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Probability: What is it good for?

* Language to express uncertainty




In Al/ML Context

* Quantify predictions

[p(lion), p(tiger)] = [0.98,0.02]

-

-[p(liOH),p(ti;éer)] _
0.43,0.57

[p(lion), p(tiger)] = [0.01,0.99]



Model Data Generation

 Model complex distributions

StyleGAN2 (Kerras et al ’20)



Win At Poker

* Wisconsin Ph.D. student Ye Yuan 5t in WSOP

Not unusual: probability began
as study of gambling techniques

Cardano

Liber de ludo aleae

Book on Games of Chance
1564!

pokernews.com




Outline

* Basics: definitions, axioms, RVs, joint distributions

* Independence, conditional probability, chain rule

* Bayes’ Rule and Inference




Basics: Outcomes & Events

* QOutcomes: possible results of an experiment

e Events: subsets of outcomes we’re interested in

Ex: Q=1{1,2,3,4,5,6}

VO
outcomes

F={0.41},{2},....{1.2}..... 0}

events




Basics: Outcomes & Events

* Event space can be smaller:

F = \{®7 {17 37 5}7 {2’ 47 6}’ Ql

events

* Two components always in it!

0,




Advanced: Sigma Fields

 Won’t be using this. Extra context:

JF is a “sigma algebra”, follows rules:
Closed under complements & countable unions

* Part of axiomatic development of
probability

* Long process: 17t century to 1930s




Basics: Probability Distribution

* We have outcomes and events.
* Now assign probabilities For E € F, P(E) € [0,1]

Back to our example:
F = {@7 {17 3, 5}7 {27 4’ 6}’ Q}
ev?egts

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8




Basics: Axioms

* Rules for probability:
— Forallevents £ € F,P(F) >0
- Always,  P()) =0, P(Q) = 1
— For disjoint events, P(E; U FEy) = P(FE1) + P(E»)

* Easy to derive other laws. Ex: non-disjoint events
P(E1UEy) = P(Ey)+ P(Es) — P(E1 N Es)



Visualizing the Axioms: |

e Axiom1l: E€ F,P(E) >0

/




Visualizing the Axioms: Il

* Axiom 2: P(()) =0,P(Q) =1




Visualizing the Axioms: llI

* Axiom 3: dlSjOIﬂt P(El U Eg) = P(E1> + P(EQ)

P(Ey U Fy) = P(Ey) + P(1)




Visualizing the Axioms

* Also, other laws:

3

P(E,UE,) = P(Ey) + P(1,) — P(E, N E)




Basics: Random Variables

e Really, functions

* Map outcomestorealvalues X : () - R

‘.;l)',g‘lv'y,ig?'.,,
k.
Facils

— So far, everything is a set.

— Hard to work with!
— Real values are easy to work with



Basics: CDF & PDF

* Can still work with probabilities:
P(X =3):=P({w: X(w) =3}

* Cumulative Distribution Func. (CDF)

Fx(z) := P(X < z)

* Density / mass function px(z)

N

Wiki CDF



Basics: Expectation & Variance

Another advantage of RVs are summaries”
Expectation: E[X]=)_ax P(z=a)

— The “average”
Variance: Var[X] = E[(X - E[X])?]

— A measure of spread

Higher moments: other parametrizations



Basics: Joint Distributions

* Move from one variable to several
* Joint distribution: P(X =a,Y =)
— Why? Work with multiple types of uncertainty




Basics: Marginal Probability
* Given ajoint distribution P(X =a,Y =1b)
— Get the distribution in just one variable:

P(X=a)=Y,P(X =a,Y =b)

— This is the “marginal” distribution.




PX=a)=),P(X=0aY

Basics: Marginal Probability

Sunny

Cloudy

Rainy |

hot

150/365

40/365

5/3635

cold

50/365

60/365

[P(hot), P(cold)] = |

60/365

195 170

365 365]




Probability Tables

 Write our distributions as tables

Sunny Cloudy Rainy
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

e # of entries? 6.
— If we have n variables with £ values, we get k™ entries
— Big! For a 1080p screen, 12 bit color, size of table: 107490589

— No way of writing down all terms




Independence

* Independence between RVs:

P(X,Y) = P(X)P(Y)

 Why useful? Go from k" entries in a table to ~ kn
e Collapses joint into product of marginals



Conditional Probability

* For when we know something,

P(X =a,Y =)

P(X =alY =0) = PY =)

* Leads to conditional independence
P(X,Y|Z)=P(X|Z)P(Y|Z)

Credit: Devin Soni



Chain Rule

* Apply repeatedly,
P(A1,As, ..., Ay)
= P(A1)P(As| A1) P(A3]|As, Ay) ... P(Ap| Apt, ..., A7)
* Note: still big!
— If some conditional independence, can factor!
— Leads to probabilistic graphical models




Reasoning With Conditional Distributions

ogo
(o]
é °

* Evaluating probabilities:

— Wake up with a sore throat.
— Do | have the flu?

* Oneapproach: § = F

— Too strong.

* Inference: compute probability given evidence P(F|5)
— Can be much more complex!



Using Bayes’ Rule

* Want: P(F|S)

* Bayes’ Rule: P(F|S) = P]ﬁfﬁ = P<S1’f2g€)(F>

* Parts:
—  P(S)=0.1 Sore throat rate

- P(F)=0.01 Flurate
— P(S‘F) — (0.9 Sore throat rate among flu sufferers

So: P(F|S) =0.09



Using Bayes’ Rule

* Interpretation P(F|S) = 0.09
— Much higher chance of flu than normal rate (0.01).
— Very different from P(S|F) =10.9

* 90% of folks with flu have a sore throat

* But, only 9% of folks with a sore throat have flu

e |dea: update probabilities from
evidence




Bayesian Inference

* Fancy name for what we just did. Terminology:

E|H)P(H)
P(E)

pE) = 2

 His the hypothesis
 FEisthe evidence




Bayesian Inference

 Terminology:

P(E‘H)P(H) <€——— Prior

P(HIE) = ——p 1

* Prior: estimate of the probability without evidence



Bayesian Inference

* Terminology:

o
P(E|H)P(H)
P(E)

P(H|E) =

* Likelihood: probability of evidence given a
hypothesis.



Bayesian Inference

* Terminology:

E|H)P(H)
P(E)

paE) = 2
A

Posterior

e Posterior: probability of hypothesis given evidence.



Two Envelopes Problem

* We have two envelopes:

— E, has two black balls, E, has one black, one red

— The red one is worth $S100. Others, zero

— Open an envelope, see one ball. Then, can switch (or not).
— You see a black ball. Switch?

<] K



Two Envelopes Solution

P(Black ball|E,)P(E,)

* Let'ssolveit.  p(E,|Black ball) = P(Black ball)
acC a

1
>< —
. - P(E;|Black ball) = :
Now plug in: (E: [Black ball) P(Black ball)
Lyl
P(E,|Black ball) = 2
2‘ ack ba Black ball

o @ &



