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Motivation

I Variable selection is fundamental to high-dimensional statistical modeling

I Many approaches in use are stepwise selection procedures, which can be
computationally expensive and ignore stochastic errors in the variable
selection process

I The theoretical properties for stepwise deletion and subset selection are
somewhat hard to understand

I The most severe drawback of the best subset variable selection is its lack
of stability as analyzed by Breiman (1996)
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Overview of Proposed Method

I Penalized likelihood approaches are proposed, which simultaneously select
variables and estimate coefficients

I Penalty functions are symmetric, nonconcave on (0,∞), and have
singularities at the origin to produce sparse solutions

I Furthermore the penalty functions are bounded by a constant to reduce
bias and satisfy certain conditions to yield continuous solutions

I A new algorithm is proposed for optimizing penalized likelihood functions,
which is widely applicable

I Rates of convergence of the proposed penalized likelihood estimators are
established

I With proper choice of regularization parameters, the proposed estimators
perform as well as the oracle procedure (as if the correct submodel were
known)
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Penalized Least Squares and Subset Selection

Linear regression model: y = Xβ + ε, where y is n× 1 and X is n× d . Assume
for now that the columns of X are orthonormal. Denote z = XT y . A form of
the penalized least squares is
1
2
||y − Xβ||2 + λ

∑d
j=1 pj(|βj |) =

1
2
||y − XXT y ||2 + 1

2

∑d
j=1(zj − βj)2 + λ

∑d
j=1 pj(|βj |).

I pj(.) are not necessarily the same for all j ; but we will assume they are the
same for simplicity.

I From now on, denote λp(|.|) by pλ(|.|).

I The minimization problem is equivalent to minimize componentwise,
which leads us to consider the penalized least squares problem
1
2
(z − θ)2 + pλ(|θ|). (2.3)
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Penalized Least Squares and Subset Selection Cont’d

By taking the hard thresholding penalty function
pλ(|θ|) = λ2 − (|θ| − λ)2I (|θ| < λ), the hard thresholding rule is obtained as
θ̂ = zI (|z | > λ).
This coincides with the best subset selection and stepwise deletion and addition
for orthonormal designs!
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What Makes a Good Penalty Function?

I Unbiasedness: The resulting estimator is nearly unbiased when the true
unknown parameter is large to avoid unnecessary modeling bias

I Sparsity: The resulting estimator is a thresholding rule, which
automatically sets small estimated coefficients to zero to reduce model
complexity

I Continuity: The resulting estimator is continuous in data z to avoid
instability in model prediction
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Sufficient Conditions for Good Penalty Functions

I p′λ(|θ|) = 0 for large |θ| ⇒ Unbiasedness
Intuition: The first order derivative of (2.3) w.r.t. θ is
sgn(θ)(|θ|+ p′λ(|θ|))− z . When p′λ(|θ|) = 0 for large |θ|, the resulting
estimator is z when |z | is sufficiently large, which is approximately
unbiased.

I The minimum of the function |θ|+ p′λ(|θ|) is positive ⇒ Sparsity

I The minimum of the function |θ|+ p′λ(|θ|) is attained at 0 ⇒ Continuity
Intuition: See nextpage
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Sufficient Conditions for Good Penalty Functions Cont’d

I when |z | < minθ 6=0{|θ|+ p′λ(|θ|)}, the derivative of (2.3) is positive for all
positive θ and negative for all negative θ ⇒ θ̂ = 0; when
|z | > minθ 6=0{|θ|+ p′λ(|θ|)}, two crossings may exist as shown, the larger
one is a penalized least squares estimator.

I further, this implies that a sufficient and necessary condition for continuity
is to require the minimum to be attained at 0
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Penalty Function of Interest

I hard thresholding penalty: pλ(|θ|) = λ2 − (|θ| − λ)2I (|θ| < λ).

