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Introduction

Motivation

» Variable selection is fundamental to high-dimensional statistical modeling

» Many approaches in use are stepwise selection procedures, which can be
computationally expensive and ignore stochastic errors in the variable
selection process

> The theoretical properties for stepwise deletion and subset selection are
somewhat hard to understand

» The most severe drawback of the best subset variable selection is its lack
of stability as analyzed by Breiman (1996)
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Introduction

Overview of Proposed Method

» Penalized likelihood approaches are proposed, which simultaneously select
variables and estimate coefficients

» Penalty functions are symmetric, nonconcave on (0, 0), and have
singularities at the origin to produce sparse solutions

» Furthermore the penalty functions are bounded by a constant to reduce
bias and satisfy certain conditions to yield continuous solutions

» A new algorithm is proposed for optimizing penalized likelihood functions,
which is widely applicable

» Rates of convergence of the proposed penalized likelihood estimators are
established

» With proper choice of regularization parameters, the proposed estimators
perform as well as the oracle procedure (as if the correct submodel were
known)

4/36



Penalty Function Properties

Penalized Least Squares and Subset Selection

Linear regression model: y = X3+ ¢, where y is n x 1 and X is n x d. Assume
for now that the columns of X are orthonormal. Denote z = X7 y. A form of
the penalized least squares is

Hy = XBIP+ AL, pi(18]) =
Hy = XXTyIP+ 3350, (z = ) + A pi(1B))-

> pj(.) are not necessarily the same for all j; but we will assume they are the
same for simplicity.

» From now on, denote Ap(|.|) by pa(].])-

The minimization problem is equivalent to minimize componentwise,
which leads us to consider the penalized least squares problem

1 2

5(z=0)" +pa(l0])- (2.3)
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Penalty Function Properties

Penalized Least Squares and Subset Selection Cont'd

By taking the hard thresholding penalty function

px(10]) = X2 — (18] — A)?1(|8] < \), the hard thresholding rule is obtained as
0=zl(|z| > N).

This coincides with the best subset selection and stepwise deletion and addition
for orthonormal designs!
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Penalty Function Properties

What Makes a Good Penalty Function?

» Unbiasedness: The resulting estimator is nearly unbiased when the true
unknown parameter is large to avoid unnecessary modeling bias

» Sparsity: The resulting estimator is a thresholding rule, which
automatically sets small estimated coefficients to zero to reduce model
complexity

» Continuity: The resulting estimator is continuous in data z to avoid
instability in model prediction
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Penalty Function Properties

Sufficient Conditions for Good Penalty Functions

> pi(]0]) = 0 for large |0| = Unbiasedness
Intuition: The first order derivative of (2.3) w.r.t. 8 is
sgn(0)(10] + p>(10])) — z. When p4(]6]) = O for large |6], the resulting
estimator is z when |z| is sufficiently large, which is approximately
unbiased.

» The minimum of the function |0] + p4(|0]) is positive = Sparsity

» The minimum of the function |0] + p}(]0]) is attained at 0 = Continuity
Intuition: See nextpage
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Penalty Function Properties

Sufficient Conditions for Good Penalty Functions Cont'd

0

Figure 3. A Plot of 8+ p,(8) Against 8{f = 0).

> when |z| < ming0{|0| + pA(|6])}, the derivative of (2.3) is positive for all
positive 6 and negative for all negative § = 0 = 0; when
|z| > ming{|6] + p5(|0])}, two crossings may exist as shown, the larger
one is a penalized least squares estimator.

» further, this implies that a sufficient and necessary condition for continuity
is to require the minimum to be attained at 0
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Penalty Function Properties

Penalty Function of Interest

hard thresholding penalty: px(|0]) = 3 — (8] — A)21(|6] < A).
soft thresholding penalty (L; penalty, LASSO): px(|6]) = \|6].
L, penalty (ridge regression): py(|6]) = A6

SCAD penalty (Smoothly Clipped Absolute Deviation penalty):

pA(0) = X160 < \) + (?5:16)); 1(0 > \)} for some a > 2 and 6 > 0.

v

v

v

v

Note: As for the three properties that make a penalty function “good”, only
SCAD possesses all (and therefore is advocated by the authors); whereas all the
other penalty functions are unable to satisfy three sufficient conditions
simultaneously.
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Penalty Function Properties

Penalty Function of Interest Cont'd

{c) SCAD penalty

o

)
theta

Figure 1. Three Penally Functions p,(8) and Their Quadratic Approximations. The values of A are the same as those in Figure 5(c).
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Penalty Function Properties

Penalty Function of Interest Cont'd

When the design matrix X is orthonormal, closed form solutions are obtained
as follows.

