

CS 540 Introduction to Artificial Intelligence Linear Regression Bonus Slides

Fred Sala University of Wisconsin-Madison

March 2, 2021

Linear Regression

Simplest type of regression problem.

- Inputs: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - x's are vectors, y's are scalars.
 - "Linear": predict a linear combination
 of x components + intercept

$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d = \theta_0 + x^T \theta_0$$

• Want: parameters heta

Linear Regression Setup

Problem Setup

- Goal: figure out how to minimize square loss
- Let's organize it. Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
 - Since $f(x) = \theta_0 + x^T \theta$, wrap intercept: $f(x) = x^T \theta$ Take train data and make it a matrix/vector: $X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \end{bmatrix}$
 - Then, square loss is

$$\frac{1}{n} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 = \frac{1}{n} \|X^T \theta - y\|^2$$

Finding The Optimal Parameters

Have our loss:
$$\frac{1}{n} \|X^T \theta - y\|^2$$

- Could optimize it with SGD, etc...
- No need: minimum has a solution (easy with vector calculus)

"Normal Equations"

How Good are the Optimal Parameters?

Now we have parameters $\hat{\theta} = (X^T X)^{-1} X^T y$

- How good are they?
- Predictions are $f(x_i) = \hat{\theta}^T x_i = ((X^T X)^{-1} X^T y)^T x_i$
- Errors ("residuals")

$$|y_i - f(x_i)| = |y_i - \hat{\theta}^T x_i| = |y_i - ((X^T X)^{-1} X^T y)^T x_i|$$

• If data is linear, residuals are 0. Almost never the case!

Train/Test for Linear Regression?

So far, residuals measure error on train set

- Sometimes that's all we care about (Fixed Design LR)
 - Data is deterministic.
 - Goal: find best linear relationship on dataset

- Or, create a test set and check (Random Design LR)
 - Common: assume data is $y = \theta^T x + \varepsilon$
 - The more noise, the less linear

0-mean Gaussian noise

Solving With Gradient Descent

What if we don't know the exact solution?

- Use one of the iterative algorithms to do $\min_{\theta} \ell(\theta)$
- Among the most popular: gradient descent
- Basic idea: start at $heta^{(0)}$

Next

solution

- Next step: do $\theta^{(j+1)} = \theta^{(j)} - \gamma \nabla \ell(\theta^{(j)})$

Gradient of the loss, evaluated at current sol.

Current solution (a constant)

- Run till convergence. (You'll implement this in HW5!)

Linear Regression \rightarrow Classification?

What if we want the same idea, but y is 0 or 1?

• Need to convert the $\theta^T x$ to a probability in [0,1]

$$p(y = 1|x) = \frac{1}{1 + \exp(-\theta^T x)} \quad \clubsuit \text{ Logistic function}$$

Why does this work?

- If $\theta^T x$ is really big, $\exp(-\theta^T x)$ is really small $\rightarrow p$ close to 1
- If really negative exp is huge $\rightarrow p$ close to 0

"Logistic Regression"