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Introduction

Responses and covariates
yn = (y1, ...,yn): independent responses
Xn = (x′

1, ...,x
′
n)′: an n×pn matrix whose i th row xi is the value of a

pn-dimensional covariate associated with yi

We are interested in the relationship between yn and Xn through

µn = E(yn|Xn)

We may be interested in inference on µn

Model/Variable selection
A class of models, indexed by α ∈ An, is proposed for E(yn|Xn)

If An contains more than one model, then we need to select a model
from An using the observed yn and Xn

If each α corresponds to an n×pn(α) sub-matrix of Xn, then model
selection is also called variable selection
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Example 1. Linear regression
pn = p for all n

µn = Xnβ

β = (β′
1,β

′
2)

′, Xn = (Xn1,Xn2)

It is suspected that β2 = 0 (Xn2 is unrelated to yn)
Model 1: µn = Xn1β1
Model 2: µn = Xnβ

An = {1,2}
Model 1 is better if β2 = 0

In general, An = all subsets of {1, ...,p}
Model α: µn = Xn(α)β(α)
β(α): sub-vector of β with indices in α
Xn(α): the corresponding sub-matrix of Xn
The number of models in An is 2p

Approximation to a response surface
The ith row of Xn(αh) = (1, ti , t2

i , ..., th
i ), ti ∈ R

αh = {1, ...,h}: a polynomial of order h
An = {αh : h = 0,1, ...,pn}
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Example 2. 1-mean vs p-mean
n = pr , p = pn, r = rn

There are p groups, each has r identically distributed observations
Select one model from two models

1-mean model: all groups have the same mean µ1
p-mean model: p groups have different means µ1, ...,µp

An = {α1,αp}

Xn =





1r 0 0 · · · 0
1r 1r 0 · · · 0
1r 0 1r · · · 0
· · · · · · · · · · · · · · ·
1r 0 0 · · · 1r




β =





µ1

µ2 −µ1

µ3 −µ1

· · ·
µp −µ1





Xn(αp) = Xn β(αp) = β

Xn(α1) = 1n β(α1) = µ1
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Criterion for Model Selection
µn is estimated by µ̂n(α) under model α
Minimize the squared error loss

Ln(α) =
‖µn − µ̂n(α)‖2

n
over α ∈ An

Equivalent to minimizing the average prediction error

E
[
‖zn − µ̂n(α)‖2 | yn

]

n
over α ∈ An

zn: a future independent copy of yn

Optimal model αL
n :

Ln(αL
n ) = min

α∈An
Ln(α)

αL
n may be random
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Assessment of Model Selection Procedures
α̂n: a model selected based on a model selection procedure

The selection procedure is consistent if

lim
n→∞

P{α̂n = αL
n} = 1

which implies
lim
n→∞

P{Ln(α̂n) = Ln(αL
n )} = 1

µ̂n(αn) is asymptotically efficient, i.e., it is asymptotically as
efficient as µ̂n(αL

n )
The two results are the same if Ln(α) has a unique minimum for
all large n

The selection procedure is asymptotically loss efficient if

Ln(α̂n)/Ln(αL
n ) →P 1

which is weaker than consistency
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Model Selection Procedures
Methods for fixed p or pn/n → 0

Information criterion
AIC (Akaike, 1970), Cp (Mallows, 1973), BIC (Schwarz, 1978)
FPEλ (Shibata, 1984)
GIC (Nishii, 1984, Rao and Wu, 1989, Potscher, 1989)

Cross-Validation (CV)
Delete-1 CV (Allen, 1974, Stone, 1974)
GCV (Craven and Wahba, 1979)
Delete-d CV (Geisser, 1975, Burman, 1986, Shao, 1993)

Bootstrap (Efron, 1983, Shao, 1996)
Methods for Time Series

PMDL and PLS (Rissanen, 1986, Wei, 1992)

LASSO (Tibshirani, 1996)

Methods after 1997?

