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Announcements 

• Homeworks:  
– HW8 graded; released after class.  

• OH: Monday, 4-7 pm 
– Chat about whatever you like. 

 

 

• Class roadmap: 

 

 

Tuesday, April 20 Reinforcement Learning I 

Thursday, April 22 RL II + Search Summary 

Tuesday, April 27 AI in the Real World 

Thursday, April 29 AI Ethics 

 

 



Outline 

• Review of reinforcement learning 

– MDPs, value functions, value iteration 

• Q-learning 

– Q function, SARSA, deep Q-learning 

• Search + RL Review 
– Uninformed/informed search, optimization, RL 

 



Building The Theoretical Model 

Basic setup: 

• Set of states, S 

• Set of actions A 

• Information: at time t, observe state st ∈ S. Get reward rt 

• Agent makes choice at ∈ A. State changes to st+1, continue 

 

Goal: find a map from states to actions maximize rewards. 
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Markov Decision Process (MDP) 

The formal mathematical model: 

• State set S. Initial state s0. Action set A 

• State transition model: 
– Markov assumption: transition probability only depends on st and at, 

and not previous actions or states.  

• Reward function: r(st) 

• Policy:                            action to take at a particular state.  
 

 

 

 

 

 

 

 

 

 



Grid World Optimal Policy 

Note: (i) Robot is unreliable    (ii) Reach target fast 
 

 

 

 

 

 

 

 

 

 

𝒓(𝑠)  =  −0.04 for every 
non-terminal state 



Defining the Optimal Policy 

For policy , expected utility over all possible state 
sequences from 𝑠0 produced by following that policy: 

 

 

 

 

Called the value function (for , 𝑠0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉𝜋 𝑠0 =  𝑃 sequence 𝑈(sequence)

sequences 
starting from 𝑠0

 



Discounting Rewards 

One issue: these are infinite series. Convergence? 

• Solution 

 

 

• Discount factor  between 0 and 1 

– Set according to how important present is VS future 

– Note: has to be less than 1 for convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 



Values and Policies 

Now that 𝑉𝜋 𝑠0  is defined what a should we take?  

• First, set V*(s) to be expected utility for optimal policy from s 

• What’s the expected utility of an action? 

– Specifically, action a in state s? 

 

 

 

 

 

 

 

 

All the states we 
could go to 

Transition probability  Expected rewards 



Obtaining the Optimal Policy 

We know the expected utility of an action. 

• So, to get the optimal policy, compute 

 

 

 

 

 

 

 

All the states we 
could go to 

Transition 
probability  

Expected 
rewards 

Credit L. Lazbenik 



Bellman Equation 

Let’s walk over one step for the value function: 

 

 

 

 

 

• Bellman: inventor of dynamic programming 

 

 

 

 

 

 

 

 

Discounted expected 
future rewards 

Current state 
reward 



Value Iteration 

Q: how do we find V*(s)? 

• Why do we want it? Can use it to get the best policy 

• Know: reward r(s), transition probability P(s’|s,a) 

• Also know V*(s) satisfies Bellman equation (recursion above) 

 

A: Use the property. Start with V0(s)=0. Then, update 

 

 

 

 

 

 

 

 

 



Q-Learning 

What if we don’t know transition probability P(s’|s,a)? 

• Need a way to learn to act without it. 

• Q-learning: get an action-utility function Q(s,a) that tells us 
the value of doing a in state s 

• Note: V*(s) = maxa Q(s,a) 

• Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎  
– But need to estimate Q! 

 

 

 

 

 

 

 

 

 

 



Q-Learning Iteration 

How do we get Q(s,a)? 

• Similar iterative procedure 

 

 

 

 

Idea: combine old value and new estimate of future value. 

Note: We are using a policy to take actions; based on Q! 

 

 

 

 

 

 

 

 

 

Learning rate 



Exploration Vs. Exploitation 

General question! 
• Exploration: take an action with unknown consequences 

– Pros:  
• Get a more accurate model of the environment 
• Discover higher-reward states than the ones found so far 

– Cons:  
• When exploring, not maximizing your utility 
• Something bad might happen 

• Exploitation: go with the best strategy found so far 
– Pros: 

• Maximize reward as reflected in the current utility estimates 
• Avoid bad stuff 

– Cons:  
• Might also prevent you from discovering the true optimal strategy 

 
  
 
 
 
 

 
 
 
 



Q-Learning: Epsilon-Greedy Policy 

How to explore? 

• With some 0<ε<1 probability, take a random action at each 
state, or else the action with highest Q(s,a) value. 