» hard thresholding rule: § = zI(|z| > \)

» LASSO (L; penalty): 6 = sgn(z)(|z] — \)+

» SCAD:
- sgn(z)(|z[ — M)+ when |z| < 2X
0= {(a—1)z —sgn(z)ar}/(a—2) when 2\ < |z| < aX
z when |z| > a\
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Penalty Function Properties

Penalty Function of Interest Cont'd

(a) Hard (b) Lasso (c) SCAD
10 107 - 10
5 5 5
! prem—— 0 0
-5 -5 -3
=10 10 10
-10 -5 0 5 0 =10 5 0 5 0 -10 5 0 5 10
z z z

Figure 2. Plot of Thresholding Functions for (a) the Hard, (b) the Soft, and (c) the SCAD Thresholding Functions With A =2 and a=3.7
for SCAD.
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Penalty Function Properties

More on SCAD

SCAD penalty has two unknown parameters A and a. They could be chosen by
searching grids using cross-validation (CV) or generalized cross-validation
(GCV), but that is computation intensive. The authors applied Bayesian risk
analysis to help choose a, in that Bayesian risks seem not very sensitive to the
values of a. It is found that a = 3.7 works similarly to that chosen by GCV.

isk functions (c) Risk functions

3) Postenor sk functions

Figure 5. Risk Functions of Proposed Procedures Under the Quadratic Loss. (a} Posterior dsk functions of the SCAD under the prior 8 ~
N(0.,a) using the universal thresholding A = /2log(d } for four different values d: heavy line, d = 20; dashed line, d = 40; medium fine, d = 60;
thin iine, d = 100. (b) Risk functions similar to those for (a): heavy line, d = 572, dashed line, d = 1,024; medium line, d = 2.048; thin line,
d =4,096. (c) Risk functions of the four different thresholding rules. The heavy, dashed, and solid lines denote minimum SCAD, hard, and soft

thresholding rules, respectively.
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Penalty Function Properties

Performance Comparison

Refer to the last graph on previous slide. SCAD performs favorably compared
with the other two thresholding rules. It is actually expected to perform the
best, given that it retains all the good mathematical properties of the other two
penalty functions.
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Oracle Properties of Penalized Likelihood Estimator

Penalized Likelihood Formulation

From now on, assume that X is standardized so that each column has mean 0
and variance 1, and is no longer orthonormal.

A form of penalized least squares is

Wy = XB)(y = XB)+ n Ly pa(18)])- (3.1)

A form of penalized robust least squares is

Sy — xiBl) +n L pa(1Bi])- (3:2)

A form of penalized likelihood for generalized linear models is

=20 (g0 ) yi) + n X2y pa(IBi]) - (3:3)
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties

Let Bo = (B0, ..., Bd0)" = (75, B20)" . Assume that B = 0. Let I(B) be the
Fisher information matrix and /1(510,0) be the Fisher information knowing

B2 = 0.
General setting: Let V; = (X;, Y;), i =1,...,n. Let L(B) be the log-likelihood

function of observations Vi,..., V, and let Q(3) be the penalized likelihood
function L(8) — n 7:1 px(18i1)-
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Regularity Conditions

(A) The observations V; are iid with density f(V, 3). f(V, ) has a common
support and the model is identifiable. Furthermore, the following holds:
Eg(w):Oforjzl ...,d and

14(3) = Ex( s logf (V. ) 5% logf (V. ) = Es( %logfw 8)):

(B). The Fisher |nformat.|on matrlx 1(B) = E{(dc;i logf (V, ,B))( 5 logf (V, BT}
is finite and positive definite at 8 = [o.

(C) There exists an open subset w of Q that contains the true parameter point
Bo such that for almost all V' the density f(V, 3) admits all third derivatives for
all 6 e w. Furthermore, there exists functions Mjy such that

logf(V, B)| < Mju(V) for all 5 € w, where mjkl = Eg(Mjy(V)) < oo

‘DB Bﬁkf’ﬁ
fOI’j, k1
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Theorem 1. Let V4,...,V, beiid, each with a density f(V, ) that satisfies
conditions (A)-(C). If max{|pX.(|8jl)| : Bjo # 0} — 0, then there exists a local
maximizer 3 of Q(f) such that ||3 — Bo|| = Op(n~ % + a,), where

an = max{|pa,(|Bjo])| : Bjo # 0}
Note:

