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Introduction

Responses and covariates

Yn = (Y1,---,Yn): independent responses
Xn = (X],...,X})": an n x p, matrix whose ith row x; is the value of a
Pn- dlmenS|onaI covariate associated with y;

We are interested in the relationship between y,, and X, through

tn = E(Yn|Xn)

We may be interested in inference on uy,
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Introduction

Responses and covariates

Yn = (Y1,-.-,Yn): independent responses
Xn = (X1,...,X})": an n x p, matrix whose ith row x; is the value of a
pn-dimensional covariate associated with y;

We are interested in the relationship between y, and X, through

tn = E(Yn|Xn)

We may be interested in inference on uy,

Model/Variable selection
A class of models, indexed by a € .o, is proposed for E (yn|Xn)

| A\

If @7, contains more than one model, then we need to select a model
from o7, using the observed y,, and X,

If each a corresponds to an n x p,(a) sub-matrix of X, then model
selection is also called variable selection
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Example 1. Linear regression

@ p,=pforalln
9 pn=XnB
o ;6 = (5/1’5/2)/: Xn = (an’xnz)
@ Itis suspected that 8, = 0 (X, is unrelated to yn)
Model 1: n = Xn181
oh ={1,2}
@ Model 1 is betterif 3, =0
@ In general, <7, = all subsets of {1,...,p}
@ Model a: u, = Xn(a)s(a)
@ B(a): sub-vector of 8 with indices in o
@ Xn(a): the corresponding sub-matrix of Xp
@ The number of models in 7, is 2P
@ Approximation to a response surface
o The ith row of X (an) = (1,,t2,....t"), t € Z
o oy ={1,...,h}: a polynomial of order h
o % = {ah :h= O,l,...,pn}

© ¢ ¢
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Example 2. 1-mean vs p-mean
@n=pr,p=pnr=r
@ There are p groups, each has r identically distributed observations

@ Select one model from two models

@ 1-mean model: all groups have the same mean 4
@ p-mean model: p groups have different means s, ..., Up

o % — {a17ap}

1, 0 0 --- 0 i
1 1 U oo @ Ho —
Xn = i o0 %, --- O B=| Mz—H1
1, 0 O eee Hp — Ha

Xn(ap)=Xn  B(ap)=p
Xn(a1) = 1n B(a1) =
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Criterion for Model Selection
@ uy is estimated by pn(a) under model a

@ Minimize the squared error loss

Ln(a) —_ ||Nn —I/l\'n(a)Hz

- over a € 4,

Equivalent to minimizing the average prediction error

E [l|zn — An(a)|* | yn]

- over a €

Zn: a future independent copy of y,

@ Optimal model a:
Ln(a) = JQ'JQ Ln(a)

at may be random
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Assessment of Model Selection Procedures

@ On: a model selected based on a model selection procedure
@ The selection procedure is consistent if
lim P{a,=at} =1
n—oo
which implies
lim P{Ln(@n) = Ln(a})} =1

n—oo
bn(an) is asymptotically efficient, i.e., it is asymptotically as
efficient as in(a})
The two results are the same if Ly(a) has a unique minimum for
all large n

@ The selection procedure is asymptotically loss efficient if

Ln(@n)/Ln(ag) —, 1

which is weaker than consistency
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Model Selection Procedures

Methods for fixed p or p,/n — 0
@ Information criterion

@ AIC (Akaike, 1970), Cp (Mallows, 1973), BIC (Schwarz, 1978)
@ FPE, (Shibata, 1984)
@ GIC (Nishii, 1984, Rao and Wu, 1989, Potscher, 1989)

Cross-Validation (CV)

@ Delete-1 CV (Allen, 1974, Stone, 1974)
@ GCV (Craven and Wahba, 1979)
@ Delete-d CV (Geisser, 1975, Burman, 1986, Shao, 1993)

Bootstrap (Efron, 1983, Shao, 1996)
Methods for Time Series
o PMDL and PLS (Rissanen, 1986, Wei, 1992)

LASSO (Tibshirani, 1996)
Methods after 1997?
Thresholding

Methods for p,/n /4 0?

