

CS 540 Introduction to Artificial Intelligence Deep Learning III

Fred Sala University of Wisconsin-Madison

March 25, 2021

Announcements

- Homeworks:
 - HW7: Released. Grades for several HWs released soon.
- Midterm: grading in progress

Class roadmap:

Tuesday, March 23	Deep Learning II
Thursday, March 25	Deep Learning IIi
Tuesday, March 30	ML: Summary
Thursday, April 1	Games

Outline

- CNNs with more layers: ResNets
 - Layer problems, residual connections, identity maps
- Data Augmentation & Regularization
 - Expanding the dataset, avoiding overfitting
- More Signal From our Data
 - Graph-structured data, graph neural networks

Last Time: CNNs

We talked about CNN components & architectures

- Components: convolutional layers, pooling layers (recall kernels, channels, strides, padding)
- Architectures: LeNet, AlexNet, VGG

Trend: bigger, deeper.

Credit: Mathworks

Evolution of CNNs

ImageNet competition (error rate)

Credit: Stanford CS 231n

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers... sufficient?

- No! Some problems:
 - i) Vanishing gradients: more layers → more likely
 - ii) Instability: can't guarantee we learn identity maps

Reflected in training error:

He et al: "Deep Residual Learning for Image Recognition"

Depth Issues & Learning Identity

Why would more layers result in worse performance?

Idea: if layers can learn identity, can't get worse.

Residual Connections

Idea: Identity might be hard to learn, but zero is easy!

- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now need to learn $f(x) = 0 \rightarrow$ easier

ResNet Architecture

Idea: Residual (skip) connections help make learning easier

- Example architecture:
- Note: residual connections
 - Every two layers for ResNet34
- Vastly better performance
 - No additional parameters!
 - Records on many benchmarks

He et al: "Deep Residual Learning for Image Recognition"

A Bit More on ResNets

Idea: Residual (skip) connections help make learning easier

- Note: Can also analyze from backpropagation p.o.v
 - Residual connections add paths to computation graph
- Also uses batch normalization
 - Normalize the features at each layer to have same mean/variance
 - Common deep learning trick
- Highway networks: learn weights for residual connections

Data Concerns

What if we don't have a lot of data?

- We risk overfitting
- Avoiding overfitting: regularization methods
- Data augmentation: a classic way to regularize

Data Augmentation

Augmentation: transform + add new samples to dataset

- Transformations: based on domain
- Idea: build invariances into the model
 - Ex: if all images have same alignment, model learns to use it
- Keep the label the same!

Transformations

Examples of transformations for images

- Crop (and zoom)
- Color (change contrast/brightness)
- Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at **test time**?

A: transform, test, average

Combining & Automating Transformations

One way to automate the process:

- Apply every transformation and combinations
- Downside: most don't help...

Want a good policy, ie, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

- Active area of research: search for good policies
 - **1.** Ratner et al: "Learning to Compose Domain-Specific Transformations for Data Augmentation"
 - **2. Cubuk et al**: "AutoAugment: Learning Augmentation Strategies from Data"

Other Domains

Not just for image data. For example, on text:

- Substitution
 - E.g., "It is a great day" → "It is a wonderful day"
 - Use a thesaurus for particular words
 - Or, use a model. Pre-trained word embeddings, language models
- Back-translation
 - "Given the low budget and production limitations, this movie is very good."
 - → "There are few budget items and production limitations to make this film a really good one"

Importance of Augmentation

Data augmentation is critical for top performance!

- You should use it!
- AlexNet: used (many papers re-used as well)
 - Random crops, rotations, flips. 2048x expansion!
 - Color augmentation via PCA. 1% error rate reduction

Krizhevsky et al: "ImageNet Classification with Deep Convolutional Neural Networks"

Other Forms of Regularization

Regularization has many interpretations

Goodfellow: "any modification... to a learning algorithm that is intended to reduce its generalization error but not its training error."

A way of adding knowledge / side information

Enforcing parsimony/simplicity

S. Kumar

Other Forms of Regularization

Classic regularizations

1. Modify loss functions

Ex: regularized least squares LR

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + x_i^T \theta - y_i)^2 + \lambda \|\theta\|_2^2$$

- 2. Modify architecture/training/data
 - a) Dropout, batch normalization, augmentation

Relationships in Data

So far, all of our data consists of points

- Assume all are independent, "unrelated" in a sense $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- Pretty common to have relationships between points
 - Social networks: individuals related by friendship
 - Biology/chemistry: bonds between compounds, molecules
 - Citation networks: Scientific papers cite each other

Signal from Relationships

Suppose we are classifying scientific papers

- Features: title, abstract, authors. Labels: math/science/eng.
- Could build a reasonable classifier with the above data
- More signal from relationships
 - Cite each other, more likely from the same field
 - Note: citations are not features; they're links
 - Need a new type of network to handle

Graph Neural Networks

Have: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n), G = (V, E)$

How should our new architecture look?

- Still want layers
 - linear transformation + non-linearity

Hidden Layer Representation

- Now want to integrate neighbors
- Bottom: graph convolutional network

Graph Convolutional Networks

Let's examine the GCN architecture in more detail

- Difference: "graph mixing" component
- At each layer, get representation at each node
- Combine node's representation with neighboring nodes

"Aggregate" and "Update" rules

Graph Convolutional Networks

Note the resemblance to CNNs:

- Pixels: arranged as a very regular graph
- Want: more general configurations (less regular)

Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Summary

- Intro to deeper networks (resnets)
 - Dealing with problems by adding skip connections
- Intro to regularization
 - Data augmentation + other regularizers
- Basic graph neural networks

Acknowledgements: Inspired by materials by Fei-Fei Li, Ranjay Krishna, Danfei Xu (Stanford CS231n)