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Variable Selection

I Why?

I Interpretation: principle of parsimony.

I Prediction: bias and variance tradeoff.

I What if number of variables is greater than number of
observations (p > n)?

I Shrinkage.

I Frequentist: loss + penalty. Examples: Ridge
regression(Hoerl and Kennard, 1970), Lasso (Tibshirani,
1996).

I Bayesian: Likelihood × Shrinkage prior. Griffin and
Brown (2005), Park and Casella (2008).
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Notation

I Consider a data set with one response variable, p
predictors and n observations.

I Focus on linear models: y = Xβ + ε, ε ∼ N(0, σ2In).

I y is the centered response; Xis, columns of X , are
standardized to have mean 0 and unit L2 norm.
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Bayesian Interpretation of Lasso

I Lasso (Tibshirani 1996):

min
β
{‖y − Xβ‖2 + λ

p∑
i=1

|βi |} (1)

I Bayesian interpretation:

I Consider the Bayesian model y ∼ N(Xβ, In) and
βi ∼ λ

2 e−λ|βi | (Laplacian prior).

I The solution of (1) can be interpreted as the posterior
mode of β.
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Laplacian Priors
I The Laplacian prior is more sparsity promoting than the

normal prior.
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The Bayesian Lasso (Park and Casella, 2008)
I Model y | (X , β, σ2) ∼ N(Xβ, σ2In).

I Propose the conditional Laplacian prior

βi | (σ2, λ2) ∼ λ

2σ
e−λ|βi |/σ,

I Rewrite the laplacian prior into a mixture of

βi | (σ2, γ2
i ) ∼ N(0, σ2γ2

i ) and γ2
i | σ2 ∼ Exp(λ2/2). (2)

I Empirical Bayesian treatment of λ:

I Estimate λ by the marginal maximum likelihood λ̂.
I Assign a hyperprior that places high density at λ̂.

I Estimate βi by its posterior median.

I Limitation: heavy computation load and sparsity NOT
achieved.
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Benefit of Our Method

I Avoid the computation burden of finding the marginal
maximum likelihood estimate.

I Assign a prior to λ2 that does not depend on the data.

I Achieve sparsity.
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Intuition for Achieving Sparsity

I Find an unimportant pseudo variable Z as the benchmark.

I Augment the model:

y = βzZ + Xβ + ε.

I Criteria:
I Orthogonal with y (true value of βz is 0).

I Orthogonal with Xi s (keep the data structure).
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Benchmark: Intercept!

I Zint = (1/
√

n, . . . , 1/
√

n︸ ︷︷ ︸
n

)T .

I Orthogonal with y and all the Xis.

I Does NOT depend on the specific observations.
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Variable Selection

I Regression model: Y = βintZint + Xβ + ε.

I Assign hierarchical priors and obtain posterior
distributions of βint and βis.

I Measure the importance of Xi by
di = P(|βi | > |βint | | y ,X ).

I If Xi is orthogonal with y and other variables, then
di = 0.5.

I The Xi will be selected as an important variable, if
di > c , where c > 0.5.
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Some Thoughts on Tuning c

1. Choose the c such that the false discovery rate is
controlled.

2. Find the limn→∞ di for the Xi that is unimportant but
weakly correlated with the important variables. Use it as
a guideline to choose c .
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Illustration

Consider the following simulation setting (Tibshirani, 1996):

I y = Xβ + ε, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

I X = (X1, . . . ,Xp), Xi ∼ N(0, 1), cor(Xi ,Xj) = 0.5|i−j |.

I σ2 = 9.

I n = 20.
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Posterior Distribution of βint
I Zint is a good benchmark for unimportant variables.
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Changes on Posterior Distributions of βis

I For each βi , the estimated posterior densities are almost
unaffected by adding Zint .
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Estimated di

I d̂i : proportion of (βi , βint) satisfying |βi | > |βint |.

I β̂i ,PC : posterior median of βi by Park and Casella’s
Bayesian Lasso method.

I All unimportant variables have d̂i ≤ 0.61.

I Posterior medians do NOT yield sparsity.

βi 3 1.5 0 0 2 0 0 0

d̂i 0.96 0.64 0.56 0.54 0.78 0.61 0.57 0.52

β̂i ,PC 11.84 2.92 1.64 1.50 5.67 2.32 1.92 1.61
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Variable Selection Result

I Empirically, c = 0.9 yields good sparsity.

I When c = 0.6, the result is almost the same as Lasso.

Table: Frequencies that each variable is selected.