(]

e ©

e 6 ¢ ¢
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Asymptotic Theory for GIC

The GIC in linear models

Consider linear models
un=Xp(a@)B(a) o€
@ Xp is of full rank (pn < n)

@ en =Yn — un has iid components, V (en|Xn) = 02,
@ Under model a, 3(a) is estimated by the LSE
@ fin(a) =Hn(a)yn, Hn(a) = Xn(a)[Xn(a)'Xn(a)] " Xn(a)
@ Correct models
gy ={a € oy : un=Xn(a)B(a) is true }

Wrong models
? A ={a € .ch:a g
@ The loss is equal to

An(a) = [[un —Hn(a)pnl?/n (=0 if a € o77)
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The GIC
A model a, € <, is selected by minimizing

_ Sn(a) n AnGZpn(a)
n

- over o €

Mnaa(0)

Sn(a) = |lyn — tin(a)||? (Mmeasuring goodness-of-fit)
pn(a): dimension of o
An: non-random positive penalty
62: an estimator of 62, e.g., 62 = ||yn — fin||?/(n — pn)
@ If An = 2, this is the C, method
@ If A, = A, a constant larger than 2, this is the FPE, method
@ If A, =logn, this is almost the BIC
@ In general, A, can be any sequence with A, — «

@ If A, = 2, the GIC is asymptotically equivalent to the delete-1 CV
and GCV

@ If A, =n/(n—d), then the GIC is asymptotically equivalent to the
delete-d CV.
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Is the GIC asymptotically loss efficient or consistent?

Sn(@) _ llyn—Hn(a)yn|? _ llpn —Hn(a)pn +€n— Hn(a)en|?
n n n
— An(a)+ lenl|® _ epHn(a)en n 2eq[ln — Hn(a)]pn
: n n n

Jun Shao (UW-Madison) Stat 992, Spring 2010 Jan, 2010 10/18



Is the GIC asymptotically loss efficient or consistent?

Sn(a) lyn — Hn(a)ynl[? _ || tn — Hn(@) 20 + €0 — Hn(a)en||?

n n n
2 / /
— An(a)+ ||e:]|| . eanrEa)en n Zen[ln_:n(a)]un
[In —Hn(a)]pen = Xn(a)B(a) — Xn(a)B(a) =0
Ap(a)=0

Ln(a) = An(a)+ejHn(a)en/n = e Hn(a)en/n

Sn(or)+/\n6§pn(a) HenH2_eﬁHn(a)en_i_/\nar%pn(a)

I a) = =
nn (@) n n n n n
_ ||en||2+|_ (a)+)\n0r$pn(0’)_zeﬁ|‘|n(a)en
n : n n

A,
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When o, = ¢

@ a} = a € ¢ with the smallest p,(a)

Z AnG2pn(a)  2elHn(a)e
rn/\n(a)—H nll +Ln(a)+ 20 an])n( ) 2eq :1( )€n

@ If Ay =2 (the Cp method, AIC, delete-1 CV, or GCV), the term
205pn(a)  2epHn(a)en
n n

is of the same order as Ln(a) = e/ ,Hn(a)en/n unless pp(a) — o
for all but one model in .27

@ Under some conditions, the GIC with A, = 2 is asymptotically loss
efficient if and only if «%¢ does not contain two models with fixed
dimensions

9 If Ay — =, the dominating term in [, , () is AnGZpn(a)/n
The GIC selects a model by minimizing pn(a)

Hence, the GIC is consistent

@ The case of A, = A is similar to the case of A, =2
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When o, = o7"

enl|? e Hn(a)en  AnG2pn(a An(a
Mo (0) = | rr;H + An(a) = n nr(] ) n_, An an]’n( )‘|’OP< an ))

— Her:HZ +Ln(a)+Op (A”p+(a)> +Op (#)

Assume that

_ . A
liminf min An(a)>0 and 2nPn
n—e gegy n

—0

(The first condition impies that a wrong model is always worse than a
correct model)

Then

IIen I

M (0) = +Ln(a)+0p (Ln(a))
Minimizing 'y . (a) is asymptotlcally the same as minimizing Ln(a)

Hence, the GIC is asymptotically loss efficient
The GIC can select the best model in <7
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Conclusions (under the given conditions)

According to their asymptotic behavior, the model selection methods
can be classfied into three classes

