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Variable Selection
» Why?
» Interpretation: principle of parsimony.

» Prediction: bias and variance tradeoff.

» What if number of variables is greater than number of
observations (p > n)?

» Shrinkage.

» Frequentist: loss 4+ penalty. Examples: Ridge
regression(Hoerl and Kennard, 1970), Lasso (Tibshirani,
1996).

» Bayesian: Likelihood x Shrinkage prior. Griffin and
Brown (2005), Park and Casella (2008).
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Notation

» Consider a data set with one response variable, p
predictors and n observations.

» Focus on linear models: y = X3 +¢, € ~ N(0,021,).

» y is the centered response; X;s, columns of X, are
standardized to have mean 0 and unit L, norm.
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Bayesian Interpretation of Lasso

» Lasso (Tibshirani 1996):

mﬁin{Hy—XﬁH2+)\Z|5i|} (1)

i=1

» Bayesian interpretation:

» Consider the Bayesian model y ~ N(Xf3,I,) and
Bi ~ %e_)‘w"‘ (Laplacian prior).

» The solution of (1) can be interpreted as the posterior
mode of 5.
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Laplacian Priors
» The Laplacian prior is more sparsity promoting than the
normal prior.

05

Laplacian
Normal

04

density
0.3

0.2

01

00




The Bayesian Lasso (Park and Casella, 2008)

> Model y | (X, 3,02) ~ N(X8,021,).
» Propose the conditional Laplacian prior

A ise
Bi [ (0%, X%) ~ o-e 7,

v

Rewrite the laplacian prior into a mixture of

B 1 (02,77) ~ N(0,0™97) and 77 | 0 ~ Exp(3*/2). (2)

v

Empirical Bayesian treatment of \:

» Estimate A\ by the marginal maximum likelihood A
» Assign a hyperprior that places high density at .

v

Estimate (3; by its posterior median.

v

Limitation: heavy computation load and sparsity NOT
achieved.
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Benefit of Our Method

» Avoid the computation burden of finding the marginal
maximum likelihood estimate.

» Assign a prior to A2 that does not depend on the data.

» Achieve sparsity.
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Intuition for Achieving Sparsity

» Find an unimportant pseudo variable Z as the benchmark.

» Augment the model:
y=0.Z+XB+e
» Criteria:
» Orthogonal with y (true value of (3, is 0).

» Orthogonal with X;s (keep the data structure).
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Benchmark: Intercept!

> Zie = (1/Vn,..., 1)

n

» Orthogonal with y and all the Xis.

» Does NOT depend on the specific observations.
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Variable Selection

» Regression model: Y = (3,1 Zin: + X3 + €.

» Assign hierarchical priors and obtain posterior
distributions of 3;,; and f;s.

» Measure the importance of X; by
di = P(|5i] > |Bint| | y, X).

» If X; is orthogonal with y and other variables, then
di = 0.5.

» The X; will be selected as an important variable, if
d; > ¢, where ¢ > 0.5.
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Some Thoughts on Tuning ¢

1. Choose the ¢ such that the false discovery rate is
controlled.

2. Find the lim,_ o, d; for the X; that is unimportant but
weakly correlated with the important variables. Use it as
a guideline to choose c.
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[[lustration

Consider the following simulation setting (Tibshirani, 1996):
» y=XB+¢ =(3,15,0,0,2,0,00)".
» X =(X1,...,X,), X; ~ N(0,1), cor(X;, X;) = 0.5
» 02 =0.

» n=20.
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Posterior Distribution of 3,
» Zi: is a good benchmark for unimportant variables.
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Changes on Posterior Distributions of ;s

» For each [3;, the estimated posterior densities are almost
unaffected by adding Z,:.
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Estimated d|

> cAJ’,-: proportion of ((;, Bint) satisfying |5;| > |Bint|-

> Bi7pcl posterior median of 3; by Park and Casella's
Bayesian Lasso method.

» All unimportant variables have cAl,- < 0.61.

» Posterior medians do NOT yield sparsity.

Bi 3 1.5 0 0 2 0 0 0

d; 0.96 0.64 056 054 0.78 0.61 0.57 0.52
B,-,pc 11.84 292 164 150 567 232 192 161
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Variable Selection Result

» Empirically, ¢ = 0.9 yields good sparsity.

» When ¢ = 0.6, the result is almost the same as Lasso.

Table: Frequencies that each variable is selected.

