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LASSO estimator in generalized linear models

Linear predictor

Let Y ∈ Y ⊂ R be a real-valued (response) variable and X be a
co-variable with values in some space X . Let

F =

{
fθ(·) =

m∑
k=1

θkψk(·), θ ∈ Θ

}

be a (subset of a) linear space of functions on X . Further let Θ be
a convex subset of Rm, possibly Θ = Rm. The functions {ψk}m

k=1

form a given system of real-valued base functions on X .
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Lasso estimator in generalized linear models
Let γf : X ×Y → R be some loss function, and let {(Xi ,Yi )}n

i=1 be
i.i.d. copies of (X ,Y ). Consider the estimator with lasso penalty

θ̂n = argminθ∈Θ

{
1

n

n∑
u=1

γfθ(Xi ,Yi ) + λn Î (θ)

}
,

where

Î (θ) :=
m∑

k=1

σ̂k |θk |

denotes the weighted l1 norm of the vector θ ∈ Rm, with random
weights

σ̂k :=

(
1

n

n∑
i=1

ψ2
k(Xi )

)1/2
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Goal of this paper

The best linear predictor

Let P be the distribution of (X ,Y ). The target function f̄ is
defined as

f̄ := argminf ∈FPγf
,

where F ⊇ F (and assuming for simplicity that there is a unique
minimum). It will be shown that if the target f̄ can be well
approximated by a sparse function fθ∗n , the estimator θ̂n will have
prediction error roughly as if it knew this sparseness.

The excess risk of f is

E(f ) := Pγf
− Pγf̄

A probability inequality will be derived for the excess risk E(fθ̂n
).
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Assumptions

Assumption L

The loss function γf is of the form γf (x , y) = γ(f (x), y) + b(f ),
where b(f ) is a constant which is convex in f , and γ(·, y) is convex
for all y ∈ Y. Moreover, it satisfies the Lipschitz property

|γ(fθ(x), y)− γ(fθ̄(x), y)| ≤ |fθ(x)− fθ̄(x)|
∀(x , y) ∈ X × Y, ∀θ, θ̄ ∈ Θ.

Assumption A

It holds that

Km := max
1≤k≤m

||ψk ||∞
σk

<∞
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Assumptions

Assumption B

There exists an η > 0 and strictly convex increasing G , such that
for all θ ∈ Θ with ||fθ − f̄ ||∞ ≤ η, one has

E(fθ) ≥ G (||fθ − f̄ ||).

Assumption C

There exists a function D(·) on the subsets of the index set
{1, . . . ,m}, such that for all K ⊂ {1, . . . ,m}, and for all θ ∈ Θ
and θ̃ ∈ Θ, we have∑

k∈K
σk |θk − θ̃k | ≤

√
D(K)||fθ − fθ̃||.

Dθ := D({k : |θk | 6= 0}).
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Further quantities

The convex conjugate of the function G given in Assumption B is
denoted H.

Smoothing parameter

Let

ān = 4an, an :=

(√
2 log(2m)

n
+

log(2m)

n
Km

)

Further let for t > 0,

λn,0 := λn,0(t) := an

(
1 + t

√
2(1 + 2anKm) +

2t2anKm

3

)
λ̄n,0 := λ̄n,0(t) := ān

(
1 + t

√
2(1 + 2ānKm) +

2t2ānKm

3

)
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Penalty Function
Let

I (θ) :=
m∑

k=1

σk |θk |.

and Î (θ) =
∑m

k=1 σ̂k |θk | its empirical l1 norm. Moreover, for any θ
and θ̃ in Θ, let

I1(θ|θ̃) :=
∑

k:θ̃k 6=0

σk |θk |, I2(θ|θ̃) := I (θ)− I1(θ|θ̃).

