f k 

ni=1 apj ni=, p 
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Using the aforementioned argument, we need only consider K3 and K4 separately. 
Note that 

1 O 
(Lninl) n / _ _ \ 1 -P (InJ I)= 0, j= 1,2 ... n, 

i=1 p n 

which implies that 

Sn Sn 

IK4112 E E- pn(I lnj n(il)2l p (pnk()} 
j=l k=l 

(5.22) 
= 

sn 2 

1 )2 = lJ::. PXn (1PnIj 
j=l 

By Taylor expansion, 

(5.23) P;n (I,nj I) =- P(Ino ( l, ) + Pn (IPnj |)( ^nj -nOj), 

where ,nj lies between Pnj and fnjO. From (5.22) and (5.23) we obtain 

Sn 2 

11K4112 <_4 E p(I,nOj 1)2 + Cl/nl - nOl2 

(5.24) j=1 

pna? + Opn(Pn)OQ (nP(-) <4P n(P +0 o )[= p Pn- 
2 )= Op(l). 

Finally, we consider K3. It is easy to see that K3 can be decomposed as the sum 
of Ks and K6, where 

K5 aLn ) 1 , amni(Pnol) aL(ni(3nOl) 
n al j afk n i=l pj a8k 

K6 ̂  > aLni(nOl) aLoni(3 nO l) } - K6= 
A 

_ - In(PnOl)- 
In Opj OPk 

As before, following Lemma 8 in the Appendix, it is easy to demonstrate that 

(5.25) 11 K6 11 = Op (1). 

In the Appendix we show that 

(5.26) IlK5s II = Op(). 

By (5.24)-(5.26) we have shown that II\n - \11 = Op(l) and 

(5.27) Xi ( n - ) =i Op() , = ...Sn. 
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It follows from (5.21) and (5.27) that 

i( n- En) = p(l), i =1,...,Sn. 

This completes the proof for the consistency of the sandwich formula. O 

Let Bn be an (n -q) x sn matrix which satisfies Bn Bn = IS -q and An B = O. 
As Bn 1 is in the orthogonal complement to the linear space that is spanned by rows 
of An under the null hypothesis Ho, it follows that 

Pn = Bn Y1 

where y is an (s - q) x 1 vector. Then, under Ho the penalized likelihood 
estimator is also the local maximizer n of the problem 

Qn(Bfn) = max Qn(B Yn ). n 
Yn 

n 

To prove Theorem 4 we need the following two lemmas, the proofs of which 
are given in the Appendix. 

LEMMA 6. Under the conditions of Theorem 4 and the null hypothesis Ho, we 
have 

1 1 
ni - 

SnOl = -In (nol)-) VLn (Pnoi) + p(-1/2), n 

B Yn - YnO) = In {BBnIn(no01)BT} 1B VBLn((noi) + Op(n-1/2) n 

LEMMA 7. Under the conditions of Theorem 4 and the null hypothesis Ho, we 
have 

Qn(fnl )- Qn(BnYn) 
(5.28) 

-= (n - 
B^n) In( l)(n - BT n) + op(1). 2 

PROOF OF THEOREM 4. Let (n = In(PBnO) and (In = VLn (noi). By 
Lemma 6 we have 

Pnl - BTyn 

(5.29) = o1/2{In 1- B/2 (Bn n BT ) -1 B 1/2 /2 

+ p(n-1/2). 

It is easy to see that In - n1/2 r T1 1n/2 It is easy to see that In - en2Bn (Bn @n Bn)-~ Bn12 is an idempotent matrix 
with rank q. Hence, by a standard argument and condition (F), 

Pnl -Bn Yn = O ( ) 
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Substituting (5.29) into (5.28), we obtain 

Qn(n i) - Qn(Bn Yn) 

=- (IT 0 1/2{I - el/2B (Bn nB, B Bn n 2}(nl2n + p(1) 
2n n 

/2BTR Bnen can 1/2 
By the property of the idempotent matrix, In - e B(Bn(nB )- BnOn can 
be written as the product form DnDn, where Dn is a q x Sn matrix that satisfies 

DnDT = Iq. As in the proof of Theorem 2, we have shown that /rnDnn l/2 (n 
has an asymptotic multivariate normal distribution, that is, 

VDnW nn l/2c1n N X/'(O, Iq). 

Finally, we have 

2{Qn(inl)- Qn(Bn Yn)} 

= n(Dnon l/2n)T (DnO,n/2 -l n) + Op(l) Xq- 

APPENDIX 

LEMMA 8. Under the conditions of Theorem 1, we have 

2 1 
(A.1) -V2 Ln (nO) + In (.Pn) 

= op ( \Pn 

and 

A1 d aLni (3nOl) aLni(nol) ( i 
(A.2) - In } no(/0) Op n Oflj agk Pn 

PROOF. For any e, by Chebyshev's inequality, 

1n Pn 

2 P 
n 

EE Ln (no) aLn (0no) 12 
n22 i ,j=ll anifni a3n niBln 

4 

n 

Hence (A. 1) follows. Similarly, we can prove (A.2). D- 

LEMMA 9. Under the conditions of Theorem 2, we have 

V2Ln(Pni ) V2Ln(Bnoi) I( I ) 
n n p 

VD 
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PROOF. First we expand the left-hand side of the equation above to the third 

order, 

V2Ln(^n) _ V2Ln(fln l) 2 

n n 

n2; a- i,j=l Ofl Ofl 

aLn(fnOl)' 
2 

api afj 

Sn Sn aLn(P*) 
n 

i,jl |=] k 6i a a, (k 

Then by condition (G) and the Cauchy-Schwarz inequality, 

1 Sn Sn aLn (P*) ( 2 

n2 j 

n 

aijk(fnkf-nOO 
i,j=1 k=l a 3i a3k 

I 
sn s aLn(. 

