Break \& Quiz

Q 1.1: Hill climbing and SGD are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

Break \& Quiz

Q 1.1: Hill climbing and SGD are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem

- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

Break \& Quiz

Q 1.1: Hill climbing and SGD are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem

- A. (i) (No: (iii) also true since convexity->local optima are global)
- B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
- C. (i), (iii)
- D. All of the above (No: (ii) false, as above.)

Break \& Quiz

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?
A. $\operatorname{Temp}_{\mathrm{t}+1}=\operatorname{Temp}_{\mathrm{t}}{ }^{*} 1.25$
B. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}$
C. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}{ }^{*} 0.8$
D. $\mathrm{Temp}_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}{ }^{*} 0.0001$

Break \& Quiz

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?
A. $\operatorname{Temp}_{\mathrm{t}+1}=\operatorname{Temp}_{\mathrm{t}}{ }^{*} 1.25$
B. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}$
C. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}{ }^{*} 0.8$
D. $\mathrm{Temp}_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}{ }^{*} 0.0001$

Break \& Quiz

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?
A. $\mathrm{Temp}_{\mathrm{t}+1}=\mathrm{Temp}_{\mathrm{t}} * 1.25$ (No, temperate is increasing)
B. $\operatorname{Temp}_{\mathrm{t}+1}=\operatorname{Temp}_{\mathrm{t}}$ (No, temperature is constant)
C. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}{ }^{*} 0.8$
D. Temp $_{\mathrm{t}+1}=$ Temp $_{\mathrm{t}}^{*} 0.0001$ (Cools too fast---basically hill climbing)

Break \& Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing than A^{*} search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Break \& Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing than A^{*} search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Break \& Quiz

Q 2.2: Which of the following would be better to solve with simulated annealing than A^{*} search?
i. Finding the smallest set of vertices in a complete graph (i.e., all nodes connected)
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
iii. Finding the fastest way through a maze

- A. (i) (No, (ii) better: huge number of states, don't care about path)
- B. (ii) (No, (i) complete graph might have too many edges for A *)
- C. (i) and (ii)
- D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