0; 3 15 0 0 2 0 0 o0
c=09 94 43 1 1 43 0 1 O
c=07 100 87 19 26 93 9 14 14
c=06 100 98 47 51 99 52 40 44

Lasso 100 96 47 51 99 48 43 46
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Posteriors of ;s after Adding Zj,;

Lemma
Consider regression model

y = X[+ € with € ~ N(0,0zln)

and priors
Bi | (62,X%) ~ \/(20)e Moil/e

fori=1,...,p. Let m; and m, be the joint posteriors of [3;s
conditional on o and \* before and after adding Zin;,
respectively. Then we have,

T = To.
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Motivation of Group Selection Method

» Assayed genes or proteins are naturally grouped by
biological roles or biological pathways.

» It is desired to first select important pathways (group
selection), and then select important genes (within group
selection).

» Correlated important variables in the same group should
all be selected.

» Lasso tends to pick only a few of them.
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Extra Notation

» g: Number of groups

» k: index of groups; j: index of variables inside groups.
For example, X, ; is the jth variable in group k.

» pi: number of variables in group k. Assume there is no
overlap, that is, p = > %_, p«.
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Current Lasso Type Methods for Group Selection

» Frequentist approach

» Designed for group selection only: Yuan & Lin (2006)

» Designed for both group selection and within group
selection: Ma & Huang (2007); Huang at el. (2009);
Wang at el. (2009).

» Bayesian approach. Raman et al.(2009).
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Hierarchical Priors with Group Structure

» Model: y = 5intZint —+ Zi:l Zfil ﬂk,ijJ' + € with
e ~ N(0,21,).

> Bij~ N(O,'y,%02/pk).

» Variables in the same group are shrunk simultaneously.

> fy,% measures the total variations of pj variables:

Br,1s -+ Br,py-

> 7% ~ Exp (%)

» Treat i ; equally across groups. E(f8k ;) and V(fk ) do
not depend on k or j.
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Group Selection

» Definition of important group: groups have at least one
important variable.

» Selection of important groups: the kth group is selected,
if maxj{P(wal > |ﬁint‘)} > C.
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Within Group Selection: More Benchmarks

» Limitation of variable selection by Sin::
unimportant variables in the important groups are less
likely to be removed.
» Solution: find a benchmark Z 4, for group with p, > 1.
» The regression model becomes

m Pk
Yy = BintLint + Z <ﬁk,benZk,ben + Z ﬁk,ij,j> +
k=1 j=1

g
Z B X1 + €,
k=m+1
where m is the number of groups with size greater than 1.
» How to make Z ., orthogonal with other variables and
benchmarks?
» Data augmentation!
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An Example: Construction of Two More
Benchmarks

» Data: 7 observations, two groups, {X11, X2} and
{Xo1, X5}

» Zin is orthogonal to y and X js.

O
]

~No o0k oo NNRRToO

y X1 Xip Xo1 Xo2  Zint
1/V7
1/V7
1/V7
Data 1/V7
1/V7
1/V7
1/V7
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Data Augmentation

Obs. y Xi1 Xip Xo1 Xop
1

2

3

4 Data

5

6

7

8 0 0 0 0 0
9 0 0 0 0 0

> 31:1/\/%; b1:7
»azzl/\/ﬁ; b, =8

Zl,ben
ai
ai
ai
ai
ai
ai
ai

—aib
0

Z2,ben
a
az
az
a
a
a
a
a

—an b2

Zint
1/v/9
1/v/9
1/v9
1/v/9
1/v/9
1/v/9
1/v/9
1/v/9
1/v/9

> Zi ben, Z2,pen and Zj,; are pairwise orthogonal and also

orthogonal with response and predictors.
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Geometry Interpretation of Data Augmentation

» Adding one zero observation brings the original data to
n + 1 dimensional space.




Steps of Constructing Benchmarks

1. Add m zero observations to the original data, where m is
the number of groups with p, > 1.

2. Let Zk pen = {ak, - - -, ak, —akbk,0,...,0}, where
——— ———

n+k—1 m—k
ax=[(n+k—1)(n+ k)] ¥?and by = n+k —1.

3. Let Zipe = {(m+n)"Y2, ... (m+n)~Y2}

-
m-+n
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Group Selection and Within Group Selection

» Regression model:

m Pk
Yy = BueZm+ Y <5k,benZk,ben +) ﬁk,ijJ) +
k=1 j=1

g
Z Br1 X1 + €.

k=m+1

» Assign hierarchical priors with group structure and obtain
posterior distributions of the coefficients.

