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Unpenalized estimators

o AIC

o Loss efficient

o Selection inconsistent
@ BIC

o Consistent

o Computationally expensive for an exhautive search
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Penalized estimators

@ LASSO (least absolute shrinkage and selection operator)
@ SCAD (smoothly clipped absolute deviation)

o Consistent if tuning parameters is appropriate, fixed or diverging
predictor dimension
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Tuning parameters

e GCV

o Loss efficient

o Selection inconsistent, at least for SCAD
e BIC

o Consistent for SCAD under fixed predictor dimension

o Consistent for adaptive LASSO under fixed predictor dimension
@ Slightly modified BIC

@ Serving as a unpenalized estimator itself, consistent

@ Consistent for LASSO and SCAD, for fixed and diverging predictor
dimension
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@ Y response by n iid observations

@ X: d-dimentional predictor; standardized
© S={ji,...,jc}: a candidate model

@ |S]: size of the model S

@ Sg: Full model

@ S7: True model
do = |S7|
6% = SSEs/n
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Modified BIC criterion

BICs = log(6%) +|S| x @ x Cp

C,>0,C,— x
o If C, =1, this is the traditional BIC

(]

Traditional BIC is consistent for fixed predictor dimension

It is hard to prove that traditional BIC is consistent for diverging
predictor dimension

(]

In this paper proved that Modified BIC is consistent for diverging
predictor dimension
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BIC consistently not overfitting

@ Suppose S is an arbitrary overfitted model, i.e., S D S, |S| > |S¢|.

°
/\2 |
BICs — BICs, = log(~) + (|5| — Isi)) x &%)
O'ST n
°
22
95y n— |S| _ -1
Iog((%T) = Op(2log p—, ) = Op(n1)
° o) ogtn)
ogln og(n
(IS = 15) x 5% x €y > G2
°
P(BICS > BICST) — 1
°

P(Srgipr BICs > BICs,) — 1
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Technical Conditions

)

(C1) max EX; < 00
1<j<d

@ (C2) There exists a k > 0 such that Tmin(X) > & for every d > 0

@ Y is the covariance matrix of X;

@ Tmin(A) is the minimal eigenvalues of an arbitrary positive definite
matrix A

(C3)limsupd/n? <1

for some g < 1

(C4)Cpdlogn/n— 0
and
(Cadlogn/n) x lim inf {min|Bo,|} 2 — 0
n— oo jESt
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BIC with unpenalized estimators

Assume conditions (C1)-(C4), C, — oo, € normally distributed, then

P(min BICs > BICs,) — 1
S St

C, — oo but the rate can be arbitrarily slow. For example,
C, = loglog d

Assume conditions (C1)-(C4), C, — oo, € normally distributed, then

P(min BI Bl 1
(Snglgt Cs > BICs,) —

Modified BIC criterion is concsistent
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Proof of Theorem 1

Define 3 be the unpenalized full model estimator. By condition C1, C2
and C3, we know that

E||3 — Bo|[? = trace(cov(B)) = o?trace((X T X)1)
< dnto?r L(nTIXTX) = O,(d/n)
This implies that ||3 — Go||> = O,(d/n).

I}Iext, for an arbitrary model S, define
39) = arg mingg.g.—0vjgsy [|Y — XB||?. We then have

A B2 > min 1AS) _ Bl —11F — 8al2 > min G2,
g 1) = BIP = min 113 = 6ol — 115 = ol > min 8~ Op(d/)
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Proof of Theorem 1

By C4, we know minjcs, BSJ — Op(d/n) is positive with probability
tending to one. Next,

min (BICs — BICs.) > min log(62/6% ) — C,d|
sst( s SF)_SQST g(65/65.) — Cpdlogn/n

Note that the right hand side of the above equation can be written
as

AS) _ AT (n—1xTX\(AS) _ 7
min log [ 1+ (3 B) (n A2X X3 9 - Cndlogn/n
577_557‘ USF
~ 114308 _ 3112
> min log [ 1+ TmmH/BAz L. Cndlogn/n
577_557‘ USF

where Fmin = Tmin(n71X T X).
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Proof of Theorem 1

One can varify that log(1 + x) > min{0.5x, log 2} for any x > 0.
Consequently, it is further bounded by

%minHB(s) - BH2
A2

o5,

> min min <|0g2,
SPSt

> — Cydlogn/n

By C4, we have log2 — C,dlog n/n > 0 with probability tending to one.
Therefore, we only need to show that

<7A'min‘|3(5) - BHz

=2
USF

min
Spst

) — Cydlogn/n

is positive.
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Proof of Theorem 1

As ¢ is Normally distributed, c“r%F —p 02. Also, Fmin — Tmin = Tmin(Z)
with probability tending to one.