For hard thresholding and SCAD penalty functions, A, — 0 implies a, = 0,
therefore the penalized likelihood estimator is root-n consistent.
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Lemma 1. Let V4,...,V, be iid, each with a density f(V/, 8) that satisfies
conditions (A)-(C). Assume that lim inf,—.oolim infy_o+p5,(0)/An > 0 (3.5). If
An — 0 and \/nX\, — oo ad n — oo, then with probability tending to 1, for any
given f; satisfying ||81 — Bio]| = Op(n~'/2) and any constant C,

Q{(B,0)"} = max| g, |1<cn—1/2 Q{(8!,57)"}
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Lemma 1. Let V4,...,V, be iid, each with a density f(V/, 8) that satisfies
conditions (A)-(C). Assume that lim inf,—.oolim infy_o+p5,(0)/An > 0 (3.5). If
An — 0 and \/nX\, — oo ad n — oo, then with probability tending to 1, for any
given f; satisfying ||81 — Bio]| = Op(n~'/2) and any constant C,

Q{(B,0)"} = max| g, |1<cn—1/2 Q{(8!,57)"}

Aside: Denote ¥ = diag{pX,(51w0), .-, Px,(Bs0)} and

b= (P}, (B10)sgn(B0), - - -, PA, (Bs0)sgn(Bs0)) ", where s is the number of
components of [S1p.
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Lemma 1. Let V4,...,V, be iid, each with a density f(V/, 8) that satisfies
conditions (A)-(C). Assume that lim inf,—.oolim infy_o+p5,(0)/An > 0 (3.5). If
An — 0 and \/nX\, — oo ad n — oo, then with probability tending to 1, for any
given f; satisfying ||81 — Bio]| = Op(n~'/2) and any constant C,

Q{(B,0)"} = max| g, |1<cn—1/2 Q{(8!,57)"}

Aside: Denote ¥ = diag{pX,(51w0), .-, Px,(Bs0)} and

b= (P}, (B10)sgn(B0), - - -, PA, (Bs0)sgn(Bs0)) ", where s is the number of
components of [S1p.

Theorem 2 (Oracle Property). Let Vi,..., V, be iid, each with a density
f(V,B) that satisfies conditions (A)-(C). Assume that the penalty function
px,(|0]) satisfies condition (3.5). If A\, — 0 and /n\, — oo, then with
probability tending to 1, the root-n consistent local maximizers

8= (ﬂAlT,BAzT)T in Theorem 1 must satisfy:

(a) Sparsity: > =0

(b) Asymptotic normality:

V(h(Bi0) + Z){A1 — Bro + (h(Br) + £) b} = N{0, h(Bw0)}
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Oracle Properties of Penalized Likelihood Estimator

Sampling Properties and Oracle Properties Cont’'d

Remarks:

(1)For the hard and SCAD thresholding penalty functions, if A\, — 0, a, = 0.
Hence, by Thm 2, when v/n\, — oo, their corresponding penalized likelihood
estimators possess the oracle property and perform as well as the maximum
likelihood estimates for estimating (31 knowing (3> = 0.

(2)However, for LASSO (L:) penalty, a, = An. Hence, the root-n consistency
requires A\, = Op(n’l/z). On the other hand, the oracle property requires
v/nA, — 0o, These two conditions cannot be satisfied simultaneously. The
authors conjecture that the oracle property does not hold for LASSO.

(3)For Lg penalty with g < 1, the oracle property continues to hold with
suitable choice of Aj.
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A New Unified Algorithm

A New Unified Algorithm

>

Tibshirani (1996) proposed an algorithm for solving constrained least
squares problem of LASSO

Fu (1998) provided a “shooting algorithm” for LASSO
LASSO2 submitted by Berwin Turlach at Statlib

Here the authors proposed a unified algorithm, which optimizes problems
(3.1) (3.2) (3.3) via local quadratic approximations.

v

v

v
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A New Unified Algorithm

The Algorithm

> Re-written (3.1) (3.2) (3.3) as /(B) + n ;’:1 pr(15i]) (3.6), where I(B) is
a general loss function.

> Given an initial value o that is close to the minimizer of (3.6). If Sjo is
very close to 0, then set 8; = 0; otherwise they can be locally
approximated by a quadratic function as
[PA(IBD] = PA(18;])sgn(B;) = {PA(1Bj0])/|Bjol}Bs- In other words,
P(IBi1) = pa(Bo) + 3{PA(1Bjo])/ 1B} (B} — Bb). for B = Bro.