βi 3 1.5 0 0 2 0 0 0

c = 0.9 94 43 1 1 43 0 1 0
c = 0.7 100 87 19 26 93 9 14 14
c = 0.6 100 98 47 51 99 52 40 44
Lasso 100 96 47 51 99 48 43 46
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Posteriors of βis after Adding Zint

Lemma
Consider regression model

y = Xβ + ε with ε ∼ N(0, σ2In)

and priors
βi | (σ2, λ2) ∼ λ/(2σ)e−λ|βi |/σ

for i = 1, . . . , p. Let π1 and π2 be the joint posteriors of βis
conditional on σ2 and λ2 before and after adding Zint ,
respectively. Then we have,

π1 = π2.
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Motivation of Group Selection Method

I Assayed genes or proteins are naturally grouped by
biological roles or biological pathways.

I It is desired to first select important pathways (group
selection), and then select important genes (within group
selection).

I Correlated important variables in the same group should
all be selected.

I Lasso tends to pick only a few of them.
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Extra Notation

I g : Number of groups

I k : index of groups; j : index of variables inside groups.
For example, Xk,j is the jth variable in group k .

I pk : number of variables in group k . Assume there is no
overlap, that is, p =

∑g
k=1 pk .
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Current Lasso Type Methods for Group Selection

I Frequentist approach

I Designed for group selection only: Yuan & Lin (2006)

I Designed for both group selection and within group
selection: Ma & Huang (2007); Huang at el. (2009);
Wang at el. (2009).

I Bayesian approach. Raman et al.(2009).
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Hierarchical Priors with Group Structure

I Model: y = βintZint +
∑g

k=1

∑pk

j=1 βk,jXk,j + ε with

ε ∼ N(0, σ2In).

I βk,j ∼ N(0, γ2
kσ

2/pk).

I Variables in the same group are shrunk simultaneously.

I γ2
k measures the total variations of pk variables:
βk,1, . . . , βk,pk

.

I γ2
k ∼ Exp

(
λ2

2pk

)
.

I Treat βk,j equally across groups. E (βk,j) and V (βk,j) do
not depend on k or j .
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Group Selection

I Definition of important group: groups have at least one
important variable.

I Selection of important groups: the kth group is selected,
if maxj{P(|βk,j | > |βint |)} > c .
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Within Group Selection: More Benchmarks
I Limitation of variable selection by βint :

unimportant variables in the important groups are less
likely to be removed.

I Solution: find a benchmark Zk,ben for group with pk > 1.
I The regression model becomes

y = βintZint +
m∑

k=1

(
βk,benZk,ben +

pk∑
j=1

βk,jXk,j

)
+

g∑
k=m+1

βk,1Xk,1 + ε,

where m is the number of groups with size greater than 1.
I How to make Zk,ben orthogonal with other variables and

benchmarks?
I Data augmentation!
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An Example: Construction of Two More

Benchmarks

I Data: 7 observations, two groups, {X1,1,X1,2} and
{X2,1,X2,2}.

I Zint is orthogonal to y and Xk,js.

Obs. y X1,1 X1,2 X2,1 X2,2 Zint

1

Data

1/
√

7

2 1/
√

7

3 1/
√

7

4 1/
√

7

5 1/
√

7

6 1/
√

7

7 1/
√

7
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Data Augmentation

Obs. y X1,1 X1,2 X2,1 X2,2 Z1,ben Z2,ben Zint

1

Data

a1 a2 1/
√

9

2 a1 a2 1/
√

9

3 a1 a2 1/
√

9

4 a1 a2 1/
√

9

5 a1 a2 1/
√

9

6 a1 a2 1/
√

9

7 a1 a2 1/
√

9

8 0 0 0 0 0 −a1b1 a2 1/
√

9

9 0 0 0 0 0 0 −a2b2 1/
√

9

I a1 = 1/
√

56; b1 = 7

I a2 = 1/
√

72; b2 = 8

I Z1,ben, Z2,ben and Zint are pairwise orthogonal and also
orthogonal with response and predictors.
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Geometry Interpretation of Data Augmentation
I Adding one zero observation brings the original data to

n + 1 dimensional space.
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Steps of Constructing Benchmarks

1. Add m zero observations to the original data, where m is
the number of groups with pk > 1.

2. Let Zk,ben = {ak , . . . , ak︸ ︷︷ ︸
n+k−1

,−akbk , 0, . . . , 0︸ ︷︷ ︸
m−k

}, where

ak = [(n + k − 1)(n + k)]−1/2 and bk = n + k − 1.

3. Let Zint = {(m + n)−1/2, . . . , (m + n)−1/2︸ ︷︷ ︸
m+n

}.
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Group Selection and Within Group Selection

I Regression model:

y = βintZint +
m∑

k=1

(
βk,benZk,ben +

pk∑
j=1

βk,jXk,j

)
+

g∑
k=m+1

βk,1Xk,1 + ε.

