

CS 540 Introduction to Artificial Intelligence **Probability**

Fred Sala University of Wisconsin-Madison

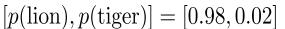
Jan 28, 2021

Probability: What is it good for?

Language to express uncertainty

In AI/ML Context

Quantify predictions



[p(lion), p(tiger)] = [0.01, 0.99]

[p(lion), p(tiger)] = [0.43, 0.57]

Model Data Generation

Model complex distributions

StyleGAN2 (Kerras et al '20)

Win At Poker

Wisconsin Ph.D. student Ye Yuan 5th in WSOP

Not unusual: probability began as study of gambling techniques

Cardano

Liber de ludo aleae Book on Games of Chance 1564!

pokernews.com

Outline

• Basics: definitions, axioms, RVs, joint distributions

• Independence, conditional probability, chain rule

Bayes' Rule and Inference

Basics: Outcomes & Events

- Outcomes: possible results of an experiment
- Events: subsets of outcomes we're interested in

Ex:
$$\Omega = \underbrace{\{1, 2, 3, 4, 5, 6\}}_{\text{outcomes}}$$

$$\mathcal{F} = \underbrace{\{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}}_{\text{events}}$$

Basics: Outcomes & Events

Event space can be smaller:

$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

Two components always in it!

$$\emptyset, \Omega$$

Advanced: Sigma Fields

Won't be using this. Extra context:

 ${\mathcal F}$ is a ``sigma algebra'', follows rules:

Closed under complements & countable unions

- Part of axiomatic development of probability
- Long process: 17th century to 1930s

A. N. Kolmogorov

Basics: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For $E \in \mathcal{F}, P(E) \in [0,1]$

Back to our example:

$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

$$P({1,3,5}) = 0.2, P({2,4,6}) = 0.8$$

Basics: Axioms

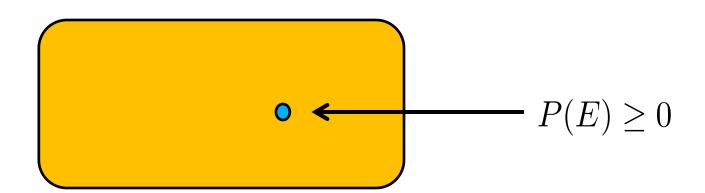
- Rules for probability:
 - For all events $E \in \mathcal{F}, P(E) \geq 0$
 - Always, $P(\emptyset) = 0, P(\Omega) = 1$
 - For disjoint events, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

• Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

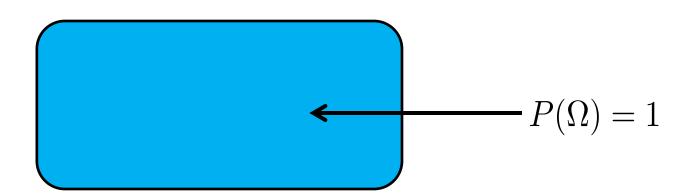
Visualizing the Axioms: I

• Axiom 1: $E \in \mathcal{F}, P(E) \ge 0$



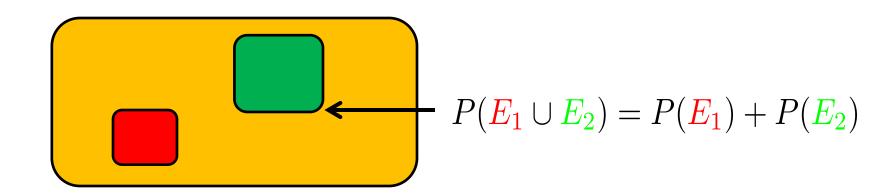
Visualizing the Axioms: II

• Axiom 2: $P(\emptyset) = 0, P(\Omega) = 1$



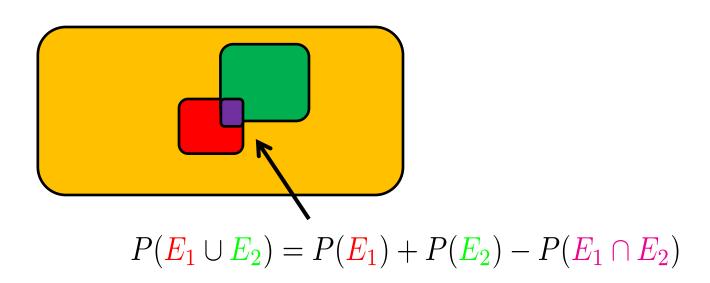
Visualizing the Axioms: III

• Axiom 3: disjoint $P(E_1 \cup E_2) = P(E_1) + P(E_2)$



Visualizing the Axioms

Also, other laws:



Basics: Random Variables

- Really, functions
- Map outcomes to real values $X:\Omega \to \mathbb{R}$

- Why?
 - So far, everything is a set.
 - Hard to work with!
 - Real values are easy to work with