» ¢(ly — x" B|) in robust penalized least squares case can be approximated
by {¢:(ly —x"Bol)/(y —x" Bo)*}(y — x B)*.

» assume the log-likelihood function is smooth, so can be locally
approximated by a quadratic function.

» Newton-Raphson algorithm applies.

» The updating equation is
51 = Bo — (Vzl(ﬂo) + HZ)\(Bo))il(V/(ﬂo) + nU)\(Bo)), where
X5 (Bo) = diag{p’(|Br0])/1Brol, - - -, PA(IBaol)/1Baol}, Ux(Bo) = T (So)-
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A New Unified Algorithm

Standard Error Formula

Obtained directly from the algorithm.
Sandwich formula:

cov(f1) = (V2I(B1) + nEa(Br)) " cdv{VI(B)}V2I(B1) + nZa(f1)) ! for
nonvanishing component of 5.
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Numerical Comparisons

Prediction and Model Error

» Two regression situations: X random and X controlled

v

For ease of presentation, consider only X-random case
PE(f) = E(Y — ix)? = E(Y — E(Y[x))* + E(Y|x — (x))?

The second component is the model error

v

v
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Numerical Comparisons

Simulation Results

Table 1. Simulation Results for the Linear Regression Model

Avg. No. of 0 Coefiicients

Method MRME (%) Correct Incorrect
n=40,c =3
SCAD' 7290 420 21
SCAD” 69.03 431 27
LASSO 63.19 353 07
Hard 73.82 4,09 19
Ridge 8328 4] 0
Best subset 68.26 450 35
Garrote 76.90 280 09
Oracle 33.31 5 0
n=40c =1
SCAD' 54.81 429 0
SCAD® 47.25 434 0
LASSO 63.19 a51 0
Hard 69.72 393 0
Ridge 95.21 0 0
Best subset 53.80 454 0
Garrote 56.55 335 0
Qracle 333 5 0
n=60c =1
SCAD' 47.54 437 0
SCAD” 43.79 442 0
LASSO 65.22 356 0
Hard 7.1 402 0
Ridge 97.36 0 0
Best subset 46.11 473 0
Garrate 338 0 28/36




Numerical Comparisons

Simulation Results Cont’d

Table 2. Standard Deviations of Estimators for the Linear Regression Model (n = 80)

B, )é) ﬁ-’.
Method SD 8D, {SD\as) 5D 8D, (SDpaa) sp SD,, (5D,
SCAD’ 166 461 (.021) A70 160 (.024) 148 145 (022}
SCAD? 161 461 (.021) 164 61 (.024) 151 143 (023}
LASSO 164 454 (.019) A73 A50 (.022) 153 142 (021}
Hard 169 461 (.022) A74 162 (025) 178 148 (021}
Best subset 163 455 (.020) 452 154 (026) 152 139 {020}
Oracle 155 154 (.020) 147 153 (.024) 146 137 (019}

Note:

SD = median absolute deviation of 51/0.6745
SDn=median of 6(51) A
SDag=median absolute deviation of 6(/31)
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Numerical Comparisons

Simulation Results Cont’d

Table 5. Simulation Results for the Logistic Regression

Avg. No. of 0 Coefficients

Method MAME (%) Correct Incorrect
SCAD (a=3.7) 26.48 4.98 04
LASSO 53.14 .76 0

Hard 59.06 4.27 0

Best subset 3163 4.84 o1
Oracle 25.71 5 0
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Numerical Comparisons

Real Data Analysis

Table 7. Estimated Coefficients and Standard Errors for Example 4.4

Best Subset Best Subset

Method MLE {AIg) (BIC) SCAD LASSO Hard
Intercept 551 (.75) 481 (.45) 6.12 (57) 6.08 (.29) 3.70 (25) 5.88 (41)
X, —8.83 (2.97) —B6.49 (1.75) —12.15 (1.81) —12.24 (.08) 0 (—) —11.32 {1.1)
X, 2.30 (2.00) a (—) 0 (—) 0 (—) 0 (—) 221 {1.41)
X3 —2.77 (3.43) a (—) —6.93 (.79) —7.00 (.21) 0 (—) —4.23 (64)
X, —1.74 (1.41) 30 (.11) —.29 (11) 0 {—) —.28 (09) —1.16 {1.04)
X2 —.75 (.B1) —1.04 (.54) 0(—) 0{—) —1.71 (24) L]

