CS 540 Introduction to Artificial Intelligence
Reinforcement Learning Il / Summary

Fred Sala
University of Wisconsin-Madison

April 22, 2021

Announcements

* Homeworks:
— HWS8 graded; released after class.

* OH: Monday, 4-7 pm

— Chat about whatever you like.

Tuesday, April 20 Reinforcement Learning |
Tuesday, April 27 Al in the Real World

* Class roadmap: Thursday, April 29 Al Ethics

Outline

* Review of reinforcement learning

— MDPs, value functions, value iteration
* Q-learning

— Q function, SARSA, deep Q-learning
e Search + RL Review

— Uninformed/informed search, optimization, RL

Building The Theoretical Model

Basic setup:) >
Actions
e Set of states, S < m
Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
 State set S. Initial state s, Action set A
* State transition model: P(s;1]|s¢,)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 77(3) . S — A action to take at a particular state.

ao ai a9
Sop —> 81 —=> 89 —> ...

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 — — — +1 0.8
) f f = 0.1 0.1
1 f ~-— - -
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sy) = z P(sequence)U (sequence)

sequences
starting from s

=

Called the value function (for =, s()

Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution
U(s0,51--) = 1(s0) +77(s1) + 77 (=) 4r(se)
t>0

* Discount factor y between O and 1
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

Values and Policies

Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S"S,&)V*(S/)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

o/ 7

All the states we Transition Expected ol A S:\
could go to probability rewards

Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

V*(s) =1r(s) + va?JXZP(S’]s, a)V*(s)

T\SY }

Current state Discounted expected
reward future rewards

WSS
AT /

* Bellman: inventor of dynamic programming

Value Iteration

Q: how do we find V*(s)?

« Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

* Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(5/\Saa)W(3/>

Q-Learning

What if we don’t know transition probability P(s’|s,a)?
* Need a way to learn to act without it.

* Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s

* Note: V*(s) = max, Q(s,0)

* Now, we can just do m*(s) = arg max,Q(s,a)
— But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

e Similar iterative procedure
Q (8¢, ar) < Q(s¢,a¢) + afr(se) + VmC?JXQ(StHa a) — Q(8¢, ay)]

Learning rate

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on Q!

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
e Avoid bad stuff

— Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 @(s,a) uniform(0,1) > €
a =
random a € A otherwise

Q-Learning: SARSA

An alternative:

e Just use the next action, no max over actions:

Q(st,a1) < Q(s4,a¢) + alr(ss) +7Q(St41, ap41) — Q(8¢,)]

Learning rate

» C(Called state—action—reward—state—action (SARSA)
e (Can use with epsilon-greedy policy

Q-Learning Details

Note: if we have a terminal state, the process ends

An episode: a sequence of states ending at a terminal state
Want to run on many episodes

Slightly different Q-update for terminal states (see
homework!)

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
v v v

-n
S
=
8
‘:
3
@
O
g

=
/]
B e

EE E B E
O
A
S 9 5. 8 0 S 0 PO
alrlclele R SPTLT s
s b b D b rlslelelv]s]- B
CLEEEEEEEEL]

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning

Search and RL Review

* Search
— Uninformed vs Informed
— Optimization

* Games

— Minimax search

e Reinforcement Learning
— MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

Poouccessors. ... > @
g(s)

Informed search. Know:
* All uninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
e Search like BFS, fringe like DFS

* Properties:
— Complete
— Optimal (if edge cost 1)
— Time O(bY)
— Space O(bd)

A good option!

Fractalsaco

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
 Demand that h(s) < h*(s)

* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates

* Stillneed h(s) 20 *—o I
— Negative heuristics can lead to strange behavior

V. Batodanin

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization /1‘0 P\

Uninformed search, informed search

PPN
/1‘ - 1;§8) ‘ t

Wiki

States s have values f{(s) " ruringen
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm
Pseudocode:

Pick initial state s
Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s < t. goto 2.

-

h WP

What could happen? Local optimal

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Where do | go?

Done? —

/'\

state state

Simulated Annealing

A more sophisticated optimization approach.
* Ildea: move quickly at first, then slow down
* Pseudocode:

Pick initial state s
For k = 0 through k.,
T & temperature((k+1)/k...,)
The interesting bt Pick a random neighbour, t €& neighbor(s)
\Iff(s) <f(t), thens & t
Else, with prob. P(f(s), f (t), T) thens & t
Output: the final state s

Games Setup

Games setup: multiple agents

He G

Player 3
Player 1 @
— Now: interactions between agents gE
— Still want to maximize utility Player 2

— Strategic decision making.

Minimax Search

Note that long games are yield huge computation
* To deal with this: limit d for the search depth

* Q: What to do at depth d, but no termination yet?
— A: Use a heuristic evaluation function e(x)

function MINIMAX(x,) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if 1 is a terminal state then return Max’s payoff at «
else if ¢ = 0 then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

Building The Theoretical Model

Basic setup:) >
Actions
e Set of states, S < m
Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,
Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