I soft thresholding penalty (L1 penalty, LASSO): pλ(|θ|) = λ|θ|.
I L2 penalty (ridge regression): pλ(|θ|) = λ|θ|2.

I SCAD penalty (Smoothly Clipped Absolute Deviation penalty):

p′λ(θ) = λ{I (θ ≤ λ) + (aλ−θ)+
(a−1)λ

I (θ > λ)} for some a > 2 and θ > 0.

Note: As for the three properties that make a penalty function “good”, only
SCAD possesses all (and therefore is advocated by the authors); whereas all the
other penalty functions are unable to satisfy three sufficient conditions
simultaneously.
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Penalty Function of Interest Cont’d
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Penalty Function of Interest Cont’d

When the design matrix X is orthonormal, closed form solutions are obtained
as follows.

I hard thresholding rule: θ̂ = zI (|z | > λ)

I LASSO (L1 penalty): θ̂ = sgn(z)(|z | − λ)+

I SCAD:

θ̂ =
sgn(z)(|z | − λ)+ when |z | ≤ 2λ
{(a− 1)z − sgn(z)aλ}/(a− 2) when 2λ < |z | ≤ aλ
z when |z | > aλ
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Penalty Function of Interest Cont’d
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More on SCAD

SCAD penalty has two unknown parameters λ and a. They could be chosen by
searching grids using cross-validation (CV) or generalized cross-validation
(GCV), but that is computation intensive. The authors applied Bayesian risk
analysis to help choose a, in that Bayesian risks seem not very sensitive to the
values of a. It is found that a = 3.7 works similarly to that chosen by GCV.
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Performance Comparison

Refer to the last graph on previous slide. SCAD performs favorably compared
with the other two thresholding rules. It is actually expected to perform the
best, given that it retains all the good mathematical properties of the other two
penalty functions.
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Penalized Likelihood Formulation

From now on, assume that X is standardized so that each column has mean 0
and variance 1, and is no longer orthonormal.
A form of penalized least squares is
1
2
(y − Xβ)T (y − Xβ) + n

∑d
j=1 pλ(|βj |). (3.1)

A form of penalized robust least squares is∑n
i=1 ψ(|yi − xiβ|) + n

∑d
j=1 pλ(|βj |). (3.2)

A form of penalized likelihood for generalized linear models is
−
∑n

i=1 li (g(xT
i β), yi ) + n

∑d
j=1 pλ(|βj |) . (3.3)
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Sampling Properties and Oracle Properties

Let β0 = (β10, . . . , βd0)T = (βT
10, β

T
20)T . Assume that β20 = 0. Let I (β0) be the

Fisher information matrix and I1(β10, 0) be the Fisher information knowing
β20 = 0.
General setting: Let Vi = (Xi ,Yi ), i = 1, . . . , n. Let L(β) be the log-likelihood
function of observations V1, . . . ,Vn and let Q(β) be the penalized likelihood
function L(β)− n

∑d
j=1 pλ(|βj |).
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Sampling Properties and Oracle Properties Cont’d

Regularity Conditions
(A) The observations Vi are iid with density f (V , β). f (V , β) has a common
support and the model is identifiable. Furthermore, the following holds:
Eβ( ∂logf (V ,β)

∂βj
) = 0 for j = 1, . . . , d and

Ijk(β) = Eβ( ∂
∂βj

logf (V , β) ∂
∂βk

logf (V , β)) = Eβ(− ∂2

∂βj∂βk
logf (V , β)).