Thresholding

Methods for pn/n 6→ 0?
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Asymptotic Theory for GIC

The GIC in linear models
Consider linear models

µn = Xn(α)β(α) α ∈ An

Xn is of full rank (pn < n)

en = yn −µn has iid components, V (en|Xn) = σ2In
Under model α , β(α) is estimated by the LSE

µ̂n(α) = Hn(α)yn, Hn(α) = Xn(α)[Xn(α)′Xn(α)]−1Xn(α)

Correct models

A
c

n = {α ∈ An : µn = Xn(α)β(α) is true }

Wrong models
A

w
n = {α ∈ An : α 6∈ A

c
n }

The loss is equal to

Ln(α) = ∆n(α)+e′
nHn(α)en/n

∆n(α) = ‖µn −Hn(α)µn‖
2/n (= 0 if α ∈ A c

n )
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The GIC
A model α̂n ∈ An is selected by minimizing

Γn,λn(α) =
Sn(α)

n
+

λnσ̂2
n pn(α)

n
over α ∈ An

Sn(α) = ‖yn − µ̂n(α)‖2 (measuring goodness-of-fit)
pn(α): dimension of α
λn: non-random positive penalty
σ̂2

n : an estimator of σ2, e.g., σ̂2
n = ‖yn − µ̂n‖

2/(n−pn)

If λn = 2, this is the Cp method

If λn = λ , a constant larger than 2, this is the FPEλ method

If λn = logn, this is almost the BIC

In general, λn can be any sequence with λn → ∞
If λn = 2, the GIC is asymptotically equivalent to the delete-1 CV
and GCV

If λn = n/(n−d), then the GIC is asymptotically equivalent to the
delete-d CV.
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Is the GIC asymptotically loss efficient or consistent?

Sn(α)

n
=

‖yn −Hn(α)yn‖
2

n
=

‖µn −Hn(α)µn +en −Hn(α)en‖
2

n

= ∆n(α)+
‖en‖

2

n
−

e′
nHn(α)en

n
+

2e′
n[In −Hn(α)]µn

n

α ∈ A c
n

[In −Hn(α)]µn = Xn(α)β(α)−Xn(α)β(α) = 0
∆n(α) = 0
Ln(α) = ∆n(α)+e′

nHn(α)en/n = e′
nHn(α)en/n

Γn,λn
(α) =

Sn(α)

n
+

λnσ̂2
n pn(α)

n
=

‖en‖
2

n
−

e′
nHn(α)en

n
+

λnσ̂2
n pn(α)

n

=
‖en‖

2

n
+Ln(α)+

λnσ̂2
n pn(α)

n
−

2e′
nHn(α)en

n
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When An = A c
n

αL
n = α ∈ A c

n with the smallest pn(α)

Γn,λn(α) =
‖en‖

2

n
+Ln(α)+

λnσ̂2
n pn(α)

n
−

2e′
nHn(α)en

n
If λn = 2 (the Cp method, AIC, delete-1 CV, or GCV), the term

2σ̂2
n pn(α)

n
−

2e′
nHn(α)en

n
is of the same order as Ln(α) = e′

nHn(α)en/n unless pn(α) → ∞
for all but one model in A c

n

Under some conditions, the GIC with λn = 2 is asymptotically loss
efficient if and only if A c

n does not contain two models with fixed
dimensions

If λn → ∞, the dominating term in Γn,λn(α) is λnσ̂2
n pn(α)/n

The GIC selects a model by minimizing pn(α)
Hence, the GIC is consistent

The case of λn = λ is similar to the case of λn = 2
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When An = A w
n

Γn,λn
(α) =

‖en‖
2

n
+∆n(α)−

e′
nHn(α)en

n
+

λnσ̂2
n pn(α)

n
+OP

(
∆n(α)

n

)

=
‖en‖

2

n
+Ln(α)+OP

(
λnpn(α)

n

)
+OP

(
Ln(α)

n

)