Likewise for the empirical versions:

Î1(θ|θ̃) :=
∑

k:θ̃k 6=0

σ̂k |θk |, Î2(θ|θ̃) := Î (θ)− Î1(θ|θ̃).
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Nonrandom Normalization Weights in the Penalty

Quantities

1 λn := 2λ̄n,0,

2 Vθ := H(4λn
√

Dθ) (estimation error),

3 θ∗n := arg minθ∈Θ{E(fθ) + Vθ} (oracle),

4 2ε∗n := 3E(fθ∗n ) + 2Vθ∗n (oracle rate),

5 ζ∗n := ε∗n/λ̄n,0 (oracle rate for l1),

6 θ(ε∗n) := arg minθ∈Θ,I (θ−θ∗n )≤6ζ∗n
{E(fθ)− 4λnI1(θ − θ∗n|θ∗n)}.

Conditions

1 It holds that ||fθ∗n − f̄ ||∞ ≤ η, where η is given in Assumption
B.

2 It holds that ||fθ(ε∗n ) − f̄ ||∞ ≤ η, where η is given in
Assumption B.
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Nonrandom Normalization Weights in the Penalty

THEOREM 2.1

Suppose Assumptions L, A, B and C, and Conditions I and II hold.
Let λn, θ

∗
n, ε

∗
n and ζ∗n be given. Assume σk is known for all k and

let θ̂n be the lasso estimator. Then we have with probability at
least

1− 7 exp[−nā2
nt

2],

that

E(fθ̂n
) ≤ 2ε∗n,

and moreover

2I (θ̂n − θ∗n) ≤ 7ζ∗n .
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Random Normalization Weights in the Penalty

Quantities

1 λn := 3λ̄n,0,

2 Vθ := H(5λn
√

Dθ),

3 θ∗n := arg minθ∈Θ{E(fθ) + Vθ},
4 2ε∗n := 3E(fθ∗n ) + 2Vθ∗n ,

5 ζ∗n := ε∗n/λ̄n,0,

6 θ(ε∗n) := arg minθ∈Θ,I (θ−θ∗n )≤6ζ∗n
{E(fθ)− 5λnI1(θ − θ∗n|θ∗n)}.

Conditions
1 Conditions I and II in nonrandom normalization case.

2

√
log(2m)

n Km ≤ 0.13.
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Nonrandom Normalization Weights in the Penalty

THEOREM 2.2

Suppose Assumptions L, A, B and C, and Conditions I, II and III
hold. Let λn, θ

∗
n, ε

∗
n and ζ∗n be given, and the weights σ̂k should be

estimated. Take λ̄n,0 > 4
√

log(2m)
n × (1.6) Then with probability at

least 1− α, we have that

E(fθ̂n
) ≤ 2ε∗n,

and moreover

2I (θ̂n − θ∗n) ≤ 7ζ∗n .

Here α = exp[−na2
ns

2] + 7 exp[−nā2
nt

2], with s > 0 being defined
by 5

9 = Kmλn,0(s), and t > 0 being defined by λ̄n,0 = λ̄n,0(t).
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Loss functions

Example of loss functions satisfying Assumptions L, B

Logistic Regression

γf (x , y) = [−f (x)y + log(1 + exp (f (x))]/2

Density estimation

Hinge loss for support vector machine

γf (x , y) = (1− yf (x))+.

However, the usual quadratic loss is not Lipschitz on the whole real
line.
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Theorem 3.1
Suppose Assumptions A and C hold. Let λn, θ

∗
n, ε

∗
n and ζ∗n be

given, with H(v) = v2/2, v > 0, but now with λ̄n,0 replaced by

λ̃n,0 :=

√
14

9

√
2 log(2m)

n
+ 2t2ā2

n + λ̄n,0.

Assume moreover that ||fθ∗n − f̄ ||∞ ≤ η ≤ 1/2, that

6ζ∗nKm + 2η ≤ 1, and that
√

log(2m)
n Km ≤ 0.33. Let σk be known

for all k and let θ̂n be the lasso estimator. Then with probability at
least 1− α, that

E(fθ̂n
) ≤ 2ε∗n

2I (θ̂n − θ∗n) ≤ 7ζ∗n

Here α = exp[−na2
ns

2] + 7 exp[−nā2
nt

2], with s > 0 a soluntion of
9
5 = Kmλn,0(s).
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Concentration theorem
Let Z1, . . . ,Zn be independent random variables with values in
space Z and let Γ be a class of real-valued functions on Z,
satisfying for some positive constants ηn and τn

||γn||∞ ≤ ηn ∀γ ∈ Γ

1

n

n∑
i=1

var(γ(Zi )) ≤ τ2
n ∀γ ∈ Γ.