(1) The GIC with A, =2, C,, AIC, delete-1 CV, GCV

(2) The GIC with A, — o, delete-d CV with d /n — 1, BIC, PMDL, PLS
Anpn/n—0

(3) The GIC with A, = A, delete-d CV withd /n — 1 € (0,1)
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(3) The GIC with A, = A, delete-d CV withd /n — 1 € (0,1)

| A\

Key properties

@ Methods in class (1) are useful when there is no fixed-dimension
correct model

@ Methods in class (2) are useful whene there are fixed-dimension
correct models

@ Methods in class (3) are compromises and are not recommended

4
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Example 2. 1-mean vs p-mean

G = {al’ap}

pPn groups, each with r, observations

An(ap) =37y (b —H)?/p, H=3]_ 1i/p

n = pnprh — % means that either p, — © orr, — «
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Example 2. 1-mean vs p-mean
G = {al’ap}
pPn groups, each with r, observations

An(0p) =37y (5 — 1) /P, B =31 14/P
N = pnfn — % means that either p, — o or r, — o

1. ph=pisfixedand r, — o

@ The dimensions of correct models are fixed
@ The GIC with A — « and A,/n — 0 is consistent
@ The GIC with A, = 2 is inconsistent

|

N
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@ The dimensions of correct models are fixed
@ The GIC with A — « and A,/n — 0 is consistent
@ The GIC with A, = 2 is inconsistent

2. pp — o and r, =r is fixed

@ Only one correct model has a fixed dimension
@ The GIC with A, = 2 is consistent
@ The GIC with A, — = is inconsistent, because Anpn /N = Ap/r — 0 |

|
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Example 2. 1-mean vs p-mean
G = {CXl,CXp}
pPn groups, each with r, observations

An(0p) =37y (5 — 1) /P, B =31 14/P
N = pnfn — % means that either p, — o or r, — o

1. ph=pisfixedand r, — o

@ The dimensions of correct models are fixed
@ The GIC with A — « and A,/n — 0 is consistent
@ The GIC with A, = 2 is inconsistent

2. pp — o and r, =r is fixed

@ Only one correct model has a fixed dimension
@ The GIC with A, = 2 is consistent
@ The GIC with A, — o is inconsistent, because Anpn/n = Ap/r — ©

3. pn—oandry —

@ Only one correct model has a fixed dimension
@ The GIC is consistent, provided that Ap /r, — 0
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Variable Selection by Thresholding

Assumption A

@ y, is normally distributed
® min;.z o |G| >a positive constant, 3 = (Bi,.... Bp)
@ X/ Xnisof rank p (p <n)
@ A, = the ith eigenvalue of XX, i =1,...,n
Ain =Dbi¢n, 0<bj <b <0, 0<{h -
® pp — o but (logpn)/¢n — 0
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Variable Selection by Thresholding

Assumption A

@ y, is normally distributed
® min;.z o |G| >a positive constant, 3 = (Bi,.... Bp)
@ X/ Xnisof rank p (p <n)
@ A, = the ith eigenvalue of XX, i =1,...,n
Ain =Dbi¢n, 0<bj <b <0, 0<{h -
® pp — o but (logpn)/¢n — 0

Thresholding

® B=(XXn) 1 Xyn = (Br, ... ) (the LSE)
B~N(B,0%(XpXn) 1)

@ an =|(logpn)/¢n], a €(0,1/2),an — 0

@ Variable x; is selected if and only if |ﬁi| > an
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Asymptotic properties

1. lim P(|B| < ay for alli with § = 0) = 1

2. lim P(|Bi| > ay for alli with § #0) =1
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Asymptotic properties

1. lim P(|B| < ay for alli with § = 0) = 1

2. lim P(|Bi| > ay for alli with § #0) =1

1—P(Bi| < ay for alli with B =0) = P (Uig—of|B — | > an})
Y P({IB-BI>an})

i:3=0

IN

< ¥ e WD)
i:ﬁz:O

12 = var(B)
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T, < cly ! for a constant ¢

2
a
_”2 >
2T;

a3ln _ 1 (logpy)**~*

= >

e 2 < Z. logpn > M logpn
forany M > 0, since (logpn)/{n — 0 and o <1/2

Then

1—P(\ﬁi\ < ap for all'i with g =0) < z e—Mlogp
i:3=0
pe—MIogp
1-M

©

This proves property 1
The proof for property 2 is similar
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Topics of Covered in 992

LASSO and its asymptotic properties

Nonconcave penalized likelihood method

Sure independence screening

High dimensional variable selection by Wasserman and Roeder
Bayesian model/variable selection

A review by Fan and Lv

Others
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