Assume that

liminf
n→∞

min
α∈A w

n

∆n(α) > 0 and
λnpn

n
→ 0

(The first condition impies that a wrong model is always worse than a
correct model)
Then

Γn,λn(α) =
‖en‖

2

n
+Ln(α)+oP (Ln(α))

Minimizing Γn,λn(α) is asymptotically the same as minimizing Ln(α)

Hence, the GIC is asymptotically loss efficient
The GIC can select the best model in A w

n
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Conclusions (under the given conditions)
According to their asymptotic behavior, the model selection methods
can be classfied into three classes

(1) The GIC with λn = 2, Cp, AIC, delete-1 CV, GCV

(2) The GIC with λn → ∞, delete-d CV with d/n → 1, BIC, PMDL, PLS
λnpn/n → 0

(3) The GIC with λn = λ , delete-d CV with d/n → τ ∈ (0,1)

Key properties
Methods in class (1) are useful when there is no fixed-dimension
correct model

Methods in class (2) are useful whene there are fixed-dimension
correct models

Methods in class (3) are compromises and are not recommended
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Example 2. 1-mean vs p-mean
An = {α1,αp}
pn groups, each with rn observations
∆n(αp) = ∑p

j=1(µj −µ)2/p, µ = ∑p
j=1 µj/p

n = pnrn → ∞ means that either pn → ∞ or rn → ∞

1. pn = p is fixed and rn → ∞
The dimensions of correct models are fixed
The GIC with λn → ∞ and λn/n → 0 is consistent
The GIC with λn = 2 is inconsistent

2. pn → ∞ and rn = r is fixed
Only one correct model has a fixed dimension
The GIC with λn = 2 is consistent
The GIC with λn → ∞ is inconsistent, because λnpn/n = λn/r → ∞

3. pn → ∞ and rn → ∞
Only one correct model has a fixed dimension
The GIC is consistent, provided that λn/rn → 0
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Variable Selection by Thresholding

Assumption A
yn is normally distributed
minj :βj 6=0 |βj | >a positive constant, β = (β1, ...,βp)

X′
nXn is of rank p (p < n)

λin = the i th eigenvalue of X′
nXn, i = 1, ...,n

λin = biζn, 0 < bi ≤ b < ∞, 0 < ζn → ∞
pn → ∞ but (logpn)/ζn → 0

Thresholding

β̂ = (X′
nXn)

−1X′
nyn = (β̂1, ..., β̂p) (the LSE)

β̂ ∼ N(β,σ2(X′
nXn)

−1)

an = [(logpn)/ζn]α , α ∈ (0,1/2), an → 0

Variable xi is selected if and only if |β̂i | > an
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Asymptotic properties

1. lim
n→∞

P(|β̂i | ≤ an for all i with βi = 0) = 1

2. lim
n→∞

P(|β̂i | > an for all i with βi 6= 0) = 1

Proof

1−P(|β̂i | ≤ an for all i with βi = 0) = P
(
∪i :βi=0{|β̂i −βi | > an}

)

≤ ∑
i :βi=0

P
(
{|β̂i −βi | > an}

)

= 2 ∑
i :βi=0

Φ

(
−

an

τi

)

≤ ∑
i :βi=0

e−a2
n/(2τ2

i )

τ2
i = var(β̂i)
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τi ≤ cζ−1
n for a constant c

a2
n

2τ2
i

≥
a2

nζn

2c
=

1
2c

(
logpn

ζn

)2α−1

logpn ≥ M logpn

for any M > 0, since (logpn)/ζn → 0 and α < 1/2
Then

1−P(|β̂i | ≤ an for all i with βi = 0) ≤ ∑
i :βi=0

e−M logp

≤ pe−M logp

= p1−M

→ 0

This proves property 1
The proof for property 2 is similar
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Topics of Covered in 992
LASSO and its asymptotic properties

Nonconcave penalized likelihood method

Sure independence screening

High dimensional variable selection by Wasserman and Roeder

Bayesian model/variable selection

A review by Fan and Lv

Others
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