Define

Z := sup
γ∈Γ

|1
n

n∑
i=1

(γ(Zi )− Eγ(Zi ))|.

Then for z > 0,

P

(
Z ≥ EZ + z

√
2(τ2

n + 2ηnEZ) +
2z2ηn

3

)
≤ exp[−nz2].
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Symmetrization theorem

Rademacher sequence

i.i.d. random variables ε1, . . . , εn, taking values ±1 each with
probability 1/2.

Let Z1, . . . ,Zn be independent random variables with values in Z,
and let ε1, . . . , εn be a Rademacher sequence independent of
Z1, . . . ,Zn. Let Γ be a class of real-valued functions on Z. Then

E

(
sup
γ∈Γ

|
n∑

i=1

{γ(Zi )− Eγ(Zi )}|

)
≤ 2E

(
sup
γ∈Γ

|
n∑

i=1

εiγ(Zi )|

)
.
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Contraction theorem

Let z1, . . . , zn be nonrandom elements of some space Z and let F
be a class of real-valued functions on Z. Consider Lipschitz
function γi : R → R, that is,

|γi (s)− γi (s̃)| ≤ |s − s̃| ∀ s, s̃ ∈ R

Let ε1, . . . , εn be a Rademacher sequence. Then for any function
f ∗ : Z → R, we have

E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi{γi (f (zi ))− γi (f
∗(zi ))}

∣∣∣∣∣
)

≤ 2E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi (f (zi )− f ∗(zi ))

∣∣∣∣∣
)
.
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Lemma A.1

Let Z1, . . . ,Zn be independent Z-valued random variables, and
γ1, . . . , γn, be real-valued functions on Z, satisfying for
k = 1, . . . ,m,

Eγk(Zi ) = 0, ∀ i ||γk ||∞ ≤ ηn,
1

n

n∑
i=1

Eγ2
k(Zi ) ≤ τ2

n .

Then

E

(
max

1≤k≤m

∣∣∣∣∣1n
n∑

i=1

γk(Zi )

∣∣∣∣∣
)
≤
√

2τ2
n log(2m)

n
+
ηn log(2m)

n
.
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Lemma A.2

Let ε1, . . . , εn be Rademacher sequence, independent of the
training set (X1,Y1), . . . , (Xn,Yn). Moreover, fix some θ∗ ∈ Θ and
let for M > 0, FM := {fθ : θ ∈ Θ, I (θ − θ∗) ≤ M} and

Z(M) := sup
f ∈FM

|(Pn − P)(γfθ − γfθ∗ )|,

We have

EZ(M) ≤ 4ME

(
max

1≤k≤m

∣∣∣∣∣1n
n∑

i=1

εiψk(Xi )/σk

∣∣∣∣∣
)
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Proof of Lemma A.2

EZ(M) ≤ 2E

(
sup

f ∈FM

∣∣∣∣∣1n
n∑

i=1

εi{γ(fθ(Xi ),Yi )− γ(fθ∗(Xi ),Yi )}

∣∣∣∣∣
)

E(X ,Y )

∑
f ∈FM

∣∣∣∣∣1n
n∑

i=1

εi{γ(fθ(Xi ),Yi )− γ(fθ∗(Xi ),Yi )}

∣∣∣∣∣


≤ 2E(X ,Y )

(
sup

f ∈FM

∣∣∣∣∣1n
n∑

i=1

εi (fθ(Xi )− fθ∗(Xi ))

∣∣∣∣∣
)

∣∣∣∣∣1n
n∑

i=1

εi (fθ(Xi )− fθ∗(Xi ))

∣∣∣∣∣ ≤
m∑

k=1

σk |θk − θ∗| max
1≤k≤m

∣∣∣∣∣1n
n∑

i=1

εiψk(Xi )/σk

∣∣∣∣∣
= I (θ − θ∗) max

1≤k≤m

∣∣∣∣∣1n
n∑

i=1

εiψk(Xi )/σk

∣∣∣∣∣ .
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Lemma A.3

The distribution of X is denoted by Q, and the empirical
distribution of covariates {Xi}n

i=1 is written as Qn.