» Group selection: the kth group is selected, if
max;{ P(|Bk| > |Bine|)} > c.

» Within group selection: suppose group k is selected, then
Xij is selected if P(|Bkj| > |Bk.pen]) > c.
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[[lustration

» Consider that p = 20, g = 6, and

f = [15-08,0,0,0,120,0,08,0,
1 G2
1.2,0,0,0,0,0,0,0, 0 , 0.8]".
—_—— N
G3 G4 G5 GO

>y = XB+ € Xij~ N(0,1), cov(X i, Xk ;) = 0.5/ for
k =1,2; cov(Xkj, Xk;) =0 for k =3,4 and j # I.

» Signal to noise ratio is 3.

» n =100

» Let ¢ =0.9.
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Posteriors of Variables in An Important Group

» Important variables deviate further from the benchmark.

Variables within Important Group
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Posteriors of Variables in An Unimportant Group

» All the unimportant variables are very close to the
benchmark.

Variables within Unimportant Group

g -- Unimportant
— Benchmark




Group Selection Result

Table: The frequency each group is selected in 100 simulations.

Group 1 2 3 4 5 6

Size 6 4 5 3 1 1
Important Y Y Y N N Y
Selected 100 94 100 1 1 99
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Within Group Selection Result

» Average false discovery rate is 0.053 (0.011); average
false negative rate is 0.013 (0.003).

» Average number of selected variables is 6.13 (0.08).
(True number is 6)

Table: Number of times each variable is selected in 100
simulations.

Variable X171 X1’2 X1’3 X174 X175 X]_’ﬁ
True Coef. 15 -0.8 0 0 0 1.2
Selected 100 90 4 5 5 100

36 / 46



A Big p Small n Example

» Let p =200 and n = 100. There are 40 groups and each
group consisted of 5 variables.

> (s in group 1: (1.2,0.8,0,0,1.6)

> Basin group 2 : (1,-0.9,—1.1,~1.3,0.8)
> [33s in group 3: (0.8,0,0,0,0)

> B js in group 4 to 8 are all zero.

» The above 8 groups form a block and is replicated 5
times to yield the coefficients of 240 variables in total.

» There are 45 important variables and 255 unimportant
variables.
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Covariance Structure

» The X, js in the each block are generated from
multivariate normal with mean 0 and covariance structure:

COV(Xk’,', Xm,_/) = 1/3(05)|k7m\

» Variables in different blocks are uncorrelated.

» Signal to noise ratio is 10.
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Group Selection Result

» When ¢ = 0.7, unimportant groups are effectively
removed.

» When ¢ = 0.7, false discovery rate is 5.1% (0.8%) and
the group false negative rate is 24.0% (0.4%).

» When ¢ = 0.6, false discovery rate is 23.9% (0.9%) and
the group false negative rate is 16.1% (0.5%)).

Table: Frequencies that first 8 groups are selected based on 100

simulations.
Group 1 2 3 4 5 6 7 8
Important Y Y Y N N N N N
Selected(c=0.7) 91 39 5 2 2 4 0 1
Selected(c =0.6) 99 78 38 10 17 19 9 15
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Within Group Selection Result

» Unimportant variables in group 1 (important group) are
effectively removed when ¢ = 0.7.

» When ¢ = 0.6, average false discovery rate over all
groups is 33% (0.8%) and average false negative rate is
12% (0.2%).

» When ¢ = 0.7, average false discovery rate over all
groups is 11% (0.8%) and average false negative rate is
17% (0.2%).

Table: Frequencies that 5 variables in the first group are selected
based on 100 simulations.

(k. J) 1 2 (13 14 (15
True By 1.2 0.8 0.0 0.0 1.6
Selected(c = 0.7) 68 41 14 12 77
Selected(c = 0.6) 91 73 42 40 98
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Conclusions

» Intercept is a good benchmark for unimportant variables.

» Bayesian Lasso with pseudo variables achieve the sparsity.

» Bayesian Group Lasso with pseudo variables achieve both
good group selection and within group selection results.
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Future Work

» Optimize the threshold.

» More numerical comparisons with other variable selection
methods.

» Real data analysis.
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Other Work

» Shao, J. & Tang, Q., Random Group Variance
Estimators for Survey Data with Random Hot Deck
Imputation. (Submitted)

» Tang, Q. & Qian, P.Z.G., Enhancing the Sample Average
Approximation method with U designs. (In revision)
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Thank you!
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