X2 —2.70 (2.45) —4.55 (.55) 0 {—) 0 (—) —2687 (22) —1.92 (95)
XX, 03 (.34 0= 0= 0 () 0 (=) 0{)
XX, 7.46 (2.34) 569 (1.29) 9.83 (1.63) 9.84 [.14) 36 (22) 9.06 (.96)
KXy 24 (.32) 0(—) 01— 0 {—) 0(—) 0 (—)
XXy —2.15 (1.61) 0(—) 0(—) 0{—) —0.10 (10) —2.13 (1.27)
Xz X —.12 (.16) 01— 0(—) 0{—) 0(—) 0 (—]
XX, 1.23 (1.21) 0(—) 01— 0 {—) 0(—) B2 {1.01)
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Summary

Summary

v

A family of penalty functions was introduced, of which SCAD performs
favorably

Rates of convergence of the proposed penalized likelihood estimators were
established

With proper choice of regularization parameters, the estimators perform as
well as the oracle procedure

The unified algorithm was demonstrated effective and standard errors were
estimated with good accuracy

The proposed approach can be applied to various statistical contexts
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: Proofs

Proofs

Proof of Theorem 1

Let &, = n""?+a,_. We want to show that for any given & >0,
there exists a large constant C such that

(A1)

P\ sup OBy T a,u) < Q(B:)
ul=t

This implies with probability at least 1 — & that there exisis a local
maximum in the ball {B, + e,u: [lull < C}. Hence, there exists a
local maximizer such that || — B, [ = On(a,).

Using p,,(0) =0, we have

D, (u) = Q(B,+ea,u)— ()
< L(ﬁ‘,+:rhn]fi.[,ﬂ,‘]fr:i;[m. (Bo+e.)—py, (1B}

where s is the number of components of B,,. Let L'(B8,) be the gra-
dient vector of L. By the standard argument on the Taylor expansion
of the likelihood function, we have

D,(u) € e, L'(B) u—tu"1(B)unci {1 +0.(1)}

= Ylne 7, (B, lsgnt ),

+nalpy (1B {1 +a(1)}] (A2)

Note that n (B,) = 0p(1). Thus, the first term on the right-hand
side of (A2) is on the order O.(n"?a,) = O, (na). By choosing
a sufficiently large C, the second term dominates the first term uni-
formly in [lu]l = €. Note that the third term in (A.2) is bounded by

Vna,a, ol +no? max( g5, (18,,): B # 0} lull. 33/36



Appendix: Proofs

Proofs

Proof of Lemma 1

It is sufficient to show that with probability tending to 1 as n — og,

for any B, satisfying ,ﬂl ,B‘ Opn(n™"?) and for some small g, =
Cn "2and j=s+1..
dQ(B) & fia
—6,8; <0 for0<B;<e, (A3)
>0 for —g,<pB; <0 (Ad)
To show {A.3), by Taylor’s expansion, we have
JQ(B) _ 9L(B) _
o= T3 =8 sen(
LBy} | 5~ & L(By) - GLIBT)
e TR )+
%, "m0 L gm0

X (B = Bry) (B — Big) — np,, (1B, sen(B;),

where B° lies between B and B,. Note that by the standard argu-
ments,
GL(By)

6 = 0p(n™""")

and

1#L(B,) ,Llams)
n 38,4 4B, i

0.(n"12), we have

}+aﬂ(lj.

By the assumption that B— B, =

0B _
3

nA =4, p) (1B))sen(B;) +0p(n "7 /A0 ).

Whereas liminf, . . liminf, .- A_'p) (6) > 0 and n'7?f4, =0,
the sign of the dcmauu is LOI][plClClv determined by that of 3.
Hence, (A.3) and (A.4) follow. This completes the proof.
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Proofs

Appendix: Proofs

Proof of Theorem 2

It follows by Lemma 1 that part (a) holds. Now we prove part (b).
It can be shown easily that there exists a @ in Theorem 1 that is a
root-n consistent local maximizer of Qf (%)}, which is regarded as a
function of @,, and that satisfies the likelihood equations

40(B)

28, =0 forj=1,...,s (A5)

Note that ,‘"3: is & consistent estimator,

aum‘ s s
o, ) (BB
_ LBy [ #L(By) -
s L[ oo B

~n(p}, (1Bul)sen(Bio) +{p, (1B1o)) +0n(1)}(B; ~B))-
It follows by Slutsky's theorem and the central limit theorem that
AL (B) +2) (B, — By + (1 (By,) +3)7'b) = N0 L(B,))

in distribution.
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Appendix: Proofs

The End!
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