Basics: CDF & PDF

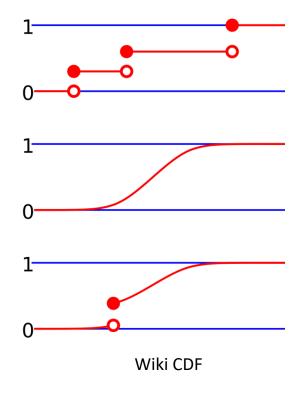
Can still work with probabilities:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$

Cumulative Distribution Func. (CDF)

$$F_X(x) := P(X \le x)$$

• Density / mass function $p_X(x)$



Basics: Expectation & Variance

- Another advantage of RVs are ``summaries''
- Expectation: $E[X] = \sum_a a \times P(x=a)$
 - The "average"
- Variance: $Var[X] = E[(X E[X])^2]$
 - A measure of spread
- Higher moments: other parametrizations

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: P(X = a, Y = b)
 - Why? Work with multiple types of uncertainty

Basics: Marginal Probability

• Given a joint distribution P(X = a, Y = b)

— Get the distribution in just one variable:

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

This is the "marginal" distribution.

24	Cating Fe						
1632 Ochr /	Ginger Beer						6
5	A Brace of Grouse as	11.	16		13		
	Packing 80/20	7	2	1		10	
	Dinner at Club						
							6,
"	Coffee				-		
	Breakfast -						6.1
	Breakfast -						
	Sea ,	-					6,
	Breakfast -	abril 1			"	1	6
15	Breakfast	2000			U	1	6
1833	112						
Jan 20	Tea at himon chil						6
29	Breakfast				"	1	65
	South to be					1	
	Joda Water -					"	
-	4						6.
March 2	3ir Sufubes	4				1	
4	Bundle of asparage						
					"		
	Breakfast	-		6		0	
	Mailer	"		6		2	
14	See 4				"		
June /	Sees			,		/	
				\$	1	19	11

Basics: Marginal Probability

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

$$[P(\text{hot}), P(\text{cold})] = [\frac{195}{365}, \frac{170}{365}]$$

Probability Tables

Write our distributions as tables

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

- # of entries? 6.
 - If we have n variables with k values, we get k^n entries
 - Big! For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
 - No way of writing down all terms

Independence

• Independence between RVs:

$$P(X,Y) = P(X)P(Y)$$

- Why useful? Go from k^n entries in a table to $\sim kn$
- Collapses joint into product of marginals

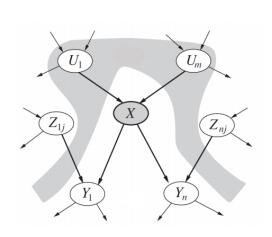
Conditional Probability

For when we know something,

$$P(X = a|Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

Leads to conditional independence

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$



Credit: Devin Soni

Chain Rule

Apply repeatedly,

$$P(A_1, A_2, \dots, A_n)$$
= $P(A_1)P(A_2|A_1)P(A_3|A_2, A_1)\dots P(A_n|A_{n-1}, \dots, A_1)$

- Note: still big!
 - If some conditional independence, can factor!
 - Leads to probabilistic graphical models

Reasoning With Conditional Distributions

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?

- Too strong.
- Inference: compute probability given evidence P(F|S)
 - Can be much more complex!

Using Bayes' Rule

- Want: P(F|S)
- Bayes' Rule: $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
 - P(S) = 0.1 Sore throat rate
 - P(F) = 0.01 Flu rate
 - P(S|F) = 0.9 Sore throat rate among flu sufferers

So: P(F|S) = 0.09

Using Bayes' Rule

- Interpretation P(F|S) = 0.09
 - Much higher chance of flu than normal rate (0.01).
 - Very different from P(S|F) = 0.9
 - 90% of folks with flu have a sore throat
 - But, only 9% of folks with a sore throat have flu

• Idea: update probabilities from

evidence

Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- *E* is the evidence

Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

Prior: estimate of the probability without evidence

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

 Likelihood: probability of evidence given a hypothesis.

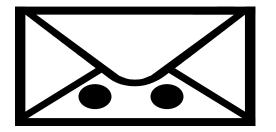
Terminology:

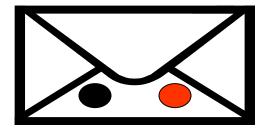
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
Posterior

• Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
 - E₁ has two black balls, E₂ has one black, one red
 - The red one is worth \$100. Others, zero
 - Open an envelope, see one ball. Then, can switch (or not).
 - You see a black ball. Switch?





Two Envelopes Solution

• Let's solve it.

$$P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball})}$$

• Now plug in:

$$P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$$

$$P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$$

So switch!

