

CS 540 Introduction to Artificial Intelligence **Logic**

Fred Sala University of Wisconsin-Madison

Feb 9, 2021

Announcements

- Homeworks:
 - Good work on HW2! HW3 is next.
- Office hours
- Class roadmap:

Thursday, Jan 28	Probability			-
Tuesday, Feb 2	Linear Algebra and PCA		9	bund
Thursday, Feb 4	Statistics and Math Review	}	_	lamentals
Tuesday, Feb 9	Introduction to Logic			<u>Slb</u>
Thursday, Feb 11	Natural Language Processing			

Homework Review: PCA Recursion

• Once we have *k-1* components, next?

$$\hat{X}_k = X - \sum_{i=1}^{\kappa - 1} X v_i v_i^T$$

Then do the same thing

$$v_k = \arg\max_{\|v\|=1} \|\hat{X}_k w\|^2$$

Homework Review: Eigendecomposition

- Recall eval/evectors: $Av = \lambda v$
- Eigendecomposition:

• HW3: Replace PCA recursion with eigendecomp

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic Al"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

Less popular recently!

J. Gardner

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks
- Extremely popular last 20

years

Stanford CS231n

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-bothworlds
 - Actually been worked on:
 - Example: Markov Logic Networks

Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

```
∧ and∨ or⇒ implies⇔ is equivalent¬ not
```

[conjunction]
[disjunction]
[implication]
[biconditional]
[negation]

Literal: P or negation ¬P

Propositional Logic Basics

Examples:

- $(P \lor Q) \Rightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not well-formed:
 - P ⇒ Q ⇒ S X (not associative!)

```
Including Header Files

#include<stdio.h>
#include<conio.h>
void main() ← main() Function Must Be There

{
    clrscr();
    printf("Welcome to DataFlair");

Single Line Comment
Comment
getch(); ← Semicolon After Each Statement

};

Program Enclosed Within Curly Braces
```

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - **Semantics**: interpretations for which sentence evaluates to True
 - **Model**: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Note:

- If P is false, P⇒Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality unneeded: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬P	Q∧R	¬P∨Q∧R	¬P∨Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable

There exists some interpretation where sentence true

Knowledge Bases

- Knowledge Base (KB): A set of sentences
 - Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

Like from a KB. Write A ⊨ B

• $A \models B$ iff in every interpretation where A is true, B is

also true

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!

Challenges:

- Soundness
- Completeness
- Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- Modus Ponens: $(A \Rightarrow B, A) \models B$
- And-elimination
- Many other rules
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$
a clause

Conjunction of clauses; each clause disjunction of literals

Simple rules for converting to CNF

Methods of Inference: 3. Resolution

Start with our KB and query B

- Add ¬B
- Show that this leads to a contradiction
- Take clauses with a symbol and its complement
 - Merge, throw away symbol: $P \lor Q \lor R$, $\neg Q \lor S \lor T$: $P \lor R \lor S \lor T$
 - If no symbol left, KB entails B
 - No new clauses, KB does not entail B

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions

First Order Logic (FOL)

Basics:

- Constants: "16", "Green", "Bob"
- Functions: map objects to objects
- Predicates: map objects to T/F:
 - Greater(5,3)
 - Color(grass, green)

First Order Logic (FOL)

Basics:

- Variables: x, y, z
- Connectives: Same as propositional logic
- Quantifiers:
 - \forall universal quantifier: $\forall x$ human $(x) \Rightarrow$ mammal (x)
 - ∃ existential quantifier