Shrinkage Tuning Parameter Selection with a Diverging Number of Parameters

H. Wang, B. Li, and C. Leng

Presenter: Xu He

April 9, 2010

Unpenalized estimators

- AIC
 - Loss efficient
 - Selection inconsistent
- BIC
 - Consistent
 - Computationally expensive for an exhautive search

Penalized estimators

- LASSO (least absolute shrinkage and selection operator)
- SCAD (smoothly clipped absolute deviation)
- Consistent if tuning parameters is appropriate, fixed or diverging predictor dimension

Tuning parameters

- GCV
 - Loss efficient
 - Selection inconsistent, at least for SCAD
- BIC
 - Consistent for SCAD under fixed predictor dimension
 - Consistent for adaptive LASSO under fixed predictor dimension
- Slightly modified BIC
 - Serving as a unpenalized estimator itself, consistent
 - Consistent for LASSO and SCAD, for fixed and diverging predictor dimension

Notations

- *Y*: response by *n* iid observations
- X: d-dimentional predictor; standardized
- $S = \{j_1, \dots, j_c\}$: a candidate model
- |S|: size of the model S
- *S_F*: Full model
- S_T : True model
- $d_0 = |S_T|$
- $\hat{\sigma}_S^2 = SSE_S/n$

Modified BIC criterion

 $BIC_S = \log(\hat{\sigma}_S^2) + |S| \times \frac{\log(n)}{n} \times C_n$

- $C_n > 0, C_n \to \infty$
- If $C_n = 1$, this is the traditional BIC
- Traditional BIC is consistent for fixed predictor dimension
- It is hard to prove that traditional BIC is consistent for diverging predictor dimension
- In this paper proved that Modified BIC is consistent for diverging predictor dimension

BIC consistently not overfitting

• Suppose S is an arbitrary overfitted model, i.e., $S \supset S_t$, $|S| > |S_t|$.

 $BIC_S - BIC_{S_T} = \log(\frac{\hat{\sigma}_S^2}{\hat{\sigma}_S^2}) + (|S| - |S_t|) \times \frac{\log(n)}{n} \times C_n$

$$\log(\frac{\hat{\sigma}_{S}^{2}}{\hat{\sigma}_{S_{T}}^{2}}) = O_{p}(2\log\frac{n - |S|}{n - d_{0}}) = O_{p}(n^{-1})$$

$$(|S|-|S_t|) \times \frac{\log(n)}{n} \times C_n > C_n \frac{\log(n)}{n}$$

$$P(BIC_S > BIC_{S_T}) \rightarrow 1$$

$$P(\min_{S\supset S_T}BIC_S>BIC_{S_T}) \to 1$$

•

•

•

•

H. Wang, B. Li, and C. Leng (Presenter: X

Technical Conditions

•

$$(C1)\max_{1\leq j\leq d}EX_{ij}^4<\infty$$

- (C2) There exists a $\kappa > 0$ such that $\tau_{\min}(\Sigma) \geq \kappa$ for every d > 0
 - Σ is the covariance matrix of X_i
 - $\tau_{\min}(A)$ is the minimal eigenvalues of an arbitrary positive definite matrix A

(C3)
$$\limsup d/n^q < 1$$

for some q < 1

$$(C4)C_nd\log n/n \to 0$$

and

$$(C_n d \log n/n) \times \lim \inf_{n \to \infty} \{ \min_{j \in S_t} |\beta_{0,j}| \}^{-2} \to 0$$

Theorem (1)

Assume conditions (C1)-(C4), $C_n \to \infty$, ϵ normally distributed, then

$$P(\min_{S \not\supseteq S_t} BIC_S > BIC_{S_F}) \to 1$$

 $C_n \to \infty$ but the rate can be arbitrarily slow. For example, $C_n = \log \log d$

Theorem (2)

Assume conditions (C1)-(C4), $C_n \to \infty$, ϵ normally distributed, then

$$P(\min_{S \supset S_t} BIC_S > BIC_{S_T}) \to 1$$

Modified BIC criterion is concsistent

Define $\tilde{\beta}$ be the unpenalized full model estimator. By condition C1, C2 and C3, we know that

$$E||\tilde{\beta} - \beta_0||^2 = trace(cov(\tilde{\beta})) = \sigma^2 trace((X^T X)^{-1})$$

$$\leq dn^{-1} \sigma^2 \tau_{\min}^{-1}(n^{-1} X^T X) = O_p(d/n)$$

This implies that $||\tilde{\beta} - \beta_0||^2 = O_p(d/n)$.

