
CS 540 Introduction to Artificial Intelligence

Reinforcement Learning II / Summary

Fred Sala
University of Wisconsin-Madison

April 22, 2021

Announcements

• Homeworks:
– HW8 graded; released after class.

• OH: Monday, 4-7 pm
– Chat about whatever you like.

• Class roadmap:

Tuesday, April 20 Reinforcement Learning I

Thursday, April 22 RL II + Search Summary

Tuesday, April 27 AI in the Real World

Thursday, April 29 AI Ethics

Outline

• Review of reinforcement learning

– MDPs, value functions, value iteration

• Q-learning

– Q function, SARSA, deep Q-learning

• Search + RL Review
– Uninformed/informed search, optimization, RL

Building The Theoretical Model

Basic setup:

• Set of states, S

• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Defining the Optimal Policy

For policy , expected utility over all possible state
sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = 𝑃 sequence 𝑈(sequence)

sequences
starting from 𝑠0

Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

• Discount factor  between 0 and 1

– Set according to how important present is VS future

– Note: has to be less than 1 for convergence

Values and Policies

Now that 𝑉𝜋 𝑠0 is defined what a should we take?

• First, set V*(s) to be expected utility for optimal policy from s

• What’s the expected utility of an action?

– Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.

• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Value Iteration

Q: how do we find V*(s)?

• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Q-Learning

What if we don’t know transition probability P(s’|s,a)?

• Need a way to learn to act without it.

• Q-learning: get an action-utility function Q(s,a) that tells us
the value of doing a in state s

• Note: V*(s) = maxa Q(s,a)

• Now, we can just do 𝜋∗ 𝑠 = arg max𝑎𝑄 𝑠, 𝑎
– But need to estimate Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Similar iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on Q!

Learning rate

Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

• With some 0<ε<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

Q-Learning: SARSA

An alternative:

• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

• Can use with epsilon-greedy policy

Learning rate

Q-Learning Details

Note: if we have a terminal state, the process ends

• An episode: a sequence of states ending at a terminal state

• Want to run on many episodes

• Slightly different Q-update for terminal states (see
homework!)

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

• Reinforcement learning setup

• Mathematical formulation: MDP

• Value functions & the Bellman equation

• Value iteration

• Q-learning

Search and RL Review

• Search

– Uninformed vs Informed

– Optimization

• Games

– Minimax search

• Reinforcement Learning

– MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

• Path cost g(s) from start to node s

• Successors.

Informed search. Know:

• All uninformed search properties, plus

• Heuristic h(s) from s to goal (recall game heuristic)

start
s

goal
g(s)‏

start s
goal

g(s)‏ h(s)‏

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

• Search like BFS, fringe like DFS

• Properties:
– Complete

– Optimal (if edge cost 1)

– Time O(bd)

– Space O(bd)

A good option!

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement

• Demand that h(s)  h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state

• Uninformed search, informed search

New setting: optimization

• States s have values f(s)

• Want: s with optimal value f(s) (i.e, optimize over states)

• Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Wiki
TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s ← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.

• Idea: move quickly at first, then slow down

• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Games Setup

Games setup: multiple agents

– Now: interactions between agents

– Still want to maximize utility

– Strategic decision making.

World

Player 1

Player 2

Player 3

Minimax Search

Note that long games are yield huge computation

• To deal with this: limit d for the search depth

• Q: What to do at depth d, but no termination yet?
– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Building The Theoretical Model

Basic setup:

• Set of states, S

• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Acknowledgements: Based on slides from Yin Li, Jerry Zhu, Svetlana Lazebnik,

Yingyu Liang, David Page, Mark Craven, Pieter Abbeel, Dan Klein