Statement

We have

E

(
max

1≤k≤m

∣∣∣∣(Qn − Q)(ψk)

σk

∣∣∣∣) ≤ an,

E

(
max

1≤k≤m

|1/n
∑n

i=1 εiψ(Xi )|
σk

)
≤ an.

Proof: This follows from ||ψk ||∞/σk ≤ Km and
var(ψk(X ))/σ2

k ≤ 1. So apply Lemma A.1 with ηn = Km and
τ2
n = 1.
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Corollary A.1

For all M > 0 and all θ ∈ Θ with I (θ − θ∗) ≤ M, it holds that

||γfθ − γfθ∗ ||∞ ≤ MKm

P(γfθ − γfθ∗ )
2 ≤ M2.

Therefore, since by Lemma A.2 and Lemma A.3, for all M > 0,

EZ(M)

M
≤ ān, ān = 4an,

we have, in view of Bousquet’s Concentration theorem, for all
M > 0 and all t > 0,

P

(
Z(M) ≥ ānM

(
1 + t

√
2(1 + 2ānKm) +

2t2ānKm

3

))
≤ exp[−nā2

nt
2].
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A general theorem of nonrandom weights

Take b > 0, d > 1, and db := d
(

b+d
(d−1)b ∨ 1

)
.

Quantities:

1 λn := (1 + b)λ̄n,0,

2 Vθ := 2δH(2λn
√

Dθ
δ ), where 0 < δ < 1,

3 θ∗n := arg minθ∈Θ{E(fθ) + Vθ} ,

4 ε∗n := (1 + δ)E(fθ∗n ) + Vθ∗n ,

5 ζ∗n := ε∗n
λ̄n,0

,

6 θ(ε∗n) := arg minθ∈Θ,I (θ−θ∗n )≤dbζ∗n /b{δE(fθ)− 2λnI1(θ− θ∗n|θ∗n)}.
Conditions same as in Theorem 2.1. Theorem 2.1 is the special
case with b = 1, δ = 1/2 and d = 2.



Introduction Assumptions and Main Results Proof of Theorem

Lemma A.4

Statement

Suppose conditions are met. For all θ ∈ Θ with
I (θ − θ∗n) ≤ dbζ

∗
n/b, it holds that

2λnI1(θ − θ∗n|θ∗n) ≤ δE(fθ) + ε∗n − E(fθ∗n ).

Proof:

2λnI1(θ − θ∗n) = 2λnI1(θ − θ∗n)− δE(fθ) + δE(fθ)

≤ 2λnI1(θ(ε
∗
n)− θ∗n)− δE(fθ(ε∗)) + δE (fθ).

By Assumption C, and Condition II,

2λnI1(θ(ε
∗
n)− θ∗n) ≤ 2λn

√
Dθ∗n ||fθ(ε∗n ) − fθ∗n ||.
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Proof of Lemma A.4 (cont’d)

By the triangle inequality,

2λn

√
Dθ∗n ||fθ(ε∗n ) − fθ∗n || ≤ 2λn

√
Dθ∗n ||fθ(ε∗n ) − f̄ ||+ 2λn

√
Dθ∗n ||fθ(ε∗n ) − f̄ ||.

It follows from conditions I and II, combined with Assumption B,
that

2λn

√
Dθ∗n ||fθ(ε∗n ) − fθ∗n || ≤ δE(fθ(ε∗n )) + δE(fθ∗n ) + Vθ∗n .

Hence, when I (θ − θ∗n) ≤ dbζ
∗
n/b,

2λnI1(θ − θ∗n) ≤ δE(fθ) + δE(fθ∗n ) + Vθ∗n

= δE(fθ) + ε∗n − E(fθ∗n ).



Introduction Assumptions and Main Results Proof of Theorem

Lemma A.5
Suppose Conditions I and II are met. Consider any (random) θ̃ ∈ Θ
with Rn(fθ̃) + λnI (θ̃) ≤ Rn(fθ∗n ) + λnI (θ

∗
n). Let 1 < d0 ≤ db. Then

P

(
I (θ̃ − θ∗n) ≤ dn

ζ∗n
b

)
≤ P

(
I (θ̃ − θ∗n) ≤

(
d0 + b

1 + b

)
ζ∗n
b

)
+ exp[−nā2

nt
2].