Next, for an arbitrary model S, define $\hat{\beta}^{(S)} = \arg\min_{\{\beta: \beta_j = 0, \forall j \notin S\}} ||Y - X\beta||^2$. We then have

$$\min_{S \not\supseteq S_{\mathcal{T}}} ||\hat{\beta}^{(S)} - \tilde{\beta}||^2 \ge \min_{S \not\supseteq S_{\mathcal{T}}} ||\hat{\beta}^{(S)} - \beta_0||^2 - ||\tilde{\beta} - \beta_0||^2 \ge \min_{j \in S_{\mathcal{T}}} \beta_{0,j}^2 - O_p(d/n)$$

By C4, we know $\min_{j \in S_T} \beta_{0,j}^2 - O_p(d/n)$ is positive with probability tending to one. Next,

$$\min_{S \not\supseteq S_T} (BIC_S - BIC_{S_F}) \ge \min_{S \not\supseteq S_T} \log(\hat{\sigma}_S^2 / \hat{\sigma}_{S_F}^2) - C_n d \log n / n$$

Note that the right hand side of the above equation can be written as

$$\min_{S \ngeq S_T} \log \left(1 + \frac{(\hat{\beta}^{(S)} - \tilde{\beta})^T (n^{-1} X^T X) (\hat{\beta}^{(S)} - \tilde{\beta})}{\hat{\sigma}_{S_F}^2} \right) - C_n d \log n / n$$

$$\geq \min_{S \ngeq S_T} \log \left(1 + \frac{\hat{\tau}_{\min} ||\hat{\beta}^{(S)} - \tilde{\beta}||^2}{\hat{\sigma}_{S_F}^2} \right) - C_n d \log n / n$$

where $\hat{\tau}_{\min} \doteq \tau_{\min}(n^{-1}X^TX)$.

One can varify that $\log(1+x) \ge \min\{0.5x, \log 2\}$ for any x > 0. Consequently, it is further bounded by

$$\geq \min_{S \ngeq S_T} \min \left(\log 2, \frac{\hat{\tau}_{\min} || \hat{\beta}^{(S)} - \tilde{\beta} ||^2}{\hat{\sigma}_{S_F}^2} \right) - C_n d \log n / n$$

By C4, we have $\log 2 - C_n d \log n/n \ge 0$ with probability tending to one. Therefore, we only need to show that

$$\min_{S \not\supseteq S_T} \left(\frac{\hat{\tau}_{\min} || \hat{\beta}^{(S)} - \tilde{\beta} ||^2}{\hat{\sigma}_{S_F}^2} \right) - C_n d \log n / n$$

is positive.

As ϵ is Normally distributed, $\hat{\sigma}_{S_F}^2 \to_p \sigma^2$. Also, $\hat{\tau}_{\min} \to \tau_{\min} = \tau_{\min}(\Sigma)$ with probability tending to one.

Therefore, it is further bounded by

$$\geq \frac{\tau_{\min}}{\sigma^2} (\min_{j \in S_T} \beta_{0,j}^2 - O_p(d/n))(1 + o_p(1)) - C_n d \log n/n$$

$$= C_n d \log n / n \times \frac{\tau_{\min}}{\sigma^2} (C_n d \log n / n \times \min_{j \in S_T}) (1 + o_p(1)) - C_n d \log n / n$$

which is guaranteed to be positive asymptotically under C4.

Therefore, with probability tending to one,

$$\min_{S \ngeq S_T} \log \left(1 + \frac{\hat{\tau}_{\min} ||\hat{\beta}^{(S)} - \tilde{\beta}||^2}{\hat{\sigma}_{S_F}^2} \right) - C_n d \log n / n$$

is positive. Therefore asymptotically

$$\min_{S \not\supseteq S_T} \left(BIC_S - BIC_{S_F} \right) > 0.$$

Shrinkage estimators:

$$Q_{\lambda}(\beta) = n^{-1}||Y - X\beta||^2 + \sum_{j=1}^{d} p_{\lambda,j}(|\beta_j|)$$

- ullet $\dot{p}_{\lambda,j}()$ is first order derivatiove of $p_{\lambda,j}()$
- ullet resulting estimator by \hat{eta}_{λ}

 $BIC_{\lambda} = \log(\hat{\sigma}_{\lambda}^2) + |S_{\lambda}| \frac{\log n}{n} C_n$

• $\hat{\sigma}_{\lambda}^2 = SSE_{\lambda}/n$

- S_{λ} is the model identified by \hat{eta}_{λ}
- $SSE_{S_{\lambda}}$ is the residual sum squares with the unpenalized estimator based on S_{λ}
- Use the optimal tuning parameter $\hat{\lambda}=\arg\min_{\lambda}BIC_{\lambda}$, which gives the model $S_{\hat{\lambda}}$