(B) The Fisher information matrix I (β) = E{( ∂
∂β

logf (V , β))( ∂
∂β

logf (V , β))T}
is finite and positive definite at β = β0.
(C) There exists an open subset ω of Ω that contains the true parameter point
β0 such that for almost all V the density f (V , β) admits all third derivatives for
all β ∈ ω. Furthermore, there exists functions Mjkl such that

| ∂3

∂βi∂βk∂βl
logf (V , β)| ≤ Mjkl(V ) for all β ∈ ω, where mjkl = Eβ(Mjkl(V )) <∞

for j , k, l .
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Sampling Properties and Oracle Properties Cont’d

Theorem 1. Let V1, . . . ,Vn be iid, each with a density f (V , β) that satisfies
conditions (A)-(C). If max{|p′′λn

(|βj0|)| : βj0 6= 0} → 0, then there exists a local

maximizer β̂ of Q(β) such that ||β̂ − β0|| = Op(n−1/2 + an), where
an = max{|p′λn

(|βj0|)| : βj0 6= 0}.
Note:
For hard thresholding and SCAD penalty functions, λn → 0 implies an = 0,
therefore the penalized likelihood estimator is root-n consistent.
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Sampling Properties and Oracle Properties Cont’d

Lemma 1. Let V1, . . . ,Vn be iid, each with a density f (V , β) that satisfies
conditions (A)-(C). Assume that lim infn→∞lim infθ→0+p

′
λn

(θ)/λn > 0 (3.5). If
λn → 0 and

√
nλn →∞ ad n→∞, then with probability tending to 1, for any

given β1 satisfying ||β1 − β10|| = Op(n−1/2) and any constant C ,
Q{(βT

1 , 0)T} = max||β2||≤Cn−1/2Q{(βT
1 , β

T
2 )T}

Aside: Denote Σ = diag{p′′λn
(β10), . . . , p′′λn

(βs0)} and
b = (p′λn

(β10)sgn(β10), . . . , p′λn
(βs0)sgn(βs0))T , where s is the number of

components of β10.
Theorem 2 (Oracle Property). Let V1, . . . ,Vn be iid, each with a density
f (V , β) that satisfies conditions (A)-(C). Assume that the penalty function
pλn (|θ|) satisfies condition (3.5). If λn → 0 and

√
nλn →∞, then with

probability tending to 1, the root-n consistent local maximizers

β̂ = (β̂1
T
, β̂2

T
)T in Theorem 1 must satisfy:

(a) Sparsity: β̂2 = 0
(b) Asymptotic normality:√
n(I1(β10) + Σ){β̂1 − β10 + (I1(β10) + Σ)−1b} → N{0, I1(β10)}
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Sampling Properties and Oracle Properties Cont’d

Lemma 1. Let V1, . . . ,Vn be iid, each with a density f (V , β) that satisfies
conditions (A)-(C). Assume that lim infn→∞lim infθ→0+p

′
λn

(θ)/λn > 0 (3.5). If
λn → 0 and

√
nλn →∞ ad n→∞, then with probability tending to 1, for any

given β1 satisfying ||β1 − β10|| = Op(n−1/2) and any constant C ,
Q{(βT

1 , 0)T} = max||β2||≤Cn−1/2Q{(βT
1 , β

T
2 )T}

Aside: Denote Σ = diag{p′′λn
(β10), . . . , p′′λn

(βs0)} and
b = (p′λn

(β10)sgn(β10), . . . , p′λn
(βs0)sgn(βs0))T , where s is the number of

components of β10.
Theorem 2 (Oracle Property). Let V1, . . . ,Vn be iid, each with a density
f (V , β) that satisfies conditions (A)-(C). Assume that the penalty function
pλn (|θ|) satisfies condition (3.5). If λn → 0 and

√
nλn →∞, then with

probability tending to 1, the root-n consistent local maximizers

β̂ = (β̂1
T
, β̂2

T
)T in Theorem 1 must satisfy:

(a) Sparsity: β̂2 = 0
(b) Asymptotic normality:√
n(I1(β10) + Σ){β̂1 − β10 + (I1(β10) + Σ)−1b} → N{0, I1(β10)}
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Sampling Properties and Oracle Properties Cont’d

Lemma 1. Let V1, . . . ,Vn be iid, each with a density f (V , β) that satisfies
conditions (A)-(C). Assume that lim infn→∞lim infθ→0+p

