SRR eSS WA

L SRy

R o4

R

CS 540 Introduction to Artificial Intelligence
Reinforcement Learning |

Fred Sala
University of Wisconsin-Madison

April 20, 2021

Announcements

e Homeworks:
— HWS9 due today, final HW out

 Final: administrative details out soon

Thursday, April 22 RL Il + Search Summary

* Class roadmap; Tuesday, April 27 Al in the Real World
Thursday, April 29 Al Ethics

Outline

* Introduction to reinforcement learning

— Basic concepts, mathematical formulation, MDPs, policies
* Valuing policies

— Value functions, Bellman equation, value iteration
* Q-learning

— Q function, SARSA, deep Q-learning

Back to Our General Model

We have an agent interacting with the world

() >
Actions
<€
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9S)
— Note: data consists of actions & observations

* Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

o0e =
'2;@;3 Google DeepMind {9'3 AlphaGo Policy network Value network
4 Challenge Match

8-15 March 2016

Py @l9) v (5)

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

DON Rewards

Input

004 002 0b0 o002 004
Timestep

ﬂlmage convolutions

Hidden layers

controller action values <

Qutput Qalues

Mnih et al, “Human-level control through deep reinforcement learning”

02 04 06 08 10
Timestep

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions

s Minecraft

3D
ViZDoom
O = - = DM Lab
" i
ALE
2D
Montezuma's
Revenge

Single-agent

Quake 111 Ng
Arena CTF \:.

StarCraft
Dota2

Number of

y agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

R
.
-
% &%
-
B

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:) >
Actions
e Set of states, S < m
Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
 State set S. Initial state s, Action set A
* State transition model: P(s;1]|s¢,)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 77(3) . S — A action to take at a particular state.

ao ai a9
Sop —> 81 —=> 89 —> ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s) = —0.04 for every
non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

0.1 0.1

1| START r(s) = —0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 — — — +1 0.8
) f f = 0.1 0.1
1 f ~-— - -
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:
 State set S. Initial state s, Action set A
* State transition model: P(s;1]|s¢,)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

How do we find
* Reward function: r(s,) / tho best policy?

* Policy: 7T<S> . S — A action to take at a particular state.

ao ai a9
Sop —> 81 —=> 89 —> ...

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = z P(sequence)U (sequence)

sequences
starting from s

=

Called the value function (for =, s()

Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution
U(s0,51--) = 1(s0) +77(s1) + 77 (=) 4r(se)
t>0

* Discount factor y between O and 1
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S"S,&)V*(S/)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

o/ 7

All the states we Transition Expected ol A S:\
could go to probability rewards

Credit L. Lazbenik

Slight Problem...

Now we can get the optimal policy by doing

7 (s) = argmax, Z P(s's,a)V*(s")

S

* So we need to know V*(s).
— But it was defined in terms of the optimal policy!
— So we need some other approach to get V*(s).
— Need some other property of the value function!

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1r(s) + va?JXZP(S’]s, a)V*(s)

T\SY }

Current state Discounted expected
reward future rewards

WSS
AT /

* Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

« Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

* Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(5/\Saa)W(3/>

Value Iteration: Demo

Value iteration step 1 0.100

ll:l'1""1""1""TTTTTTTTTTTTTTTTTTTTTT"

-+++++++++++++++++++++++-|

R E E E L R E L E E R I i

R I I N N R R N R X 0.075

F+ +++++++ AR+

A R E R L I T I N I O N R A
Ble+++++++++++ A

A R R R I T O I N N N A - 0.050

F+ +++++++ A

A R R I T N T I O N N A A

R NI N N N N R R R R

A I T I TR I TG I N I N R R T - 0.025
L

A I K T N TG T T N I N I R R

I I R N N N U N R R R

A R I K T TG T T T I N N A R - 0.000

A A I T T T I I T I N R R A |
NEEEEEERERE R R R R

A R E R R I T N T I A N A L _0.025

F+ +++++ R+

A R R I T T I T O N N A

F+ +++++++ AR+

A R I K T T T T I I N I N R L _0.050
PRI T I NI N I NI N N R R N

R K T TG T T I I T I R R

I N NI N N N N R R R R

4+ ++ ++++++++++++++F+F+FrFEFFFA —D.075

A R R I T N N I O I R A

F+ +++++ AR+

(R T S SO TR U DU N N W NN N N T NS U S DU SUN N NN N N NN N N TR S N |

I:II:I 2 4 B a8 10 —0.100

Source: POMDPBGallery Julia Package

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
* Need a way to learn to act without it.

* Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s

* Note: V*(s) = max, Q(s,0)

* Now, we can just do m*(s) = arg max,Q(s,a)
— But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

e Similar iterative procedure

Q(5t,at) <+ Q(st,ar) + ar(se) + VmC?JXQ(StHa a) — Q(st, at)]

/

Learning rate

* |dea: combine old value and new estimate of future value.

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
e Avoid bad stuff

— Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 @(s,a) uniform(0,1) > €
a =
random a € A otherwise

Q-Learning: SARSA

An alternative:

e Just use the next action, no max over actions:

Q(st,a1) < Q(s4,a¢) + alr(ss) +7Q(St41, ap41) — Q(8¢,)]

Learning rate

» C(Called state—action—reward—state—action (SARSA)
e (Can use with epsilon-greedy policy

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
v v v

-n
S
=
8
‘:
3
@
O
g

=
/]
B e

EE E B E
O
A
S 9 5. 8 0 S 0 PO
alrlclele R SPTLT s
s b b D b rlslelelv]s]- B
CLEEEEEEEEL]

Mnih et al, "Human-level control through deep reinforcement learning"

Summary

Reinforcement learning setup
Mathematica formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