Proof: Let Ẽ := E(fθ̃) and E∗ := E(fθ∗n ). Since

Rn(fθ̃) + λnI (θ̃) ≤ Rn(fθ∗n ) + λnI (θ
∗
n), and known

I (θ̃ − θ∗n) ≤ d0ζ
∗
n/b, that

Ẽ + λnI (θ̃) ≤ Z(d0ζ
∗
n/b) + E∗ + λnI (θ

∗
n).

With probability at least 1− exp[−nā2
nt

2], the random variable
Z(d0ζ

∗
n/b) is bounded by λ̄n,0d0ζ

∗
n/b. But we then have

Ẽ + λnI (θ̃) ≤ λ̄n,0d0ζ
∗
n/b + E∗ + λnI (θ

∗
n).
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Proof of Lemma A.5 (cont’d)
Then on event {I (θ̃− θ∗n) ≤ d0ζ

∗
n/b} ∪ {Z(d0ζ

∗
n/b) ≤ λ̄n,0d0ζ

∗
n/b},

invoking λn = (1 + b)λ̄n,0, I (θ̃) = I1(θ̃) + I2(θ̃) and I (θ∗n) = I1(θ
∗
n),

that

Ẽ + (1 + b)λ̄n,0I2(θ̃) ≤ λ̄n,0
d0ζ

∗
n

b
+ E∗ + (1 + b)λ̄n,0I1(θ̃ − θ∗n).

But I2(θ̃) = I2(θ̃ − θ∗n). So if add another (1 + b)λ̄n,0I1(θ̃ − θ∗n) to
both sides of the last inequality, we obtain

Ẽ + (1 + b)λ̄n,0I (θ̃ − θ∗n) ≤ λ̄n,0
d0ζ

∗
n

b
+ 2(1 + b)λ̄n,0I1(θ̃ − θ∗n) + E∗

≤ λ̄n,0
d0ζ

∗
n

b
+ δẼ + ε∗n

= (d0 + b)λ̄n,0
ζ∗n
b

+ δẼ ,

The result follows as ε∗n = λ̄n,0ζ
∗
n and 0 < δ < 1.
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Corollary A.2 and Lemma A.6
Corollary A.2: Suppose conditions I and II are met. Let d0 ≤ db.
For any (random) θ̃ ∈ Θ with Rn(fθ̃) + λnI (θ̃) ≤ Rn(fθ∗n ) + λnI (θ

∗
n),

P

(
I (θ̃ − θ∗n) ≤ dn

ζ∗n
b

)
≤ P

(
I (θ − θ) ≤ (1 + (d0 + 1)(1 + b)−N)

ζ∗n
b

)
+ exp[−nā2

nt
2].

Lemma A.6: Suppose conditions I and II are met, define

θ̃s = s θ̂n + (1− s)θ∗n

s =
dζ∗n

dζ∗n + bI (θ̂n − θ∗n
.

Then for any integer N, with probability 1−N exp[−nā2
nt

2] we have

I (θ̃s − θ∗n) ≤
(
1 + (d − 1)(1 + b)−N

) ζ∗n
b
.
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Lemma A.7

Statement

Suppose conditions I and II are met. Let N1 ∈ N and
N2 ∈ N ∪ {0}. Define δ1 = (1 + b)−N1 (N1 ≥ 1), and
δ2 = (1 + b)−N2 . With probability at least
1− (N1 + N2) exp[−nā2

nt
2], we have

I (θ̂n − θ∗n) ≤ d(δ1, δ2)
ζ∗n
b
,

with

d(δ1, δ2) = 1 +

(
1 + (d2 − 1)δ1
(d − 1)(1− δ1)

)
δ2.
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Theorem A.4
Write

4(b, δ, δ1, δ2) := d(δ1, δ2)
1− δ2

δb
∨ 1.