′
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(θ)/λn > 0 (3.5). If
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pλn (|θ|) satisfies condition (3.5). If λn → 0 and
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Sampling Properties and Oracle Properties Cont’d

Remarks:
(1)For the hard and SCAD thresholding penalty functions, if λn → 0, an = 0.
Hence, by Thm 2, when

√
nλn →∞, their corresponding penalized likelihood

estimators possess the oracle property and perform as well as the maximum
likelihood estimates for estimating β1 knowing β2 = 0.
(2)However, for LASSO (L1) penalty, an = λn. Hence, the root-n consistency
requires λn = Op(n−1/2). On the other hand, the oracle property requires√
nλn →∞. These two conditions cannot be satisfied simultaneously. The

authors conjecture that the oracle property does not hold for LASSO.
(3)For Lq penalty with q < 1, the oracle property continues to hold with
suitable choice of λn.
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A New Unified Algorithm

I Tibshirani (1996) proposed an algorithm for solving constrained least
squares problem of LASSO

I Fu (1998) provided a “shooting algorithm” for LASSO

I LASSO2 submitted by Berwin Turlach at Statlib

I Here the authors proposed a unified algorithm, which optimizes problems
(3.1) (3.2) (3.3) via local quadratic approximations.
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The Algorithm

I Re-written (3.1) (3.2) (3.3) as l(β) + n
∑d

j=1 pλ(|βj |) (3.6), where l(β) is
a general loss function.

I Given an initial value β0 that is close to the minimizer of (3.6). If βj0 is
very close to 0, then set β̂j = 0; otherwise they can be locally
approximated by a quadratic function as
[pλ(|βj |)]′ = p′λ(|βj |)sgn(βj) ≈ {p′λ(|βj0|)/|βj0|}βj . In other words,
pλ(|βj |) ≈ pλ(βj0) + 1

2
{p′λ(|βj0|)/|βj0|}(β2

j − β2
j0), for βj ≈ βj0.

I ψ(|y − xTβ|) in robust penalized least squares case can be approximated
by {ψ(|y − xTβ0|)/(y − xTβ0)2}(y − xTβ)2.

I assume the log-likelihood function is smooth, so can be locally
approximated by a quadratic function.

I Newton-Raphson algorithm applies.

I The updating equation is
β1 = β0 − (∇2l(β0) + nΣλ(β0))−1(∇l(β0) + nUλ(β0)), where
Σλ(β0) = diag{p′λ(|β10|)/|β10|, . . . , p′λ(|βd0|)/|βd0|}, Uλ(β0) = Σλ(β0).
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Standard Error Formula

Obtained directly from the algorithm.
Sandwich formula:

ˆcov(β̂1) = (∇2l(β̂1) + nΣλ(β̂1))−1 ˆcov{∇l(β̂1)}(∇2l(β̂1) + nΣλ(β̂1))−1 for
nonvanishing component of β.
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Prediction and Model Error

I Two regression situations: X random and X controlled

I For ease of presentation, consider only X-random case

I PE(µ̂) = E(Y − µ̂x)2 = E(Y − E(Y |x))2 + E(Y |x − µ̂(x))2

I The second component is the model error
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Simulation Results
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Simulation Results Cont’d

Note:
SD = median absolute deviation of β̂1/0.6745
SDm=median of σ̂(β̂1)
SDmad=median absolute deviation of σ̂(β̂1)
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Simulation Results Cont’d
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Real Data Analysis
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Summary

I A family of penalty functions was introduced, of which SCAD performs
favorably

I Rates of convergence of the proposed penalized likelihood estimators were
established

I With proper choice of regularization parameters, the estimators perform as
well as the oracle procedure

I The unified algorithm was demonstrated effective and standard errors were
estimated with good accuracy

I The proposed approach can be applied to various statistical contexts
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Proofs
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Proofs
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The End!
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