Break \& Quiz

Q 1.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let r be the reward function such that $r(A)=$ $1, r(B)=0$. Let γ be the discounting factor. What is the optimal policy $\pi^{*}(A)$ and $\pi^{*}(B)$? What are $V^{*}(A), V^{*}(B)$?

- A. Stay, Stay, 1/(1- $\gamma), 1$
- B. Stay, Move, 1/(1- $\gamma), 1 /(1-\gamma)$
- C. Move, Move, 1/(1- γ), 1
- D. Stay, Move, $1 /(1-\gamma), \gamma /(1-\gamma)$

Break \& Quiz

Q 1.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let r be the reward function such that $r(A)=$ $1, r(B)=0$. Let γ be the discounting factor. What is the optimal policy $\pi^{*}(A)$ and $\pi^{*}(B)$? What are $V^{*}(A), V^{*}(B)$?

- A. Stay, Stay, 1/(1- $\gamma), 1$
- B. Stay, Move, 1/(1- $\gamma), 1 /(1-\gamma)$
- C. Move, Move, 1/(1- γ), 1
- D. Stay, Move, 1/(1- $\gamma), \gamma /(1-\gamma)$

Break \& Quiz

Q 1.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let r be the reward function such that $r(A)=1, r(B)=$ 0 . Let γ be the discounting factor. What is the optimal policy $\pi^{*}(A)$ and $\pi^{*}(B)$? What are $V^{*}(A), V^{*}(B)$?

- A. Stay, Stay, 1/(1- $\gamma), 1$
- B. Stay, Move, 1/(1- $\gamma), 1 /(1-\gamma)$
- C. Move, Move, 1/(1- $\gamma), 1$
- D. Stay, Move, $1 /(1-\gamma), \gamma /(1-\gamma)$ Note: want to stay at A, if at B, move to A. Starting at A, sequence A, A, A, \ldots rewards $1, \gamma, \gamma^{2}, \ldots$. Start at B, sequence B, A, A, \ldots rewards $0, \gamma, \gamma^{2}, \ldots$. Sums to $1 /(1-\gamma), \gamma /(1-\gamma)$.

Break \& Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Break \& Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Break \& Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations. (No: this is dependent on the particular problem, not a general constant).
- C. Re-start with different random initial table values. (No: this is not necessary in general).
- D. Prioritize exploitation over exploration. (No: insufficient exploration means potentially unupdated state action pairs).