Therefore, it is further bounded by

> " (min 58— Op(d/m))(1 + 05(1)) ~ Cadlog n/n

= Cpdlogn/n x TL;"(C,,dlog n/n x _misn)(l + 0p(1)) — Cpdlogn/n
g JEST
which is guaranteed to be positive asymptotically under C4.

Therefore, with probability tending to one,

A 3(S) _ 312
<1+ '7_m|nH/8A2 /BH ) o Cndlogn/n

0s

min log
SPSt .

is positive. Therefore asymptotically

in (BICs — BICs.) > 0.
Srglpr( s Sr)
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BIC with penalized estimators

@ Shrinkage estimators:

d
Q\B) = n7HIY = XBIP+ > paj(18])

Jj=1

@ py () is first order derivatiove of py j()

@ resulting estimator by B)\
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BIC with penalized estimators

BICy = log(62) + |Sy| 'Og"

O')\ = SSE)\/n
Sy is the model identified by B

SSEs, is the residual sum squares with the unpenalized estimator
based on Sy

Use the optimal tuning parameter A= arg miny BIC,, which gives the
model S5
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BIC with penalized estimators

@ Assume 3y = (02, Br,b) Where (3 , for nonzero coefficients and (3
for zero coefficients

@ There exist a tuning parameter A\, — 0 such that with probability
tending to one 3y , = 0 and 3, ; efficient

@ Asymptotically we must have B)\ma being the minimizer of

do
Qi (Bsy) = n 7MY = Xs.Bs, 17+ D pani(15i1)

j=t
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BIC with penalized estimators

@ With probability tending to one, we must have
B)\n,a = {n_lxg;—XST}_l{n_lxsTTY + 1/2Sgn(3)\n,a)p>\(WAAn,aD}
= fBsy +1/2{n7 X Xs,} tsgn(B,.2)ba(1Br,a])
o fs, = {n1xd X5, }7H{n1XI v}

o pA(I8r,,al) = {oa(IBn,jl) 15 =1, , do}
° sgn(ﬁ)\ma) is a diagonal matrix with the jth diagonal component given
by sgn(ﬁ)\n,j).
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BIC with penalized estimators

@ We need to show that BIC,, and BICs, = are sufficiently similar

@ [t suffices to show that

SSE,, = SSEs, + op(log,,)

@ It suffices to show that

||bA(BAn,a)||2 = op(logn/n)

which is reasonable

Assume conditions (C1)-(C4), C, — oo, € normally distributed,
152 (Bx,.2)l|* = 0p(log n/n) then

P(S;=571)—1

H. Wang, B. Li, and C. Leng (Presenter: Xi Stat992 April 9, 2010



Proof of Theorem 3

Define Q- ={A>0:5, 257}, Qo={\>0:5, =57}, and
Q+:{)\>025)\DST}.

Case 1, with underfitted model, i.e., A € Q_.

Firstly, we have BIC), = BICs, + o,(logn/n). Then with proability
tending to 1, we have

: B > B
Alens{, BICy — BICy, > ,\Ier}]zc, BICs, — BICs, + o,(logn/n)

> min BICs, — BICs, + o,(logn/n
_5257_ N 5>\n P( g /)

By Theorem 1 and Theorem 2,

P( inf BIC, — Bl 1
(,inf BIC\ = BICy,) > 0) —
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Proof of Theorem 3

Case 2, with voerfitted model, i.e., A € Q.

Similarly,

inf BIC\ — BIC), > m|n BICs, — BICs, + op(logn/n)
AeQy SDOSt n

We can find a positive number 7 such that
mins5s, BICs, — BICs, > nlogn/n with probability tending to 1.

Similarly,
P( inf BIC, — BIC 0)—1
()\I€nQ+ A )\n) ~ )
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Numerical studies

Example 1: d = [4n'/4] =5, dy = 5
Example 2: d = [7n'/*], dy = [d/3]
Median of the relative model error (MRME)

(]

(]

(]

Average model size (MS)

(]

Percentage of the correctly identified true models (CM)
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