2 1 n 1 II,nn 111 0iII2 

n2 E E afi afj )lk1nl 
--fnOl I 

i,j=l k=l 

-- 0 p Mn||ij k(Vnl) fl2 Pnn i ,k 1=1 

1 2 P n n2-' Op(p3n2) =Op(- D 

PROOF OF (5.26). According to Taylor's expansion, we have 

aLni (n 1 ) 

asj 
aLni (fnl) VT aLni(BnOl)(n l n) 

a ,- 
+ v 

a/? O(,nI 
- 

fno) 

+ (Pn - Pn) TV 2 Pani(f)(fnl 
- fnO) 

apj 
aij + bij + cij. 

The matrix K5 can then be expressed as a sum of the following form: 

K5 = - 
aijbik) + i aijci k) + bijaik) + ci aik) 

ni= i= n i=I 

I /n \ i /n n n 
+ -1 E i jbik + bijcik + cijbik) + cijCik 

- Xi=1 2X3X4+ i=X+1 X 
X1 + X2 -+ X3 + X4 + X5 + X6 + X7 + X8. 
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Considering a matrix of the form n '(i=l XijYik) F, we have 

Sn n \2 Si= \ / n \ 

IIFI11 2 E (x ijYik) E E n 
j,k=\ i=1 n 

j,k=l i=1 i=1 

1 n Sn n Sn 

n2 EE EE k 
i\=l j=l i\=1= k=l 

Thus, the order of IIXi 11 can be determined from those of Einl ', al 
I ,ESn b iand .i 

Because of condition (F), for any i and j Ea2j < C and 

E \aL k < C forany n, jandk, I aLj afik \ 
- 

we obtain 
n Si? 

(A.3) Ea J= Op(npn) 
i=1 j=1 

and 
n Sn n sSn SaL fi 2 
VE E Cb2 < ~E E E 2aL,j ak IlOn, --lnO,I |2 

(A.4) {k 
Lni 

Fr(A.4) i= . j= i)-= 1 
wj=le 

<8 22(nn P) ? I) 

From( .3(A.5) w = 
j=alk=vll= 

2 P5 +- Op (npn) 0 p ( pn P 

From (A.3)-(A.5) we have 

Ig 112 < 8([[X 1112 + -.- IIXs112) 

< 8 - 
Op(npn P) + Op npn 1?? 

p3\ n Pn = 
( 

= (ln n 

+ Op Pn - 
+Op (pn Pn3)+ Op P 

5 

Op( 
Pn 

--Op(1). n 
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This completes the proof. D 

PROOF OF LEMMA 6. We need only prove the second equation. The first 

equation can be shown in the same manner. Following the steps of the proof of 
Theorem 2, it follows that under Ho, 

Bn(ln(n0O1) + n)B(Yn - Yn)- Bnbn = -BnVLn(Bnoi) + p(n-l/2). 

By the conditions an = op(l/ ipn) and Bn BT = Isn-q we have 

IIBnbnll < l bnll< _< npnan =op(n-l/2). 

On the other hand, since bn = op (l l/~), we obtain 

\\Bn'nnBT(Yn Yn - < n0 1 Yn - Ynllbn = Op (/) Op =Op (, 

Hence, it follows that 

BnI (nO0 )BnT (- YnO) = -BnVLn(nOl) + Op(n-1/2) n 

As .i(Bn In(f8nO)BT) is uniformly bounded away from 0 and infinity, we have 

B n (Yn - n) = BnT {BnIn(/nol)BnT } -BnVLn(BnoI) + op(n-1/2). 

This completes the proof. D 

PROOF OF LEMMA 7. A Taylor's expansion of Qn (/n) - Qn(BTYn) at the 

point n 1 yields 

Qn(nI) - Qn(Bn Yn) = T- + T2 + T3 + T4, 

where 

T1 = VT Qn(/Inl)(3nl - BTy), 

T2 =- (pnl- Tn )T V2 Ln(n ) (n - Bn ) 

T3 = V {(n, - Bn Yn) V Ln )( - Yn)} nl Bn Yn 

TT - Tv2 T 
T4 = 2 ( nl- B n)V Pn (/nl){I + o(l)}(1n l - Bn Yn ) 

Note that T1 = 0 as VT Q(^nl) = 0. By Lemma 6 and (5.29) it follows that 

/nl -Bn Yn= , (= 
O 

). 

By the conditions bn = op(l/ Jpn) and q < Pn, following the proof of 13 in 
Theorem 1, we have 

T3 = O(np3/2n-3/23/2)= p(l) 
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and 

T4 <nbn IInI -B7Yn 112 = nlOp( O O )pq = p(). 
( 1)/Pn q nO' 

Thus, 

(A.6) Qn(Pnl)- Qn(B n) = T2 + Op(1). 

It follows from Lemmas 8 and 9 that 

_V2Ln(,nl)+Bl) =0p( In nO1) n ( 'P n 

Hence, we have 

I ^ 
-(Bnl - B Yn) T{V2 Ln(Bnl) + n In(3noil) }(nl - Bn Yn) 

< op (n p- O p (l). 

The combination of (A.6) and (A.7) yields (5.28). D 
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