I Assign hierarchical priors with group structure and obtain
posterior distributions of the coefficients.

I Group selection: the kth group is selected, if
maxj{P(|βk,j | > |βint |)} > c .

I Within group selection: suppose group k is selected, then
Xk,j is selected if P(|βk,j | > |βk,ben|) > c .
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Illustration

I Consider that p = 20, g = 6, and

β = [1.5,−0.8, 0, 0, 0, 1.2︸ ︷︷ ︸
G1

, 0, 0, 0.8, 0︸ ︷︷ ︸
G2

,

1.2, 0, 0, 0, 0︸ ︷︷ ︸
G3

, 0, 0, 0︸ ︷︷ ︸
G4

, 0︸︷︷︸
G5

, 0.8︸︷︷︸
G6

]T .

I y = Xβ + ε; Xk,j ∼ N(0, 1), cov(Xk,i ,Xk,j) = 0.5|i−j | for
k = 1, 2; cov(Xk,j ,Xk,l) = 0 for k = 3, 4 and j 6= l .

I Signal to noise ratio is 3.

I n = 100

I Let c = 0.9.
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Posteriors of Variables in An Important Group

I Important variables deviate further from the benchmark.
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Posteriors of Variables in An Unimportant Group
I All the unimportant variables are very close to the

benchmark.
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Group Selection Result

Table: The frequency each group is selected in 100 simulations.

Group 1 2 3 4 5 6

Size 6 4 5 3 1 1
Important Y Y Y N N Y
Selected 100 94 100 1 1 99
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Within Group Selection Result

I Average false discovery rate is 0.053 (0.011); average
false negative rate is 0.013 (0.003).

I Average number of selected variables is 6.13 (0.08).
(True number is 6)

Table: Number of times each variable is selected in 100
simulations.

Variable X1,1 X1,2 X1,3 X1,4 X1,5 X1,6

True Coef. 1.5 -0.8 0 0 0 1.2
Selected 100 90 4 5 5 100
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A Big p Small n Example

I Let p = 200 and n = 100. There are 40 groups and each
group consisted of 5 variables.

I β1,js in group 1 : (1.2, 0.8, 0, 0, 1.6)

I β2,js in group 2 : (1,−0.9,−1.1,−1.3, 0.8)

I β3,js in group 3: (0.8, 0, 0, 0, 0)

I βk,js in group 4 to 8 are all zero.

I The above 8 groups form a block and is replicated 5
times to yield the coefficients of 240 variables in total.

I There are 45 important variables and 255 unimportant
variables.
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Covariance Structure

I The Xk,js in the each block are generated from
multivariate normal with mean 0 and covariance structure:

cov(Xk,i ,Xm,j) = 1/3(0.5)|k−m|.

I Variables in different blocks are uncorrelated.

I Signal to noise ratio is 10.
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Group Selection Result

I When c = 0.7, unimportant groups are effectively
removed.

I When c = 0.7, false discovery rate is 5.1% (0.8%) and
the group false negative rate is 24.0% (0.4%).

I When c = 0.6, false discovery rate is 23.9% (0.9%) and
the group false negative rate is 16.1% (0.5%).

Table: Frequencies that first 8 groups are selected based on 100
simulations.

Group 1 2 3 4 5 6 7 8

Important Y Y Y N N N N N
Selected(c = 0.7) 91 39 5 2 2 4 0 1
Selected(c = 0.6) 99 78 38 10 17 19 9 15
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Within Group Selection Result
I Unimportant variables in group 1 (important group) are

effectively removed when c = 0.7.
I When c = 0.6, average false discovery rate over all

groups is 33% (0.8%) and average false negative rate is
12% (0.2%).

I When c = 0.7, average false discovery rate over all
groups is 11% (0.8%) and average false negative rate is
17% (0.2%).

Table: Frequencies that 5 variables in the first group are selected
based on 100 simulations.

(k, j) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

True βk,j 1.2 0.8 0.0 0.0 1.6
Selected(c = 0.7) 68 41 14 12 77
Selected(c = 0.6) 91 73 42 40 98
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Conclusions

I Intercept is a good benchmark for unimportant variables.

I Bayesian Lasso with pseudo variables achieve the sparsity.

I Bayesian Group Lasso with pseudo variables achieve both
good group selection and within group selection results.
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Future Work

I Optimize the threshold.

I More numerical comparisons with other variable selection
methods.

I Real data analysis.
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Other Work

I Shao, J. & Tang, Q., Random Group Variance
Estimators for Survey Data with Random Hot Deck
Imputation. (Submitted)

I Tang, Q. & Qian, P.Z.G., Enhancing the Sample Average
Approximation method with U designs. (In revision)
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