Suppose condition I and II are met. Let δ1 and δ2 as in Lemma
A.7. We have the probability at least

1−
(

log1+b
(1 + b)2 4 (b, δ, δ1, δ2)

δ1δ2

)
exp[−nā2

nt
2],

that

E(fθ̂n
) ≤ ε∗n

1− δ
,

I (θ̂n − θ∗n) ≤ d(δ1, δ2)
ζ∗n
b
.



Introduction Assumptions and Main Results Proof of Theorem

Proof of theorem A.4
Define Ê := E(f̂θ̂n

) and E∗ := E(fθ∗n ). Set c := δb
1−δ2 , we consider

the cases (a) c < d(δ1, δ2) and (b) c ≥ d(δ1, δ2).
(a): Suppose that first c < d(δ1, δ2). Let J be an integer
satisfying (1 + b)J−1c ≤ d(δ1, δ2) and (1 + b)Jc > d(δ1, δ2).
Consider two cases:
(a1) If cζ∗n/b < I (θ̂n − θ∗n) ≤ d(δ1, δ2)ζ

∗
n/b, then

(1 + b)j−1cζ∗n/b < I (θ̂n − θ∗n) ≤ (1 + b)jcζ∗n/b

for some j ∈ {1, . . . , J}. Expect on set with probability at most
exp[−nā2

nt
2], we thus have

Ê + (1 + b)λ̄n,0I (θ̂n) ≤ (1 + b)λ̄n,0I (θ̂n − θ∗n) + E∗ + (1 + b)λ̄n,0I (θ
∗
n).

So then by similar arguments as in the proof of Lemma A.5,

Ê ≤ 2(1 + b)λ̄n,0I1(θ̂n − θ∗n) + E∗.

Since d(δ1, δ2) ≤ db, we obtain Ê ≤ ε∗n + δÊ so then Ê ≤ ε∗n
1−δ .
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Proof of theorem A.4 (cont’d)

(a2) If I (θ̂n − θ∗n) ≤ cζ∗n/b, except on a set with probability at
most exp[−nā2

nt
2], that

Ê + (1 + b)λ̄n,0I (θ̂n) ≤
(

δ

1− δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)I (θ∗n), (1)

Which gives

Ê ≤
(

δ

1− δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)λ̄n,0I1(θ̂n − θ∗n)

≤
(

δ

1− δ2

)
λ̄n,0ζ

∗
n + E∗ +

δ

2
E∗ +

Vθ∗n

2
+
δ

2
Ê

≤
(

δ

1− δ2
+

1

2

)
ε∗n +

E∗

2
+
δ

2
Ê .



Introduction Assumptions and Main Results Proof of Theorem

Proof of theorem A.4 (cont’d)
This yields

Ê ≤ 2

2− δ

(
δ

1− δ2
+

1

2
+

1

2(1 + δ)

)
ε∗n =

1

1− δ
ε∗n.

Furthermore, by lemma A.7, with probability at least
1− (N1 + N2) exp[−nā2

nt
2], that

I (θ̂n − θ∗n) ≤
d(δ1, δ2)

b
ζ∗n

The result follows from

J + 1 ≤ log1+b

(
(1 + b)2d(δ1, δ2)

c

)
N1 = log1+b

(
1

δ1

)
N2 = log1+b

(
1

δ2

)
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(b) Finally, consider the case c ≥ d(δ1, δ2).Then on the set where
I (θ̂n − θ∗n) ≤ d(δ1, δ2)ζ

∗
n/b, again have that except on a subset

with probability at most exp[−nā2
nt

2],

Ê + (1 + b)λ̄n,0I (θ̂n) ≤ d(δ1, δ2)
ζ∗n
b

+ E∗ + (1 + b)I (θ∗n)

≤
(

δ

1− δ2

)
λ̄n,0ζ

∗
n + E∗ + (1 + b)I (θ∗n),

as

d(δ1, δ2) ≤ c =
δb

1− δ2
.

We arrive at the same inequality in (1) and may proceed as there.
Note finally that also in this case

(N1 + N2 + 1) ≤ log1+b
(1 + b)2

δ1δ2

≤ log1+b
(1 + b)2 4 (b, δ, δ1, δ2)

δ1δ2
.
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