- Assume $\hat{\beta}_{\lambda} = (\hat{\beta}_{\lambda,a}, \hat{\beta}_{\lambda,b})$ where $\hat{\beta}_{\lambda,a}$ for nonzero coefficients and $\hat{\beta}_{\lambda,b}$ for zero coefficients
- There exist a tuning parameter $\lambda_n \to 0$ such that with probability tending to one $\hat{\beta}_{\lambda,b} = 0$ and $\hat{\beta}_{\lambda,a}$ efficient
- ullet Asymptotically we must have $\hat{eta}_{\lambda_n,a}$ being the minimizer of

$$Q_{\lambda}^{*}(\beta_{S_{T}}) = n^{-1}||Y - X_{S_{T}}\beta_{S_{T}}||^{2} + \sum_{j=1}^{d_{0}} p_{\lambda_{n},j}(|\beta_{j}|)$$

With probability tending to one, we must have

$$\hat{\beta}_{\lambda_{n},a} = \{ n^{-1} X_{S_{T}}^{T} X_{S_{T}} \}^{-1} \{ n^{-1} X_{S_{T}}^{T} Y + 1/2 \operatorname{sgn}(\hat{\beta}_{\lambda_{n},a}) \dot{p}_{\lambda}(|\hat{\beta}_{\lambda_{n},a}|) \}$$

$$= \hat{\beta}_{S_{T}} + 1/2 \{ n^{-1} X_{S_{T}}^{T} X_{S_{T}} \}^{-1} \operatorname{sgn}(\hat{\beta}_{\lambda_{n},a}) \dot{p}_{\lambda}(|\hat{\beta}_{\lambda_{n},a}|)$$

- $\hat{\beta}_{S_T} = \{ n^{-1} X_{S_T}^T X_{S_T} \}^{-1} \{ n^{-1} X_{S_T}^T Y \}$
- $\bullet \ \dot{p}_{\lambda}(|\hat{\beta}_{\lambda_n,a}|) = \{\dot{p}_{\lambda}(|\hat{\beta}_{\lambda_n,j}|) \mid j=1,\ldots,d_0\}$
- $\operatorname{sgn}(\hat{\beta}_{\lambda_n,a})$ is a diagonal matrix with the *j*th diagonal component given by $\operatorname{sgn}(\hat{\beta}_{\lambda_n,j})$.

- We need to show that BIC_{λ_n} and $BIC_{S_{\lambda_n}}$ are sufficiently similar
- It suffices to show that

$$SSE_{\lambda_n} = SSE_{S_{\lambda_n}} + o_p(\log_n)$$

It suffices to show that

$$||\dot{p}_{\lambda}(\hat{\beta}_{\lambda_n,a})||^2 = o_p(\log n/n)$$

which is reasonable

Theorem (3)

Assume conditions (C1)-(C4), $C_n \to \infty$, ϵ normally distributed, $||\dot{p}_{\lambda}(\hat{\beta}_{\lambda_n,a})||^2 = o_p(\log n/n)$ then

$$P(S_{\hat{i}} = S_T) \rightarrow 1$$

Define
$$\Omega_- = \{\lambda > 0 : S_\lambda \not\supseteq S_T\}$$
, $\Omega_0 = \{\lambda > 0 : S_\lambda = S_T\}$, and $\Omega_+ = \{\lambda > 0 : S_\lambda \supset S_T\}$.

Case 1, with underfitted model, i.e., $\lambda \in \Omega_{-}$.

Firstly, we have $BIC_{\lambda_n} = BIC_{S_{\lambda_n}} + o_p(\log n/n)$. Then with proability tending to 1, we have

$$\inf_{\lambda \in \Omega_{-}} BIC_{\lambda} - BIC_{\lambda_{n}} \ge \inf_{\lambda \in \Omega_{-}} BIC_{S_{\lambda}} - BIC_{S_{\lambda_{n}}} + o_{p}(\log n/n)$$

$$\ge \min_{S \not\supseteq S_{T}} BIC_{S_{\lambda}} - BIC_{S_{\lambda_{n}}} + o_{p}(\log n/n)$$

By Theorem 1 and Theorem 2,

$$P(\inf_{\lambda \in \Omega_{-}} BIC_{\lambda} - BIC_{\lambda_{n}}) > 0) \rightarrow 1$$

Case 2, with voerfitted model, i.e., $\lambda \in \Omega_+$.

Similarly,

$$\inf_{\lambda \in \Omega_+} BIC_{\lambda} - BIC_{\lambda_n} \ge \min_{S \supset S_T} BIC_{S_{\lambda}} - BIC_{S_{\lambda_n}} + o_p(\log n/n)$$

We can find a positive number η such that $\min_{S \supset S_T} BIC_{S_\lambda} - BIC_{S_{\lambda_n}} > \eta \log n/n$ with probability tending to 1.

Similarly,

$$P(\inf_{\lambda \in \Omega_+} BIC_{\lambda} - BIC_{\lambda_n}) > 0) \to 1$$

Numerical studies

- Example 1: $d = [4n^{1/4}] 5$, $d_0 = 5$
- Example 2: $d = [7n^{1/4}], d_0 = [d/3]$
- Median of the relative model error (MRME)
- Average model size (MS)
- Percentage of the correctly identified true models (CM)