 



Q-Learning: SARSA 

An alternative: 

• Just use the next action, no max over actions: 

 

 

 

 

 

• Called state–action–reward–state–action (SARSA) 

• Can use with epsilon-greedy policy  

 

 

 

 

 

 

 

 

 

Learning rate 



Q-Learning Details 

Note: if we have a terminal state, the process ends 

• An episode: a sequence of states ending at a terminal state 

• Want to run on many episodes 

• Slightly different Q-update for terminal states (see 
homework!) 

 

 

 

 

 

 

 

 

 



Deep Q-Learning 

How do we get Q(s,a)? 

 

 

 

 

 

 

 

 

 

 

 

Mnih et al, "Human-level control through deep reinforcement learning" 



Summary of RL 

• Reinforcement learning setup 

• Mathematical formulation: MDP 

• Value functions & the Bellman equation 

• Value iteration 

• Q-learning 

 



Search and RL Review 

• Search 

– Uninformed vs Informed 

– Optimization 

• Games 

– Minimax search 

• Reinforcement Learning 

– MDPs, value iteration, Q-learning 



Uninformed vs Informed Search 

Uninformed search (all of what we saw). Know: 

• Path cost g(s) from start to node s 

• Successors. 
 

Informed search. Know: 

• All uninformed search properties, plus 

• Heuristic h(s) from s to goal (recall game heuristic) 
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s 

goal 
g(s)‏ 

start s 
goal 

g(s)‏ h(s)‏ 



Fractalsaco 

Uninformed Search: Iterative Deepening DFS 

Repeated limited DFS 

• Search like BFS, fringe like DFS 

• Properties: 
– Complete 

– Optimal (if edge cost 1) 

– Time O(bd) 

– Space O(bd) 

 

A good option! 

 

 

 

 

 

 

 

 

 

 



Informed Search: A* Search 

A*: Expand best g(s) + h(s), with one requirement  

• Demand that h(s)  h*(s) 

 

• If heuristic has this property, “admissible” 
– Optimistic! Never over-estimates 

 

• Still need h(s) ≥ 0 
– Negative heuristics can lead to strange behavior 

 

 

 

 

 

 

 

 

 

V. Batoćanin 



Search vs. Optimization 

Before: wanted a path from start state to goal state 

• Uninformed search, informed search 

 

New setting: optimization 

• States s have values f(s) 

• Want: s with optimal value f(s) (i.e, optimize over states) 

• Challenging setting: too many states for previous search 
approaches, but maybe not a continuous function for SGD. 

 

 

 

 

 

 

 

 

Wiki 
TuringFin 



Hill Climbing Algorithm 

Pseudocode: 

 

 

 

 

 

What could happen? Local optima! 

 

 

 

 

 

 

 

 

1. Pick initial state s 
2. Pick t in neighbors(s) with the largest f(t) 
3. if f(t) ≤ f(s) THEN stop, return s 
4. s ← t. goto 2. 



Hill Climbing: Local Optima 

Note the local optima. How do we handle them? 

 

 

 

 

 

 

 

 

Done? 

state 

f 

state 

f 
Where do I go? 



Simulated Annealing 

A more sophisticated optimization approach. 

• Idea: move quickly at first, then slow down 

• Pseudocode: 

 

 

 

 

 

 

 

 

Pick initial state s 
For k = 0 through kmax: 

T ← temperature( (k+1)/kmax ) 
Pick a random neighbour, t ← neighbor(s) 
If f(s) ≤ f(t), then s ← t  
Else, with prob. P(f(s), f (t), T) then s ← t 

Output: the final state s 

The interesting bit 



Games Setup 

Games setup: multiple agents 

 

 

 
 

– Now: interactions between agents 

– Still want to maximize utility 

– Strategic decision making. 
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Minimax Search 

Note that long games are yield huge computation 

• To deal with this: limit d for the search depth 

• Q: What to do at depth d, but no termination yet? 
– A: Use a heuristic evaluation function e(x) 

 

 

 

 

 

 

 

 

 

Credit: Dana Nau 



Building The Theoretical Model 

Basic setup: 

• Set of states, S 

• Set of actions A 

• Information: at time t, observe state st ∈ S. Get reward rt 

• Agent makes choice at ∈ A. State changes to st+1, continue 

 

Goal: find a map from states to actions maximize rewards. 

 

 

 

 

 

 

 

 

World 

Agent 

Actions 

Observations 

A “policy” 



Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik, 

Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein 
 


